Networks and Spatial Economics

, Volume 16, Issue 1, pp 395–414 | Cite as

Reduced Carbon and Energy Footprint in Highway Operations: The Highway Energy Assessment (HERA) Methodology

  • Natalia Sobrino
  • Andres Monzon
  • Sara Hernandez


Global demand for mobility is increasing and the environmental impact of transport has become an important issue in transportation network planning and decision-making, as well as in the operational management phase. Suitable methods are required to assess emissions and fuel consumption reduction strategies that seek to improve energy efficiency and furthering decarbonization. This study describes the development and application of an improved modeling framework – the HERA (Highway EneRgy Assessment) methodology – that enables to assess the energy and carbon footprint of different highways and traffic flow scenarios and their comparison. HERA incorporates an average speed consumption model adjusted with a correction factor which takes into account the road gradient. It provides a more comprehensive method for estimating the footprint of particular highway segments under specific traffic conditions. It includes the application of the methodology to the Spanish highway network to validate it. Finally, a case study shows the benefits from using this methodology and how to integrate the objective of carbon footprint reductions into highway design, operation and scenario comparison.


Carbon footprint assessment Highway operation Consumption model 



The HERA tool forms part of the OASIS project funded by the CENIT research program (CEN-20081016) of the Spanish Ministry of Science and Technology. The authors would also like to thank the Dirección General de Tráfico (DGT), the AP-66 toll motorway operator AVASA, the Institute for Automobile Research (INSIA) for their contribution in obtaining the on-board measurements, and all reviewers for their valuable comments.


