Networks and Spatial Economics

, Volume 15, Issue 1, pp 117–147 | Cite as

Integrating Intermittent Renewable Wind Generation - A Stochastic Multi-Market Electricity Model for the European Electricity Market

  • Jan AbrellEmail author
  • Friedrich Kunz


In northern Europe, wind energy has become a dominate renewable energy source, due to natural conditions and national support schemes. However, the uncertainty about wind generation affects existing network infrastructure and power production planning of generators, which cannot be fully diminished by wind forecasts. In this paper we develop a stochastic electricity market model to analyze the impact of uncertain wind generation on the different electricity markets as well as network congestion management. Stochastic programming techniques are used to incorporate uncertain wind generation. The technical characteristics of transporting electrical energy as well as power plants are explicitly taken into account. The consecutive clearing of the electricity markets is incorporated by a rolling planning procedure reflecting the market regime of European markets. The model is applied to the German electricity system covering one week. Two different approaches of considering uncertain wind generation are analyzed and compared to a deterministic approach. The results reveal that the flexibility of generation dispatch is increased either by using more flexible generation technologies or by operating rather inflexible technologies under part-load conditions.


Electricity markets Unit commitment Stochasticity Renewable energy Transmission network 



Friedrich Kunz acknowledges financial support of the Mercator foundation and the RWE fellowship program (RWE Studienförderung). The authors thank Christian von Hirschhausen and Hannes Weigt for comments.


