Networks and Spatial Economics

, Volume 9, Issue 3, pp 379–400 | Cite as

Graph-Theoretical Analysis of the Swiss Road and Railway Networks Over Time

  • Alexander Erath
  • Michael Löchl
  • Kay W. Axhausen


Recent research of complex networks has significantly contributed to the understanding how networks can be classified according to its topological characteristics. However, transport networks attracted less attention although their importance to economy and daily life. In this work the development of the Swiss road and railway network during the years 1950–2000 is investigated. The main difference between many of the recently studied complex networks and transport networks is the spatial structure. Therefore, some of the well-established complex network measures may not be applied directly to characterise transport networks but need to be adapted to fulfil the requirements of spatial networks. Additionally, new approaches to cover basic network characteristics such as local network densities are applied. The focus of the interest hereby is always not only to classify the transport network but also to provide the basis for further applications such as vulnerability analysis or network development. It could be showed that the proposed measures are able to characterise the growth of the Swiss road network. To proof the use of local density measures to explain the robustness of a network however needs further research.


Transport network topology Network efficiency Highway network development Kernel density 


  1. Albert R, Jeong H, Barabási A-L (1999) Diameter of the World-wide Web. Nature 4:131Google Scholar
  2. Axhausen KW, Fröhlich P, Tschopp M (2006) Changes in Swiss accessibility since 1850, Arbeitsberichte Verkehr und Raumplanung, 344, IVT, ETH Zürich, ZürichGoogle Scholar
  3. Barabási A-L, Bonabeau E (2003) Scale-free networks. Sci Am 288(5):60–69CrossRefGoogle Scholar
  4. Barabási A-L, Jeong H, Neda Z, Ravasz E, Schuber A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Physica A 311:590–614CrossRefGoogle Scholar
  5. Camacho J, Guimera R, Amaral LAN (2002) Phys Rev Lett 88:228102CrossRefGoogle Scholar
  6. Chalasani VS, Engebretsen Ø, Denstadli JM, Axhausen KW (2005) Precision of geocoded locations and network distance estimates. J Transp Stat 8(2):1–15Google Scholar
  7. Crucitti P, Latora V, Marchiori M (2004) A topological analysis of the Italian electric power grid. Physica A 338:92–97CrossRefGoogle Scholar
  8. Crucitti P, Latora V, Porta S (2006) Centrality measures in spatial networks of urban streets. Phys Rev E 73:036125CrossRefGoogle Scholar
  9. Erath A, Fröhlich PH (2004) Geschwindigkeiten im PW-Verkehr und Leistungsfähigkeiten von Strassen über den Zeitraum von 1950–2000, Arbeitsbericht Verkehrund Raumplanung, 183, Institut für Verkehrsplanung und Transportsysteme (IVT),ETH, ZürichGoogle Scholar
  10. Faloutsos M, Faloutsos P, Faloustos C (1999) On power-law relationships of the Internet topology. Comput Commun Rev 29:251CrossRefGoogle Scholar
  11. Fischer S, Volk A (1999) Chronologie der Schweizer Autobahn. In: Heller M, Volk A (eds) Die Schweizer Autobahn. Museum für Gestaltung, ZürichGoogle Scholar
  12. Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRefGoogle Scholar
  13. Freeman LC (1979) Centrality in social networks: conceptual clarification. Soc Netw 1:215–239CrossRefGoogle Scholar
  14. Fröhlich P, Axhausen KW (2005) Sensitivity of accessibility measurements to the underlying transport network model Arbeitsberichte Verkehrs- und Raumplanung, 245, IVT, ETH Zürich, ZürichGoogle Scholar
  15. Fröhlich PH, Frey T, Reubi S, Schiedt H-U (2004) Entwicklung des Transitverkehrs-Systems und deren Auswirkung auf die Raumnutzung in der Schweiz (COST 340): Verkehrsnetz-Datenbank, Arbeitsbericht Verkehrs- und Raumplanung, 208, IVT, ETH Zürich, ZürichGoogle Scholar
  16. Garrison WL (1960) Connectivity of the Interstate Highway System. Reg Sci Assoc 6:121–137Google Scholar