  1. Affum J, Brown A, Chan Y (2003) Integrating air pollution modelling with scenario testing in road transport planning: the TRAEMS approach. Sci Total Environ 312(1–3):1–14. doi: 10.1016/S0048-9697(03)00192-X CrossRefGoogle Scholar
  2. Ando N, Taniguchi E (2006) Travel time reliability in vehicle routing and scheduling with time windows. Netw Spat Econ 6(3–4):293–311. doi: 10.1007/s11067-006-9285-8 CrossRefGoogle Scholar
  3. Andre M (2004) The ARTEMIS European driving cycles for measuring car pollutant emissions. Sci Total Environ 334:73–84. doi: 10.1016/j.scitotenv.2004.04.070 CrossRefGoogle Scholar
  4. Andre M, Hammarstrom U (2000) Driving speeds in Europe for pollutant emissions estimation. Transp Res Part D-Transp Environ 5(5):321–335. doi: 10.1016/S1361-9209(00)00002-X CrossRefGoogle Scholar
  5. Banister D (2012) Transport and economic development: reviewing the evidence. Transp Rev 32(1):1–2. doi: 10.1080/01441647.2011.603283 CrossRefGoogle Scholar
  6. Bellasio R, Bianconi R, Corda G, Cucca P (2007) Emission inventory for the road transport sector in Sardinia (Italy). Atmos Environ 41(4):677–691. doi: 10.1016/j.atmosenv.2006.09.017 CrossRefGoogle Scholar
  7. Bennet CR, Greenwood ID (2001) Modelling road user and environmental effects in HDM-4. World Road Association (PIARC), Paris/The World Bank, Washington, D.C.Google Scholar
  8. Boriboonsomsin K, Barth M (2009) Impacts of Road Grade on Fuel Consumption and Carbon Dioxide Emissions Evidenced by Use of Advanced Navigation Systems. Transp Res Rec 2139:21–30. doi: 10.3141/2139-03 CrossRefGoogle Scholar
  9. Borken J, Knörr W, Höpfner U (2000) Energy consumption and pollutant emissions from road transport in Belgium 1980 to 2020. Insitut für Energie und Umweltforschung Heidelberg (IFEU), HeidelbergGoogle Scholar
  10. Burón JM, Aparicio F, Izquierdo Ó, Gómez Á, López I (2005) Estimation of the input data for the prediction of road transportation emissions in Spain from 2000 to 2010 considering several scenarios. Atmos Environ 39(30):5585–5596. doi: 10.1016/j.atmosenv.2005.06.013 CrossRefGoogle Scholar
  11. Chi G, Stone B (2005) Sustainable transport planning: Estimating the ecological footprint of vehicle travel in future years. J Urban Plan Dev-Asce 131(3):170–180. doi: 10.1061/(ASCE)0733-9488(2005)131:3(170) CrossRefGoogle Scholar
  12. CiceroFernandez P, Long J, Winer A (1997) Effects of grades and other loads on on-road emissions of hydrocarbons and carbon monoxide. J Air Waste Manage Assoc 47(8):898–904CrossRefGoogle Scholar
  13. Colberg C, Tona B, Stahel W, Meier M, Staehelin J (2005) Comparison of a road traffic emission model (HBEFA) with emissions derived from measurements in the Gubrist road tunnel, Switzerland. Atmos Environ 39(26):4703–4714. doi: 10.1016/j.atmosenv.2005.04.020 CrossRefGoogle Scholar
  14. Commission E (2010) EU energy and transport in Figures 2010. Publications Office of the European Union, LuxembourgGoogle Scholar
  15. De Ceuster G, van Herbrugger B, Logghe S, Proost S, Leuven K (2004). TREMOVE 2.2 model and baseline description. Final Report, European Commission.
  16. Dijkema MBA, van der Zee SC, Brunekreef B, van Strien RT (2008) Air quality effects of an urban highway speed limit reduction. Atmos Environ 42(40):9098–9105. doi: 10.1016/j.atmosenv.2008.09.039 CrossRefGoogle Scholar
  17. Fomunung I, Washington S, Guensler R, Bachman W (2001) Validation of the MEASURE automobile emissions model: a statistical analysis. Statistical Analysis and Modeling of Automotive Emissions 65Google Scholar
  18. Gkatzoflias D, Kouridis C, Ntziachristos L, Samaras Z (2007) COPERT 4: COmputer Program to calculate Emissions from Road Transport User Manual (Version 5.0). European Environment Agency and Laboratory of Applied Thermodynamics. Thessaloniki, Greece.
  19. Hassel D, Weber F (1997) Estimation of pollutant emissions from transport: gradient influence on emission and consumption behaviour of light and heavy duty vehicles. Methodologies for Estimating Air Pollutant Emission from Transport: MEET, COST 319 final reportGoogle Scholar