  1. 50Hertz Transmission, Amprion, TransnetBW, TenneT TSO (2012). EEG Anlagenstammdaten.
  2. Abrell J, Weigt H (2012) Combining energy networks. Netw Spat Econ 12(3):377–401CrossRefGoogle Scholar
  3. Bagemihl J (2003) Optimierung eines Portfolios mit hydro-thermischem Kraftwerkspark im börslichen Strom- und Gasterminmarkt. PhD thesis, Institute of Energy Economics and the Rational Use of Energy, University of Stuttgart, URL
  4. Baldick R (1995) The generalized unit commitment problem. IEEE Trans Power Syst 10(1):465–475. doi: 10.1109/59.373972 CrossRefGoogle Scholar
  5. Barth R, Söder L, Weber C, Brand H, Swider DJ (2006) Wilmar Deliverable 6.2 (d)– Methodology of the Scenario Tree Tool, Documentation. Tech. rep., Institute of Energy Economics and the Rational Use of Energy, University of Stuttgart.
  6. Birge JR, Louveaux F (1997) Introduction to Stochastic Programming. Springer-Verlag Inc, New YorkGoogle Scholar
  7. Borggrefe F, Neuhoff K (2011) Balancing and intraday market design: Options for wind integration. DIW Discussion Paper 1162, URL
  8. Bouffard F, Galiana FD (2008) Stochastic security for operations planning with significant wind power generation. IEEE Trans Power Syst 23(2):306–316. doi: 10.1109/TPWRS.2008.919318 CrossRefGoogle Scholar
  9. Conejo A, Carrión M, Morales J (2010) Decision making under uncertainty in electricity markets, vol 153. Springer VerlagGoogle Scholar
  10. De Jonghe C, Hobbs BF, Belmans R (2014) Value of price responsive load for wind integration in unit commitment. IEEE Trans Power Syst 29(2):675–685CrossRefGoogle Scholar
  11. Devine MT, Gleeson JP, Kinsella J, Ramsey DM (2014) A rolling optimisation model of the uk natural gas market. Netw Spat Econ 14(2):209–244CrossRefGoogle Scholar
  12. DEWI, EON Netz, EWI, RWE Transportnetz Strom, VE Transmission (2005) Energiewirtschaftliche Planung fur die Netzintegration von Windenergie in Deutschland an Land und Offshore bis zum Jahr 2020. Tech. rep., German Energy Agency (dena), Berlin, Germany, URL
  13. Dupac̆ová J, Gröwe-Kuska N, Römisch W (2003). Math Program 95:493–511. doi: 10.1007/s10107-002-0331-0 CrossRefGoogle Scholar
  14. ENTSO-E (2012) Entso-e grid map., European Network of Transmission System Operators for Electricity (ENTSO-E)
  15. ENTSO-E (2014) Consumption data., European Network of Transmission System Operators for Electricity (ENTSO-E)
  16. Eurostat (2011) Regional statistics., Statistical Office of the European Union
  17. EWEA (2011) Wind in power - 2010 European statistics. Tech. rep., European Wind Energy Association (EWEA),
  18. Habis H, Csercsik D (2014) Cooperation with externalities and uncertainty. Netw Spat EconGoogle Scholar
  19. Heitsch H, Römisch W (2003) Scenario reduction algorithms in stochastic programming. Comput Optim Appl 24:187–206. doi: 10.1023/A:1021805924152 CrossRefGoogle Scholar
  20. Hundt M, Barth R, Sun N, Wissel S, Voß A (2009) Verträglichkeit von erneuerbaren Energien und Kernenergie im Erzeugungsportfolio– Technische und ökonmische Aspekte. Tech. rep., E.On Energie AG, Munich, GermanyGoogle Scholar
  21. IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2 Energy., Intergovernmental Panel on Climate Change
  22. Jonkeren O, Azzini I, Galbusera L, Ntalampiras S, Giannopoulos G (2014) Analysis of critical infrastructure network failure in the european union: A combined systems engineering and economic model. Networks and Spatial EconomicsGoogle Scholar
  23. Kall P, Wallace SW (1994) Stochastic programming. John Wiley &amp Sons, ChichesterGoogle Scholar
  24. Kallrath J, Pardalos PM, Rebennack S, Scheidt M (eds) (2009) Optimization in the energy industry. Springer-Verlag, BerlinCrossRefGoogle Scholar
  25. Kießling F, Nefzger P, Kaintzyk U (2001) Freileitungen - Planung, Berechnung, Ausfuhrung̈. Springer, BerlinGoogle Scholar
  26. Kunz F (2013) Improving congestion management - how to facilitate the integration of renewable generation in Germany. Energ J 34(4):55–78CrossRefGoogle Scholar
  27. Leuthold F, Weigt H, von Hirschhausen C (2009) When the Wind Blows Over Europe - A Simulation Analysis and the Impact of Grid Extensions. Dresden University of Technology, Chair of Energy Economics, Electricity Market Working Paper WP-EM-31.
  28. Leuthold F, Weigt H, von Hirschhausen C (2012) A large-scale spatial optimization model of the European electricity market. Netw Spat Econ 12(1):75–107CrossRefGoogle Scholar
