Networks and Spatial Economics

, Volume 13, Issue 3, pp 307–326 | Cite as

Solving Discretely-Constrained Nash–Cournot Games with an Application to Power Markets

  • Steven A. Gabriel
  • Sauleh Ahmad SiddiquiEmail author
  • Antonio J. Conejo
  • Carlos Ruiz


This paper provides a methodology to solve Nash–Cournot energy production games allowing some variables to be discrete. Normally, these games can be stated as mixed complementarity problems but only permit continuous variables in order to make use of each producer’s Karush–Kuhn–Tucker conditions. The proposed approach allows for more realistic modeling and a compromise between integrality and complementarity to avoid infeasible situations.


Nash Cournot Integer Discrete Game theory Power market 


  1. Abada I, Briat GV, Massol O (2012) A generalized Nash–Cournot model for the northwestern European natural gas markets with a fuel substitution demand function: the GaMMES model. Netw Spat Econ. doi: 10.1007/s11067-012-9171-5 Google Scholar
  2. Bard JF (1983) An efficient point algorithm for a linear two-stage optimization problem. Oper Res 31(4):670–684CrossRefGoogle Scholar
  3. Bard JF (1988) Convex two-level optimization. Math Program 40(1):15–27CrossRefGoogle Scholar
  4. Bard JF, Moore JT (1990) A branch and bound algorithm for the bilevel programming problem. SIAM J Sci Stat Comput 11(2):281–292CrossRefGoogle Scholar
  5. Bard JF, Plummer J, Sourie JC (2000) A bilevel programming approach to determining tax credits for biofuel production. Eur J Oper Res 120:30–46CrossRefGoogle Scholar
  6. Bazaraa MS, Sherali HD, Shetty CM (1993) Nonlinear programming theory and algorithms. Wiley, New YorkGoogle Scholar
  7. Cohon JL (1978) Multiobjective programming and planning. Academic Press, New YorkGoogle Scholar
  8. Cottle RW, Pang J-S, Stone RE (1992) The linear complementarity problem. Academic Press, New YorkGoogle Scholar
  9. Facchinei F, Pang J-S (2003) Finite-dimensional variational inequalities and complementarity problems, vols I, II. Springer, New YorkGoogle Scholar
  10. Fortuny-Amat J, McCarl B (1981) A representation and economic interpretation of a two-level programming problem. J Oper Res Soc 32(9):783–792Google Scholar
  11. Gabriel SA, Leuthold FU (2010) Solving discretely-constrained MPEC problems with applications in electric power markets. Energy Econ 32:3–14CrossRefGoogle Scholar
  12. Gabriel SA, Shim Y, Conejo AJ, de la Torre S, García-Bertrand R (2010) A benders decomposition method for discretely-constrained mathematical programs with equilibrium constraints. J Oper Res Soc 61:1404–1419Google Scholar
  13. Gabriel SA, Conejo AJ, Ruiz C, Siddiqui S (2012) Solving discretely-constrained, mixed linear complementarity problems with applications in energy. Comput Oper Res. doi: 10.1016/j.cor.2012.10.017 Google Scholar
  14. Gabriel SA, Conejo AJ, Fuller JD, Hobbs BF, Ruiz C (2013) Complementarity modeling in energy markets. SpringerGoogle Scholar
  15. García-Bertrand R, Conejo AJ, Gabriel SA (2005) Multi-period near-equilibrium in a pool-based electricity market including on/off decisions. Netw Spat Econ 5(4):371–393CrossRefGoogle Scholar
  16. Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, New YorkCrossRefGoogle Scholar
  17. Hu J, Mitchell JE, Pang J-S, Bennett KP, Kunapuli G (2009) On the global solution of linear programs with linear complementarity constraints. Working paperGoogle Scholar
  18. Karlof JK, Wang W (1996) Bilevel programming applied to the flow shop scheduling problem. Comput Oper Res 23(5):443–451CrossRefGoogle Scholar
  19. Labbé M, Marcotte P, Savard G (1998) A bilevel model of taxation and its application to optimal highway pricing. Manage Sci 44(12):1608–1622CrossRefGoogle Scholar
  20. Leuthold FU, Weigt H, von Hirschhausen C (2012) A large-scale spatial optimization model of the European electricity market. Netw Spat Econ 12(1):75–107CrossRefGoogle Scholar
  21. Luo ZQ, Pang JS, Ralph D (1996) Mathematical programs with equilibrium constraints. Cambridge University Press, Cambridge, United KingdomCrossRefGoogle Scholar
  22. Marcotte P, Savard G, Zhu DL (2001) A trust region algorithm for nonlinear bilevel programming. Oper Res Lett 29:171–179CrossRefGoogle Scholar
  23. Metzler C, Hobbs BF, Pang J-S (2003) Nash–Cournot equilibria in power markets on a linearized DC network with arbitrage: formulations and properties. Netw Spat Econ 3(2):123–150CrossRefGoogle Scholar
  24. Moore JT, Bard JF (1990) The mixed integer linear bilevel programming problem. Oper Res 38:911–921CrossRefGoogle Scholar
  25. Oggioni G, Smeers Y, Allevi E, Schaible S (2011) A generalized Nash equilibrium model of market coupling in the European power system. Netw Spat Econ. doi: 10.1007/s11067-011-9166-7 Google Scholar
  26. O’Neill RP, Sotkiewicz PM, Hobbs BF, Rothkopf MH, Stewart Jr WR (2005) Efficient market-clearing prices in markets with nonconvexities. Eur J Oper Res 164(1):269–285CrossRefGoogle Scholar
  27. Scaparra MP, Church RL (2008) A bilevel mixed-integer program for critical infrastructure protection planning. Comput Oper Res 35(6):1905–1923CrossRefGoogle Scholar
  28. Siddiqui S (2011) Solving two-level optimization problems with applications to robust design and energy markets. University of Maryland Dissertation, College Park, MDGoogle Scholar
  29. Siddiqui S, Gabriel SA (2012) An SOS1-based approach for solving MPECs with a natural gas market application. Netw Spat Econ. doi: 10.1007/s1067-012-9178-y Google Scholar
  30. Smeers Y (2003) Market incompleteness in regional electricity transmission. Part I: the forward market. Netw Spat Econ 3(2):151–174CrossRefGoogle Scholar
  31. Wen UP, Huang AD (1996) A simple tabu search method to solve the mixed-integer linear bilevel programming problem. Eur J Oper Res 88:563–571CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Steven A. Gabriel
    • 1
  • Sauleh Ahmad Siddiqui
    • 2
    Email author
  • Antonio J. Conejo
    • 3
  • Carlos Ruiz
    • 3
  1. 1.Department of Civil and Environmental Engineering and the Applied Mathematics, Statistics, and Scientific Computation ProgramUniversity of MarylandCollege ParkUSA
  2. 2.Department of Civil Engineering and the Johns Hopkins Systems InstituteJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Electrical EngineeringUniversity of Castilla - La ManchaCiudad RealSpain

Personalised recommendations