  20. Hernandez S, Monzon A, Sobrino N (2013). Decarbonization of toll plazas: impact assessment of toll collection system management. Transport Research Board 2013 Annual Meeting, Washington D.C. 13–2687Google Scholar
  21. Hickman J, Hassel D, Jourmard R, Samaras Z, Sorenson S (1999) Methodology for calculating transport emissions and energy consumption. Transport Research Laboratory. United Kingdom.
  22. Ison S, Wall S (2003) Market-and-non-market-based approaches to traffic-related pollution: the perception of key stakeholders. Int J Transp Manag 1(3):133–143. doi: 10.1016/S1471-4051(03)00003-X CrossRefGoogle Scholar
  23. Kitthamkesorn S, Chen A, Xu X, Ryu S (2013) Modeling mode and route similarities in network equilibrium problem with go-green modes. Netw Spat Econ. doi: 10.1007/s11067-013-9201-y Google Scholar
  24. Koorey G (2009) Road data aggregation and sectioning considerations for crash analysis. Transp Res Rec: J Transp Res Board 2103(08):61–68CrossRefGoogle Scholar
  25. Lapillonne B, Sebi C, Pollier K (2012) Energy Efficiency Trends in the Transport Sector in the EU, Lessons from the ODYSSEE MURE project.
  26. Lenzen M (1999) Total requirements of energy and greenhouse gases for Australian transport. Transp Res Part D: Transp Environ 4(4):265–290. doi: 10.1016/S1361-9209(99)00009-7 CrossRefGoogle Scholar
  27. Li ZC, Wang YD, Lam WHK, Sumalee A, Choi K (2013) Design of sustainable cordon toll pricing schemes in a monocentric city. Netw Spat Econ. doi: 10.1007/s11067-013-9209-3 Google Scholar
  28. Logghe S, Van Herbruggen B, Van Zeebroeck B (2006) Emissions of road traffic in Belgium. FEBIAC, FDT Mobility and Transport, Transport and Mobility Leuven, Belgium.
  29. Lopez E, Monzon A, Pfaffenbichler PC (2012) Assessment of energy efficiency and sustainability scenarios in the transport system. Eur Transp Res Rev 4(1):47–56CrossRefGoogle Scholar
  30. Lumbreras J, Guijarro A, Lopez J, Rodriguez E (2009) Methodology to quantify the effects of policies and measures in emission reductions from road transport. Urban Transport XV: Urban Transport and Environment, BolognaCrossRefGoogle Scholar
  31. Mendiluce M, Schipper L (2011) Trends in passenger transport and freight energy use in Spain. Energy Pol 39(10):6466–6475. doi: 10.1016/j.enpol.2011.07.048 CrossRefGoogle Scholar
  32. Mensik C, De Vlieger I, Nys J (2000) An urban transport emission model for the Antwerp area. Atmos Environ 34(27):4595–4602. doi: 10.1016/S1352-2310(00)00215-6 CrossRefGoogle Scholar
  33. MF (2010) Spanish Traffic Map 2009, Direccion General de Carreteras. Ministerio de Fomento MF, MadridGoogle Scholar
  34. Monzon A, Sobrino N, Hernandez S (2012) Energy- and Environmentally Efficient Road Management: The Case of the Spanish Motorway Network. Procedia - Soc Biol Sci 48:287–296CrossRefGoogle Scholar
  35. Namdeo A, Mitchell G, Dixon R (2002) TEMMS: An integrated package for modeling and mapping urban traffic emissions and air quality. Environ Model Softw 17(2):177–188CrossRefGoogle Scholar
  36. Nökel K, Schmidt M (2002) Parallel DYNEMO: Meso-scopic traffic flow simulation on large networks. Netw Spat Econ 2(4):387–403. doi: 10.1023/A:1020851612407 CrossRefGoogle Scholar
  37. Ntziachristos L, Mellios G, Kouridis C, Papageorgiou T, Theodosopoulou M, Samaras Z, Zierock K, Kouvaritakis N, Panos E, Karkatsoulis P, Schilling S, Merétei T, Bodor P, Damjanovic S, Petit A (2008) European Database of Vehicle Stock for the Calculation and Forecast of Pollutant and Greenhouse Gases Emissions with TREMOVE and COPERT: Final Report. Laboratory of Applied Thermodinamics, Thessaloniki, Greece.
  38. OECD, ITF (2010) Reducing transport greenhouse gas emissions: Trends and data 2010. Paris. Accessed August 2012
  39. Pandey D, Agrawal M, Pandey JS (2011) Carbon footprint: current methods of estimation. Environ Monit Assess 178(1–4):135–160. doi: 10.1007/s10661-010-1678-y CrossRefGoogle Scholar
