Journal of Neurocytology

, Volume 33, Issue 5, pp 517–533

Early changes in Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements

  • Nicholas A. DiProspero
  • Er-Yun Chen
  • Vinod Charles
  • Markus Plomann
  • Jeffrey H. Kordower
  • Danilo A. Tagle
Article

Abstract

Huntington’s disease (HD) is caused by a polyglutamine repeat expansion in the N-terminus of the huntingtin protein. Huntingtin is normally present in the cytoplasm where it may interact with structural and synaptic elements. The mechanism of HD pathogenesis remains unknown but studies indicate a toxic gain-of-function possibly through aberrant protein interactions. To investigate whether early degenerative changes in HD involve alterations of cytoskeletal and vesicular components, we examined early cellular changes in the frontal cortex of HD presymptomatic (PS), early pathological grade (grade 1) and late-stage (grade 3 and 4) patients as compared to age-matched controls. Morphologic analysis using silver impregnation revealed a progressive decrease in neuronal fiber density and organization in pyramidal cell layers beginning in presymptomatic HD cases. Immunocytochemical analyses for the cytoskeletal markers α -tubulin, microtubule-associated protein 2, and phosphorylated neurofilament demonstrated a concomitant loss of staining in early grade cases. Immunoblotting for synaptic proteins revealed a reduction in complexin 2, which was marked in some grade 1 HD cases and significantly reduced in all late stage cases. Interestingly, we demonstrate that two synaptic proteins, dynamin and PACSIN 1, which were unchanged by immunoblotting, showed a striking loss by immunocytochemistry beginning in early stage HD tissue suggesting abnormal distribution of these proteins. We propose that mutant huntingtin affects proteins involved in synaptic function and cytoskeletal integrity before symptoms develop which may influence early disease onset and/or progression.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AVILA, J., DOMINGUEZ, J. & DIAZ-NIDO, J. (1994) Regulation of microtubule dynamics by microtubule-associated protein expression and phosphorylation during neuronal development. International Journal of Developmental Biology 38, 13–25.PubMedGoogle Scholar
  2. AYLWARD, E. H., ANDERSON, N. B., BYLSMA, F. W., WAGSTER, M. V., BARTA, P. E., SHERR, M., FEENEY, J., DAVIS, A., ROSENBLATT, A., PEARLSON, G. D. & ROSS, C. A. (1998) Frontal lobe volume in patients with Huntington’s disease. Neurology 50, 252–258.PubMedGoogle Scholar
  3. BEAL, M. F., KOWALL, N. W., ELLISON, D. W., MAZUREK, M. F., SWARTZ, K. J. & MARTIN, J. B. (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321, 168–171.PubMedGoogle Scholar
  4. BERRIOS, G. E., WAGLE, A. C., MARKOVA, I. S., WAGLE, S. A., HO, L. W., RUBINSZTEIN, D. C., WHITTAKER, J., FFRENCH-CONSTANT, C., KERSHAW, A., ROSSER, A., BAK, T. & HODGES, J. R. (2001) Psychiatric symptoms and CAG repeats in neurologically asmptomatic Huntington’s disease carriers. Psychiatry Research 102, 217–225.PubMedGoogle Scholar
  5. BLOCK-GALARZA, J., CHASE, K. O., SAPP, E., VAUGHN, K. T., VALLEE, R. B., DIFIGLIA, M. & ARONIN, N. (1997) Fast transport and retrograde movement of huntingtin and HAP 1 in axons. NeuroReport 8, 2247–2251.PubMedGoogle Scholar
  6. BORDELON, Y. M. & CHESSELET, M. F. (1999) Early effects of intrastriatal injections of quinolinic acid on microtubule-associated protein-2 and neuropeptides in rat basal ganglia. Neuroscience 93, 843–853.PubMedGoogle Scholar