  17. Garrison WL, Marble DF (1962) The structure of transportation networks. Army Transportation Command 62-II:73–88Google Scholar
  18. Gätzi M (2004) Raumstruktur und Erreichbarkeit am Beispiel der Schweiz zwischen 1950 und 2000, Diploma Thesis, IVT, ETH Zurich, ZurichGoogle Scholar
  19. Geurs KT, Ritsema van Eck JR (2001) Accessibility measures: review and applications, RIVM report, 408505006, National Institute of Public Health and the Environment, BilthovenGoogle Scholar
  20. Gibbons A (1985) Algorithmic graph theory. Cambridge University Press, CambridgeGoogle Scholar
  21. Grübler A (1990) The rise and fall of infrastructures:dynamics of evolution and technological change in transport. Physica-Verlag, HeidelbergGoogle Scholar
  22. Hargett P, Chorley JC (1969) Network analysis in geography. Butler and Tanner, LondonGoogle Scholar
  23. Hillier B (1996) Space is the machine: a configurational theory of architecture. Cambridge University Press, CambridgeGoogle Scholar
  24. Hillier B, Hanson J (1984) The social logic of space. Cambridge University Press, CambridgeGoogle Scholar
  25. Jeong H, Tomber B, Albert R, Oltvai ZN, Barabasi A-L (2000) The large-scale organization of metabolic networks. Nature 407:651CrossRefGoogle Scholar
  26. Jiang B, Claramunt C (2004) Topological analysis of urban street networks. Environ & Plann B 31(1):151–162CrossRefGoogle Scholar
  27. Kanskey K (1969) Structure of transportation networks: relationships between network geometry and regional characteristics. University of Chicago, ChicagoGoogle Scholar
  28. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701CrossRefGoogle Scholar
  29. Latora V, Marchiori M (2002) Is the Boston subway a small-world network? Physica A 314:109–113CrossRefGoogle Scholar
  30. Levinson D (2005) The evolution of transport networks. In: Hensher D (ed) Transport strategy, policy and institutions. Elsevier, OxfordGoogle Scholar
  31. Marshall S (2005) Streets & patterns. Spon, New YorkGoogle Scholar
  32. Newell GF (1980) Traffic flow on transportation networks. MIT Press, CambridgeGoogle Scholar
  33. Porta S, Crucitti P, Latora V (2006a) The network analysis of urban streets: A primal approach. Environ Plann B 33(5):705–725CrossRefGoogle Scholar
  34. Porta S, Crucitti P, Latora V (2006b) The network analysis of urban streets: A dual approach. Physica A 369:853–866CrossRefGoogle Scholar
  35. Rietveld P, Bruinsma F (1998) Is transport infrastructure effective? Springer, BerlinGoogle Scholar
  36. Sabidussi G (1966) The centrality index of a graph. Psychometrika 31:581–603CrossRefGoogle Scholar
  37. Sandmeier S (2008) Nationalstrasse, Historisches Lexikon der Schweiz,
  38. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423 and 623–656Google Scholar
  39. Tschopp M, Fröhlich P, Axhausen KW (2005) Accessibility and spatial development in Switzerland During the last 50 years. In: Levinson DM, Krizek KJ (eds) Access to Destinations. Elsevier, Oxford, pp 361–376CrossRefGoogle Scholar
  40. Vaughan R (1987) Urban spatial traffic patterns. Pion Ltd., LondonGoogle Scholar
  41. Vragovic I, Louis E, Diaz-Guilera A (2004) Efficiency of informational transfers in regular and complex networks.
  42. Vrtic M, Fröhlich P, Schüssler N, Axhausen KW, Dasen S, Erne S, Singer, B, Lohse D, Schiller C (2005) Erzeugung neuer Quell-Zielmatrizen im Personenverkehr, Bundesamtes für Raumentwicklung (ARE), BernGoogle Scholar
  43. Wardrop JG (1952) Some theoretical aspects of road traffic research. Proc Inst Civil Eng II 1:325–378Google Scholar
  44. Watts DJ, Strogatz SH (1998) Collective dynmamics of small world networks. Nature 410:268Google Scholar
  45. Xie F, Levinson D (2007) Measuring the structure of road networks. Geogr Anal 39(3):336–356CrossRefGoogle Scholar
  46. Yerra B, Levinson D (2005) The emergence of hierarchy in transportation networks. Ann Reg Sci 39(3):541–553CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alexander Erath
    • 1
  • Michael Löchl
    • 1
  • Kay W. Axhausen
    • 1
  1. 1.IVTETHZürichSwitzerland

Personalised recommendations