  29. Metzler C, Hobbs BF, Pang JS (2003) Nash-cournot equilibria in power markets on a linearized dc network with arbitrage: Formulations and properties. Netw Spat Econ 3(2):123–150CrossRefGoogle Scholar
  30. Möst D, Keles D (2010) A survey of stochastic modelling approaches for liberalised electricity markets. Eur J Oper Res 207(2):543–556. doi: 10.1016/j.ejor.2009.11.007 CrossRefGoogle Scholar
  31. Neuhoff K, Barquin J, Bialek J, Boyd R, Dent C, Echavarren F, Grau T, von Hirschhausen C, Hobbs BF, Kunz F, Nabe C, Papaefthymiou G, Weber C, Weigt H (2013) Renewable electric energy integration: quantifying the value of design of markets for international transmission capacity. Energ Econ 40:760–772CrossRefGoogle Scholar
  32. Oggioni G, Smeers Y, Allevi E, Schaible S (2012) A generalized nash equilibrium model of market coupling in the european power system. Netw Spat Econ 12:503–560. doi: 10.1007/s11067-011-9166-7 CrossRefGoogle Scholar
  33. Padhy NP (2004) Unit commitment-a bibliographical survey. IEEE Trans Power Syst 19(2):1196–1205. doi: 10.1109/TPWRS.2003.821611 CrossRefGoogle Scholar
  34. Papavasiliou A, Oren SS (2013) Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network. Oper Res 61(3):578–592. doi: 10.1287/opre.2013.1174. CrossRefGoogle Scholar
  35. Pritchard G, Zakeri G, Philpott A (2010) A single-settlement, energy-only electric power market for unpredictable and intermittent participants. Oper Res 58(4-part-2):1210–1219. doi: 10.1287/opre.1090.0800 CrossRefGoogle Scholar
  36. Ruiz PA, Philbrick CR, Zak E, Cheung KW, Sauer PW (2009) Uncertainty management in the unit commitment problem, vol 24, pp 642–651. doi: 10.1109/TPWRS.2008.2012180
  37. Schröter J (2004) Auswirkungen des europischen Emissionshandelssystems auf den Kraftwerkseinsatz in Deutschland. Master’s thesis, Technische Universität Berlin, Institut für Energietechnik, Fachgebiet Energiesysteme,
  38. Spiecker S, Weber C (2014) The future of the european electricity system and the impact of fluctuating renewable energy a scenario analysis. Energ Policy 65:185–197CrossRefGoogle Scholar
  39. Statistik der Kohlenwirtschaft (2013) Entwicklung ausgewählter Energiepreise.
  40. Traber T, Kemfert C (2011) Gone with the wind? - electricity market prices and incentives to invest in thermal power plants under increasing wind energy supply. Energy Econ 33:240–259CrossRefGoogle Scholar
  41. Tuohy A, Meibom P, Denny E, O’Malley M (2009) Unit commitment for systems with significant wind penetration. IEEE Trans Power Syst 24(2):592–601. doi: 10.1109/TPWRS.2009.2016470 CrossRefGoogle Scholar
  42. Wallace SW, Fleten SE (2003) Stochastic Programming Models in Energy, Handbooks in Operations Research and Management Science, vol 10, chap 10. Elsevier, Amsterdam, pp 637–677Google Scholar
  43. Wang J, Shahidehpour M, Li Z (2008) Security-constrained unit commitment with volatile wind power generation. IEEE Trans Power Syst 23(3):1319–1327. doi: 10.1109/TPWRS.2008.926719 CrossRefGoogle Scholar
  44. Wang J, Botterud A, Bessa R, Keko H, Carvalho L, Issicaba D, Sumaili J, Miranda V (2011) Wind power forecasting uncertainty and unit commitment. Appl Energy 88(11):4014–4023. CrossRefGoogle Scholar
  45. Weber C (2005) Optimization in the electric power industry: methods and models for decision support. Springer, BostonGoogle Scholar
  46. Weber C, Meibom P, Barth R, Brand H, Pardalos PM, Kallrath J, Pardalos PM, Rebennack S, Scheidt M (2009) Wilmar: A stochastic programming tool to analyze the large-scale integration of wind energy. Springer, Berlin, pp 437–458Google Scholar
  47. Weigt H, Jeske T, Leuthold F, von Hirschhausen C (2010) Take the long way down: Integration of large-scale North Sea wind using HVDC transmission. Energy Policy 38(7):3164–3173CrossRefGoogle Scholar
  48. van der Weijde AH, Hobbs BF (2012) The economics of planning electricity transmission to accommodate renewables: Using two-stage optimisation to evaluate flexibility and the cost of disregarding uncertainty. Energy Econ 34:2089–2101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Swiss Federal Institute of Technology Zurich, Center for Energy Policy and Economics at ETH ZurichZürichSwitzerland
  2. 2.Department of Energy, Transportation, EnvironmentGerman Institute for Economic Research (DIW Berlin)BerlinGermany

Personalised recommendations