  7. BRUGG, B. & MATUS, A. (1991) Phosphorylation determines the binding of microtubule-associated protein 2 (MAP2) to microtubules in living cells. Journal of Cell Biology 114, 735–743.PubMedGoogle Scholar
  8. CEPEDA, C., HURST, R. S., CALVERT, C. R., HERNANDEZ-ECHEAGARAY, E., NGUYEN, O. K., JOCOY, E., CHRISTIAN, L. J., ARIANO, M. A. & LEVINE, M. S. (2003) Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington’s disease. Journal of Neuroscience 23, 961–969.PubMedGoogle Scholar
  9. CHA, J. H. (2000) Transcriptional dysregulation in Huntington’s disease. Trends in Neuroscience 23, 387–392.Google Scholar
  10. CUDKOWICZ, M. & KOWALL, N. W. (1990) Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Annals of Neurology 27, 200–204.PubMedGoogle Scholar
  11. DE LA MONTE, S. M., VONSATTEL, J. P. & RICHARDSON, E. P., JR. (1988) Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. Journal of Neuropathology & Experimental Neurology 47, 516–525.Google Scholar
  12. DESAI, A. & MITCHISON, T. J. (1997) Microtubule polymerization dynamics. Annual Review of Cell & Developmental Biology 13, 83–117.Google Scholar
  13. DEWHURST, K. (1969) Neuro-psychiatric aspects of Huntington’s disease. Confinia Neurologica 31, 258–268.PubMedGoogle Scholar
  14. DIAZ-NIDO, J., MONTORO, R. J., LOPEZ-BARNEO, J. & AVILA, J. (1993) High external potassium induces an increase in the phosphorylation of the cytoskeletal protein MAP2 in rat hippocampal slices. European Journal of Neuroscience 5, 818–824.PubMedGoogle Scholar
  15. DIFIGLIA, M., SAPP, E., CHASE, K., SCHWARZ, C., MELONI, A., YOUNG, C., MARTIN, E., VONSATTEL, J. P., CARRAWAY, R., & REEVES, S. A. (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081.PubMedGoogle Scholar
  16. DIFIGLIA, M., SAPP, E., CHASE, K. O., DAVIES, S. W., BATES, G. P., VONSATTEL, J. P. & ARONIN, N. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993.PubMedGoogle Scholar
  17. DOM, R., MALFROID, M. & BARO, F. (1976) Neuropathology of Huntington’s chorea. Studies of the ventrobasal complex of the thalamus. Neurology 26, 64–68.Google Scholar
  18. ELDER, G. A., FRIEDRICH, V. L., JR., BOSCO, P., KANG, C., GOUROV, A., TU, P. H., LEE, V. M. & LAZZARINI, R. A. (1998a) Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L), and neurofilament content. Journal of Cell Biology 141, 727–739.Google Scholar
  19. ELDER, G. A., FRIEDRICH, V. L., JR., KANG, C., BOSCO, P., GOUROV, A., TU, P. H., ZHANG, B., LEE, V. M. & LAZZARINI, R. A. (1998b) Requirement of heavy neurofilament subunit in the development of axons with large calibers. Journal of Cell Biology 143, 195–205.Google Scholar
  20. ENGQVIST-GOLDSTEIN, A. E., WARREN, R. A., KESSELS, M. M., KEEN, J. H., HEUSER, J. & DRUBIN, D. G. (2001) The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. Journal of Cell Biology 154, 1209–1223.PubMedGoogle Scholar
  21. FOLSTEIN, S. E. (1983) Psychiatric features of Huntington’s disease: Recent approaches and findings. Psychiatric Developments 1, 193–205.PubMedGoogle Scholar
  22. FOROUD, T., SIEMERS, E., KLEINDORFER, D., BILL, D. J., HODES, M. E., NORTON, J. A., CONNEALLY, P. M. & CHRISTIAN, J. C. (1995) Cognitive scores in carriers of Huntington’s disease gene compared to noncarriers. Annals of Neurology 37, 657–664.PubMedGoogle Scholar
  23. GUIDETTI, P., CHARLES, V., CHEN, E.-Y., REDDY, P. H., KORDOWER, J. H., WHETSELL, W. O., JR., SCHWARCZ, R. & TAGLE, D. A. (2001) Early degenerative changes in transgenic mice expressing mutant huntingtin involve dendritic abnormalities but no impairment of mitochondrial energy production. Experimental Neurology 169, 340–350.PubMedGoogle Scholar