  40. Panis LI, Beckx C, Broekx S, De Vlieger I, Schrooten L, Degraeuwe B, Pelkmans L (2011) PM, NOx and CO2 emission reductions from speed management policies in Europe. Transp Policy 18(1):32–37. doi: 10.1016/j.tranpol.2010.05.005 CrossRefGoogle Scholar
  41. Park S, Rakha H (2006) Energy and environmental impacts of roadway grades. Transp Res Rec: J Transp Res Board 1987(1):148–160CrossRefGoogle Scholar
  42. Pierson W, Gertler A, Robinson N, Sagebiel J, Zielinska B, Bishop G, Stedman D, Zweidinger R, Ray W (1996) Real-world automotive emissions - Summary of studies in the Fort McHenry and Tuscarora Mountain Tunnels. Atmos Environ 30(12):2233–2256CrossRefGoogle Scholar
  43. Saija S, Romano D (2002) A methodology for the estimation of road transport air emissions in urban areas of Italy. Atmos Environ 36(34):5377–5383CrossRefGoogle Scholar
  44. Shuangjian J, Chengcheng H, Yanwei L, Qunle D (2011) Establishing the CO2 emission model of carbon neutral road based on gradient. 2011 International Conference on Electrical and Control Engineering, ICECE 2011 –Proceedings, 4494–4497Google Scholar
  45. Silva CM, Farias TL, Frey HC, Rouphail NM (2006) Evaluation of numerical models for simulation of real-world hot-stabilized fuel consumption and emissions of gasoline light-duty vehicles. Transp Res Part D: Transp Environ 11(5):377–385. doi: 10.1016/j.trd.2006.07.004 CrossRefGoogle Scholar
  46. Smit R, Smokers R, Rabe E (2007) A new modeling approach for road traffic emissions: VERSIT. Transp Res Part D-Transp and Environ 12(6):414–422CrossRefGoogle Scholar
  47. Smit R, Poelman M, Schrijver J (2008) Improved road traffic emission inventories by adding mean speed distributions. Atmos Environ 42(5):916–926. doi: 10.1016/j.atmosenv.2007.10.026 CrossRefGoogle Scholar
  48. Smit R, Ntziachristos L, Boulter P (2010) Validation of road vehicle and traffic emission models - A review and meta-analysis. Atmos Environ 44(25):2943–2953. doi: 10.1016/j.atmosenv.2010.05.022 CrossRefGoogle Scholar
  49. Sobrino N, Monzon A (2013) Management of urban mobility to control climate change in cities. Transportation Research Record: Journal of the Transportation Research Board. Transport Research Board 2013 Annual Meeting, Washington D.C. 13–1470Google Scholar
  50. Szeto WY, Jaber X, Wong SC (2013a) Road network equilibrium approaches to environmental sustainability. Transp Rev 32(4):491–518. doi: 10.1080/01441647.2012.690000 CrossRefGoogle Scholar
  51. Szeto WY, Jiang Y, Wang DZW, Sumalee A (2013b) A sustainable road network design problem with land use transportation interaction over time. Netw Spat Econ. doi: 10.1007/s11067-013-9191-9 Google Scholar
  52. Taylor NB (2003) The CONTRAM dynamic traffic assignment model. Netw Spat Econ 3(3):297–322. doi: 10.1023/A:1025394201651 CrossRefGoogle Scholar
  53. Tsang KS, Hung WT, Cheung CS (2011) Emissions and fuel consumption of a Euro 4 car operating along different routes in Hong Kong. Transp Res Part D-Transp Environ 16(5):415–422. doi: 10.1016/j.trd.2011.02.004 CrossRefGoogle Scholar
  54. U.S.EPA (2002) MOBILE6 Vehicle Emission Modeling Software, EPA-420-R-02-001, United States Environmental Protection Agency, . Accessed May 2013
  55. U.S.EPA (2009) MOVES2010a Mobile Source Emissions Model Update, EPA-420-B-09-041, United States Environmental Protection Agency, Accessed May 2013
  56. UNFCC (1998) Kyoto Protocol to the United Nations Framework Convention on Climate ChangeGoogle Scholar
  57. Valackiene A, Miceviciene D, Sandbaek M (2006) Development of transport infrastructure: dimensional analysis of economic effects. In Changes in Social and Business Environment: Proceedings of the 1st International Conference: 210–213Google Scholar
  58. Wackernagel M, Rees WE (1996) Our ecological footprint: reducing human impact on the earth. New Society Publishers, CanadaGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Natalia Sobrino
    • 1
  • Andres Monzon
    • 2
  • Sara Hernandez
    • 1
  1. 1.TRANSyT, Transport Research CenterUniversidad Politécnica de MadridMadridSpain
  2. 2.Transport DepartmentUniversidad Politécnica de MadridMadridSpain

Personalised recommendations