Advertisement

Networks and Spatial Economics

, Volume 19, Issue 4, pp 1199–1214 | Cite as

A Bicriteria Perspective on L-Penalty Approaches – a Corrigendum to Siddiqui and Gabriel’s L-Penalty Approach for Solving MPECs

  • Kerstin DächertEmail author
  • Sauleh Siddiqui
  • Javier Saez-Gallego
  • Steven A. Gabriel
  • Juan Miguel Morales
Article
  • 103 Downloads

Abstract

This paper presents a corrigendum to Theorems 2 and 3 in Siddiqui and Gabriel (Netw Spatial Econ 13(2):205–227, 2013). In brief, we revise the claim that their L-penalty approach yields a solution satisfying complementarity for any positive value of L, in general. This becomes evident when interpreting the L-penalty method as a weighted-sum scalarization of a bicriteria optimization problem. We also elaborate further assumptions under which the L-penalty approach yields a solution satisfying complementarity.

Keywords

Equilibrium problems MPEC L-penalty method Bicriteria optimization 

Notes

References

  1. Aneja YP, Nair KPK (1979) Bicriteria transportation problem. Manag Sci 25:73–78CrossRefGoogle Scholar
  2. Champion BR, Gabriel SA (2015) An improved strategic decision-making model for energy conservation measures. Energ Strat Rev 6:92–108CrossRefGoogle Scholar
  3. Chankong V, Haimes YY (1983) Multiobjective decision making: theory and methodology. Elsevier Science Publishing, New YorkGoogle Scholar
  4. Dächert K, Klamroth K (2015) A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems. J Glob Optim 61(4):643–676CrossRefGoogle Scholar
  5. Dächert K, Klamroth K, Lacour R, Vanderpooten D (2017) Efficient computation of the search region in multi-objective optimization. Eur J Oper Res 260(3):841–855CrossRefGoogle Scholar
  6. Ehrgott M (2005) Multicriteria optimization. Springer, BerlinGoogle Scholar
  7. Geoffrion AM (1968) Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and its Applications 22:618–630CrossRefGoogle Scholar
  8. Guo L, Lin GH, Jane JY (2015) Solving mathematical programs with equilibrium constraints. J Optim Theory Appl 166(1):234–256CrossRefGoogle Scholar
  9. Guo Z, Fan Y (2017) A stochastic multi-agent optimization model for energy infrastructure planning under uncertainty in an oligopolistic market. Networks and Spatial Economics 17(2):581–609CrossRefGoogle Scholar
  10. Hesamzadeh MR, Rosellon J, Gabriel SA, Vogelsang I (to appear) A simple regulatory incentive mechanism applied to electricity transmission pricing and investment. Energy EconGoogle Scholar
  11. Huppmann D, Siddiqui S (2018) An exact solution method for binary equilibrium problems with compensation and the power market uplift problem. Eur J Oper Res 266(2):622–638CrossRefGoogle Scholar
  12. Jane JY, Zhang J (2014) Enhanced Karush-Kuhn-Tucker conditions for mathematical programs with equilibrium constraints. J Optim Theory Appl 163 (3):777–794CrossRefGoogle Scholar
  13. Jara-Moroni F, Pang JS, Wächter A (2018) A study of the difference-of-convex approach for solving linear programs with complementarity constraints. Math Program 169(1):221–254CrossRefGoogle Scholar
  14. Kanno Y (2018) Robust truss topology optimization via semidefinite programming with complementarity constraints: a difference-of-convex programming approach. Comput Optim Appl 71(2):403–433CrossRefGoogle Scholar
  15. Kanzow C, Schwartz A (2014a) Convergence properties of the inexact Lin-Fukushima relaxation method for mathematical programs with complementarity constraints. Comput Optim Appl 59(1-2):249– 262CrossRefGoogle Scholar
  16. Kanzow C, Schwartz A (2014b) The price of inexactness: convergence properties of relaxation methods for mathematical programs with complementarity constraints revisited. Math Oper Res 40(2):253– 275CrossRefGoogle Scholar
  17. Klamroth K, Lacour R, Vanderpooten D (2015) On the representation of the search region in multi-objective optimization. Eur J Oper Res 245(3):767–778CrossRefGoogle Scholar
  18. Luo Z, Pang j, Ralph D (1996) Mathematical programs with equilibrium constraints. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. Neto PA, Friesz TL, Han K (2016) Electric power network oligopoly as a dynamic Stackelberg game. Networks and Spatial Economics 16(4):1211–1241CrossRefGoogle Scholar
  20. Neumann A, Rosellon J, Weigt H (2015) Removing cross-border capacity bottlenecks in the European natural gas market – a proposed merchant-regulatory mechanism. Networks and Spatial Economics 15(1):149–181CrossRefGoogle Scholar
  21. Pineda S, Morales JM (to appear) Solving linear bilevel problems using big-Ms: not all that glitters is gold. IEEE Trans Power Syst, also available on arXiv:180910448
  22. Pineda S, Bylling H, Morales JM (2018) Efficiently solving linear bilevel programming problems using off-the-shelf optimization software. Optim Eng 19 (1):187–211CrossRefGoogle Scholar
  23. Saez-Gallego J, Morales JM, Zugno M, Henrik M (2016) A data-driven bidding model for a cluster of price-responsive consumers of electricity. IEEE Trans Power Syst 31(6):5001–5011CrossRefGoogle Scholar
  24. Shim Y, Fodstad M, Gabriel S, Tomasgard A (2013) A branch-and-bound method for discretely-constrained mathematical programs with equilibrium constraints. Ann Oper Res 210(1):5–31CrossRefGoogle Scholar
  25. Siddiqui S, Christensen A (2016) Determining energy and climate market policy using multiobjective programs with equilibrium constraints. Energy 94:316–325CrossRefGoogle Scholar
  26. Siddiqui S, Gabriel SA (2013) An SOS1-based approach for solving MPECs with a natural gas market application. Networks and Spatial Economics 13(2):205–227CrossRefGoogle Scholar
  27. Siddiqui S, Gabriel SA (2017) Modeling market power in the US shale gas market. Optim Eng 18(1):203–213CrossRefGoogle Scholar
  28. U-tapao C, Moryadee S, Gabriel S, Peot C, Ramirez M (2016) A stochastic, two-level optimization model for compressed natural gas infrastructure investments in wastewater management. J Nat Gas Sci Eng 28:226–240CrossRefGoogle Scholar
  29. Zerrahn A, Huppmann D (2017) Network expansion to mitigate market power. Networks and Spatial Economics 17(2):611–644CrossRefGoogle Scholar
  30. Zhang Y, Sahinidis NV (2016) Global optimization of mathematical programs with complementarity constraints and application to clean energy deployment. Optim Lett 10(2):325–340CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Financial MathematicsFraunhofer Institute for Industrial Mathematics ITWMKaiserslauternGermany
  2. 2.Departments of Civil Engineering and Applied Mathematics & StatisiticsJohns Hopkins UniversityBaltimoreUSA
  3. 3.Siemens Wind Power A/SBallerupDenmark
  4. 4.Department of Mechanical Engineering, Applied Mathematics, Statistics, and Scientific Computation ProgramUniversity of MarylandCollege ParkUSA
  5. 5.Department of Applied Mathematics, School of Industrial EngineersUniversity of MálagaMálagaSpain

Personalised recommendations