  24. GUNAWARDENA, S., HER, L. S., BRUSCH, R. G., LAYMON, R. A., NIESMAN, I. R., GORDESKY-GOLD, B., SINTASATH, L., BONINI, N. M. & GOLDSTEIN, L. S. (2003) Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila.[see comment]. Neuron 40, 25–40.PubMedGoogle Scholar
  25. GUTEKUNST, C. A., LEVEY, A. I., HEILMAN, C. J., WHALEY, W. L., YI, H., NASH, N. R., REES, H. D., MADDEN, J. J. & HERSCH, S. M. (1995) Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proceedings of the National Academy of Sciences of the United States of America 92, 8710–8714.Google Scholar
  26. HALPAIN, S. & GREENGARD, P. (1990) Activation of NMDA receptors induces rapid dephosphorylation of the cytoskeletal protein MAP2. Neuron 5, 237–246.PubMedGoogle Scholar
  27. HARJES, P. & WANKER, E. E. (2003) The hunt for huntingtin function: Interaction partners tell many different stories. Trends in Biochemical Science 28, 425–433.Google Scholar
  28. HARMS, L., MEIERKORD, H., TIMM, G., PFEIFFER, L. & LUDOLPH, A. C. (1997) Decreased N-acetyl-aspartate/choline ratio and increased lactate in the frontal lobe of patients with Huntington’s disease: A proton magnetic resonance spectroscopy study. Journal of Neurology, Neurosurgery & Psychiatry 62, 27–30.Google Scholar
  29. HARPER, P. S. (1992) The epidemiology of Huntington’s disease. Human Genetics 89, 365–376.PubMedGoogle Scholar
  30. HARRISON, P. J. & EASTWOOD, S. L. (1998) Preferential involvement of excitatory neurons in medial temporal lobe in schizophrenia. Lancet 352, 1669–1673.PubMedGoogle Scholar
  31. HENZE, D. A., CAMERON, W. E. & BARRIONUEVO, G. (1996) Dendritic morphology and its effects on the amplitude and rise-time of synaptic signals in hippocampal CA3 pyramidal cells. Journal of Comparative Neurology 369, 331–344.PubMedGoogle Scholar
  32. HICKS, R. R., SMITH, D. H. & MCINTOSH, T. K. (1995) Temporal response and effects of excitatory amino acid antagonism on microtubule-associated protein 2 immunoreactivity following experimental brain injury in rats. Brain Research 678, 151–160.PubMedGoogle Scholar
  33. HUNTINGTON’S DISEASE COLLABORATIVE RESEARCH GROUP (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.Google Scholar
  34. JACKSON, M., GENTLEMAN, S., LENNOX, G., WARD, L., GRAY, T., RANDALL, K., MORRELL, K. & LOWE, J. (1995) The cortical neuritic pathology of Huntington’s disease. Neuropathology & Applied Neurobiology 21, 18–26.Google Scholar
  35. JASON, G. W., SUCHOWERSKY, O., PAJURKOVA, E. M., GRAHAM, L., KLIMEK, M. L., GARBER, A. T. & POIRIER-HEINE, D. (1997) Cognitive manifestations of Huntington disease in relation to genetic structure and clinical onset. Archives of Neurology 54, 1081–1088.PubMedGoogle Scholar
  36. JIAO, Y., SUN, Z., LEE, T., FUSCO, F. R., KIMBLE, T. D., MEADE, C. A., CUTHBERTSON, S. & REINER, A. (1999) A simple and sensitive antigen retrieval method for free-floating and slide-mounted tissue sections. Journal of Neuroscience Methods 93, 149–162.PubMedGoogle Scholar
  37. JOHNSON, G. V. & JOPE, R. S. (1992) The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. Journal of Neuroscience Research 33, 505–512.PubMedGoogle Scholar
  38. KAECH, S., LUDIN, B. & MATUS, A. (1996) Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins. Neuron 17, 1189–1199.PubMedGoogle Scholar
  39. LAFORET, G. A., SAPP, E., CHASE, K., MCINTYRE, C., BOYCE, F. M., CAMPBELL, M., CADIGAN, B. A., WARZECKI, L., TAGLE, D., REDDY, P. H., CEPEDA, C., CALVERT, C. R., JOKEL, E. S., KLAPSTEIN, G. J., ARIANO, M. A., LEVINE, M. S., DIFIGLIA, M. & ARONIN, N. (2001) Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington’s disease. Journal of Neuroscience 21, 9112–9123.PubMedGoogle Scholar
  40. LAWRENCE, A. D., HODGES, J. R., ROSSER, A. E., KERSHAW, A., FFRENCH-CONSTANT, C., RUBINSZTEIN, D. C., ROBBINS, T. W. & SAHAKIAN, B. J. (1998) Evidence for specific cognitive deficits in preclinical Huntington’s disease. Brain 121, 1329–1341.CrossRefPubMedGoogle Scholar
  41. LAWRENCE, A. D., SAHAKIAN, B. J., HODGES, J. R., ROSSER, A. E., LANGE, K. W. & ROBBINS, T. W. (1996) Executive and mnemonic functions in early Huntington’s disease. Brain 119, 1633–1645.PubMedGoogle Scholar
  42. LEE, W. C., YOSHIHARA, M. & LITTLETON, J. T. (2004) Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proceedings of the National Academy of Sciences of the United States of America 101, 3224–3229.CrossRefPubMedGoogle Scholar
  43. LI, H., LI, S. H., JOHNSTON, H., SHELBOURNE, P. F. & LI, X. J. (2000) Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity [see comments]. Nature Genetics 25, 385–389.CrossRefPubMedGoogle Scholar
  44. LI, H., LI, S. H., YU, Z. X., SHELBOURNE, P. & LI, X. J. (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. Journal of Neuroscience 21, 8473–8481.PubMedGoogle Scholar
  45. LI, M., SOBUE, G., DOYU, M., MUKAI, E., HASHIZUME, Y. & MITSUMA, T. (1995a) Primary sensory neurons in X-linked recessive bulbospinal neuropathy: Histopathology and androgen receptor gene expression. Muscle & Nerve 18, 301–308.Google Scholar
  46. LI, X. J., LI, S. H., SHARP, A. H., NUCIFORA, F. C., JR., SCHILLING, G., LANAHAN, A., WORLEY, P., SNYDER, S. H. & ROSS, C. A. (1995b) A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378, 398–402.CrossRefGoogle Scholar
  47. LUTHI-CARTER, R., STRAND, A., PETERS, N. L., SOLANO, S. M., HOLLINGSWORTH, Z. R., MENON, A. S., FREY, A. S., SPEKTOR, B. S., PENNEY, E. B., SCHILLING, G., ROSS, C. A., BORCHELT, D. R., TAPSCOTT, S. J., YOUNG, A. B., CHA, J. H. & OLSON, J. M. (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Human Molecular Genetics 9, 1259–1271.CrossRefPubMedGoogle Scholar
  48. MANN, D. M., OLIVER, R. & SNOWDEN, J. S. (1993) The topographic distribution of brain atrophy in Huntington’s disease and progressive supranuclear palsy. Acta Neuropathologica 85, 553–559.PubMedGoogle Scholar
  49. MATUS, A., BERNHARDT, R., BODMER, R. & ALAIMO, D. (1986) Microtubule-associated protein 2 and tubulin are differently distributed in the dendrites of developing neurons. Neuroscience 17, 371–389.CrossRefPubMedGoogle Scholar
  50. MCMURRAY, C. T. (2000) Neurodegeneration: Diseases of the cytoskeleton? Cell Death & Differentiation 7, 861–865.Google Scholar
  51. METZLER, M., LEGENDRE-GUILLEMIN, V., GAN, L., CHOPRA, V., KWOK, A., MCPHERSON, P. S. & HAYDEN, M. R. (2001) HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2. Journal of Biological Chemistry 276, 39271–39276.CrossRefPubMedGoogle Scholar
  52. MODREGGER, J., DIPROSPERO, N. A., CHARLES, V., TAGLE, D. A. & PLOMANN, M. (2002) PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic Huntington’s disease brains. Human Molecular Genetics 11, 2547–2558.CrossRefPubMedGoogle Scholar
  53. MORTON, A. J. & EDWARDSON, J. M. (2001) Progressive depletion of complexin II in a transgenic mouse model of Huntington’s disease. Journal of Neurochemistry 76, 166–172.CrossRefPubMedGoogle Scholar
  54. MORTON, A. J., FAULL, R. L. & EDWARDSON, J. M. (2001) Abnormalities in the synaptic vesicle fusion machinery in Huntington’s disease. Brain Research Bulletin 56, 111–117.CrossRefPubMedGoogle Scholar
  55. MURPHY, K. P., CARTER, R. J., LIONE, L. A., MANGIARINI, L., MAHAL, A., BATES, G. P., DUNNETT, S. B. & MORTON, A. J. (2000) Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington’s disease mutation. Journal of Neuroscience 20, 5115–5123.PubMedGoogle Scholar
  56. NAGAI, Y., ONODERA, O., CHUN, J., STRITTMATTER, W. J. & BURKE, J. R. (1999) Expanded polyglutamine domain proteins bind neurofilament and alter the neurofilament network. Experimental Neurology 155, 195–203.CrossRefPubMedGoogle Scholar
  57. NICNIOCAILL, B., HARALDSSON, B., HANSSON, O., O’CONNOR, W. T. & BRUNDIN, P. (2001) Altered striatal amino acid neurotransmitter release monitored using microdialysis in R6/1 Huntington transgenic mice. European Journal of Neuroscience 13, 206–210.CrossRefPubMedGoogle Scholar
  58. ONO, S., BAUX, G., SEKIGUCHI, M., FOSSIER, P., MOREL, N. F., NIHONMATSU, I., HIRATA, K., AWAJI, T., TAKAHASHI, S. & TAKAHASHI, M. (1998) Regulatory roles of complexins in neurotransmitter release from mature presynaptic nerve terminals. European Journal of Neuroscience 10, 2143–2152.CrossRefPubMedGoogle Scholar
  59. PAULSON, H. L. & FISCHBECK, K. H. (1996) Trinucleotide repeats in neurogenetic disorders. Annual Review of Neuroscience 19, 79–107.CrossRefPubMedGoogle Scholar
  60. PLOMANN, M., LANGE, R., VOPPER, G., CREMER, H., HEINLEIN, U. A., SCHEFF, S., BALDWIN, S. A., LEITGES, M., CRAMER, M., PAULSSON, M. & BARTHELS, D. (1998) PACSIN, a brain protein that is upregulated upon differentiation into neuronal cells. European Journal of Biochemistry 256, 201–211.CrossRefPubMedGoogle Scholar
  61. SAPP, E., PENNEY, J., YOUNG, A., ARONIN, N., VONSATTEL, J. P. & DIFIGLIA, M. (1999) Axonal transport of N-terminal huntingtin suggests early pathology of corticostriatal projections in Huntington disease. Journal of Neuropathology and Experimental Neurology 58, 165–173.PubMedGoogle Scholar
  62. SAPP, E., SCHWARZ, C., CHASE, K., BHIDE, P. G., YOUNG, A. B., PENNEY, J., VONSATTEL, J. P., ARONIN, N. & DIFIGLIA, M. (1997) Huntingtin localization in brains of normal and Huntington’s disease patients. Annals of Neurology 42, 604–612.CrossRefPubMedGoogle Scholar
  63. SCHNELL, S. A., STAINES, W. A. & WESSENDORF, M. W. (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. Journal of Histochemistry & Cytochemistry 47, 719–730.Google Scholar
  64. SHARP, A. H., LOEV, S. J., SCHILLING, G., LI, S. H., LI, X. J., BAO, J., WAGSTER, M. V., KOTZUK, J. A., STEINER, J. P., LO, A., ET AL. (1995) Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron 14, 1065–1074.CrossRefPubMedGoogle Scholar
  65. SOLLNER, T. H. (2003) Regulated exocytosis and SNARE function (Review) Molecular Membrane Biology 20, 209–220.CrossRefPubMedGoogle Scholar
  66. SOLLNER, T., WHITEHEART, S. W., BRUNNER, M., ERDJUMENT-BROMAGE, H., GEROMANOS, S., TEMPST, P. & ROTHMAN, J. E. (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324.CrossRefPubMedGoogle Scholar
  67. SOTREL, A., PASKEVICH, P. A., KIELY, D. K., BIRD, E. D., WILLIAMS, R. S. & MYERS, R. H. (1991) Morphometric analysis of the prefrontal cortex in Huntington’s disease. Neurology 41, 1117–1123.PubMedGoogle Scholar
  68. SOTREL, A., WILLIAMS, R. S., KAUFMANN, W. E. & MYERS, R. H. (1993) Evidence for neuronal degeneration and dendritic plasticity in cortical pyramidal neurons of Huntington’s disease: A quantitative Golgi study. Neurology 43, 2088–2096.PubMedGoogle Scholar
  69. STRONG, T. V., TAGLE, D. A., VALDES, J. M., ELMER, L. W., BOEHM, K., SWAROOP, M., KAATZ, K. W., COLLINS, F. S. & ALBIN, R. L. (1993) Widespread expression of the human and rat Huntington’s disease gene in brain and nonneural tissues. Nature Genetics 5, 259–265.CrossRefPubMedGoogle Scholar
  70. SUHR, S. T., SENUT, M. C., WHITELEGGE, J. P., FAULL, K. F., CUIZON, D. B. & GAGE, F. H. (2001) Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. Journal of Cell Biology 153, 283–294.CrossRefPubMedGoogle Scholar
  71. SZEBENYI, G., MORFINI, G. A., BABCOCK, A., GOULD, M., YOUNG, M., FABER, P. W., MACDONALD, M. E., MCPHAUL, M. J. & BRADY, S. T. (2003) Neuropathic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 40, 41–52.CrossRefPubMedGoogle Scholar
  72. TAKAHASHI, S., UJIHARA, H., HUANG, G. Z., YAGYU, K. I., SANBO, M., KABA, H. & YAGI, T. (1999) Reduced hippocampal LTP in mice lacking a presynaptic protein: Complexin II. European Journal of Neuroscience 11, 2359–2366.CrossRefPubMedGoogle Scholar
  73. TROTTIER, Y., DEVYS, D., IMBERT, G., SAUDOU, F., AN, I., LUTZ, Y., WEBER, C., AGID, Y., HIRSCH, E. C. & MANDEL, J. L. (1995) Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form [see comments]. Nature Genetics 10, 104–110.CrossRefPubMedGoogle Scholar
  74. TUKAMOTO, T., NUKINA, N., IDE, K. & KANAZAWA, I. (1997) Huntington’s disease gene product, huntingtin, associates with microtubules in vitro. Brain Research. Molecular Brain Research 51, 8–14.CrossRefPubMedGoogle Scholar
  75. USDIN, M. T., SHELBOURNE, P. F., MYERS, R. M. & MADISON, D. V. (1999) Impaired synaptic plasticity in mice carrying the Huntington’s disease mutation. Human Molecular Genetics 8, 839–846.CrossRefPubMedGoogle Scholar
  76. VELIER, J., KIM, M., SCHWARZ, C., KIM, T. W., SAPP, E., CHASE, K., ARONIN, N. & DIFIGLIA, M. (1998) Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Experimental Neurology 152, 34–40.CrossRefPubMedGoogle Scholar
  77. VONSATTEL, J. P., MYERS, R. H., STEVENS, T. J., FERRANTE, R. J., BIRD, E. D. & RICHARDSON, E. P., JR. (1985) Neuropathological classification of Huntington’s disease. Journal of Neuropathology and Experimental Neurology 44, 559–577.PubMedGoogle Scholar
  78. WANKER, E. E., ROVIRA, C., SCHERZINGER, E., HASENBANK, R., WALTER, S., TAIT, D., COLICELLI, J. & LEHRACH, H. (1997) HIP-I: A huntingtin interacting protein isolated by the yeast two-hybrid system. Human Molecular Genetics 6, 487–495.CrossRefPubMedGoogle Scholar
  79. WOOLF, N. J. (1998) A structural basis for memory storage in mammals. Progress in Neurobiology 55, 59–77.CrossRefPubMedGoogle Scholar
  80. ZOGHBI, H. Y. & ORR, H. T. (2000) Glutamine repeats and neurodegeneration. Annual Review of Neuroscience 23, 217–247.CrossRefPubMedGoogle Scholar
  81. ZUCCATO, C., CIAMMOLA, A., RIGAMONTI, D., LEAVITT, B. R., GOFFREDO, D., CONTI, L., MACDONALD, M. E., FRIEDLANDER, R. M., SILANI, V., HAYDEN, M. R., TIMMUSK, T., SIPIONE, S. & CATTANEO, E. (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293, 493–498.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • Nicholas A. DiProspero
    • 1
    • 2
  • Er-Yun Chen
    • 3
  • Vinod Charles
    • 2
  • Markus Plomann
    • 4
  • Jeffrey H. Kordower
    • 3
  • Danilo A. Tagle
    • 2
  1. 1.Neurogenetics BranchNational Institute of Neurological Disorders and StrokeBethesdaUSA
  2. 2.National Human Genome Research InstituteBethesdaUSA
  3. 3.Rush-Presbyterian Medical CenterChicagoUSA
  4. 4.Institute for Biochemistry II and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany

Personalised recommendations