Advertisement

Simulation-based optimization of an agent-based simulation

  • Andreas DeckertEmail author
  • Robert Klein
Article

Abstract

Optimization of an agent-based simulation (ABS) bears specific challenges. It is demonstrated in this paper that mainstream simulation-based optimization (SBO) approaches often do not perform well in such a setting, sometimes hardly outperforming a mere random search. Two new algorithms for SBO which combine superior solution quality with high resource efficiency and reliability for such problems are presented: an evolutionary algorithm called “neighbourhood elite selection” (NELS) with a specific selection mechanism which prevents premature clustering, and a hybrid algorithm which combines NELS with the popular best-in-class algorithm Simultaneous Perturbation Stochastic Approximation (SPSA). Those two algorithms are designed to perform well for problems which show typical properties of an agent-based simulation, a field that has largely been neglected so far, but should structurally also be universally applicable for other simulation-based optimization problems as well. In contrast to present literature, specific emphasis lies on the dynamic control of how many replications of the simulation are required for each solution brought up during the optimization run in order to make efficient use of the scarce simulation resources. The algorithms are benchmarked against the academic best-in-class optimization algorithm SPSA. A sketch of practical case studies is provided, showing how the optimization of an ABS can be used to help solve business decision problems like price optimization for a mobile phone operator.

Keywords

Agent-based modelling Simulation Optimization Heuristics Decision support systems Telecommunications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexopoulos, C. (2006). Statistical estimation in computer simulation. In S.G. Henderson & B.L. Nelson (Eds.), Handbooks in operations research and management science: simulation (Vol. 13, pp. 193–223). Amsterdam: North Holland.Google Scholar
  2. 2.
    Andradottir, S. (1998). Simulation optimization. In J. Banks (Ed.), Handbook of simulation: principles, methodology, advances, applications, and practice (pp. 307–333). New York: Wiley.CrossRefGoogle Scholar
  3. 3.
    Andradóttir, S. (2006). An overview of simulation optimization via random search. In S.G. Henderson & B.L. Nelson (Eds.), Handbooks in operations research and management science: simulation (Vol. 13, pp. 193–223). Amsterdam: North Holland.Google Scholar
  4. 4.
    Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.Google Scholar
  5. 5.
    Bankes, S.C. (2002). Agent-based modeling: a revolution?Proceedings of the National Academy of Sciences, 99(3), 7199–7200.CrossRefGoogle Scholar
  6. 6.
    Birke, D., & Swann, G.M.P. (2006). Network effects and the choice of mobile phone operator. Journal of Evolutionary Economics, 16(1–2), 65–84.CrossRefGoogle Scholar
  7. 7.
    Bonabeau, E. (2002). Agent-based modeling: methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(3), 7280–7287.CrossRefGoogle Scholar
  8. 8.
    Bonabeau, E. (2007). Understanding and managing complexity risk. MIT Sloan Management Review, 48(4), 62–68.Google Scholar
  9. 9.
    Bonaventura, L. (2011). Enforcement of regulation, irregular sector, and firm performance: a computational agent-based model. NETNOMICS: Economic Research and Electronic Networking, 12(2), 99–113.CrossRefGoogle Scholar
  10. 10.
    Branke, J., Chick, S.E., Schmidt, C. (2005). New developments in ranking and selection: an empirical comparison of the three main approaches. In M.E. Kuhl, N.M. Steiger, F.B. Armstrong, J.A. Joines (Eds.), Proceedings of the winter simulation conference (WSC 2005), Orlando (pp. 708–717). New York: Association for Computing Machinery.CrossRefGoogle Scholar
  11. 11.
    Calvez, B., & Hutzler, G. (2006). Automatic tuning of agent-based models using genetic algorithms. In J. Sichman & L. Antunes (Eds.), Multi-agent-based simulation VI (Vol. 3891, pp. 41–57). Berlin: Springer.CrossRefGoogle Scholar
  12. 12.
    Cantú-Paz, E. (2004). Adaptive sampling for noisy problems. In K. Deb (Ed.), Genetic and evolutionary computation – GECCO 2004 (pp. 947–958). Berlin: Springer.CrossRefGoogle Scholar
  13. 13.
    Cha, K.C., Jun, D.B., Wilson, A.R., Park, Y.S. (2008). Managing and modelling the price reduction effect in mobile telecommunications traffic. Telecommunications Policy, 32(7), 468–479.CrossRefGoogle Scholar
  14. 14.
    Chen, C.-H., Lin, J., Yücesan, E., Chick, S.E. (2000). Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems, 10(3), 251–270.CrossRefGoogle Scholar
  15. 15.
    Corrocher, N., & Zirulia, L. (2009). Me and you and everyone we know: an empirical analysis of local network effects in mobile telecommunications. Telecommunications Policy, 33(1–2), 68–79.CrossRefGoogle Scholar
  16. 16.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRefGoogle Scholar
  17. 17.
    Deckert, A., & Klein, R. (2010). Agentenbasierte Simulation zur Analyse und Lösung betriebswirtschaftlicher Entscheidungsprobleme. Journal für Betriebswirtschaft, 60(2), 89–125.CrossRefGoogle Scholar
  18. 18.
    Eiben, A., & Smith, J. (2007). Introduction to evolutionary computing (Vol. 2). Berlin: Springer.Google Scholar
  19. 19.
    Epstein, J.M., & Axtell, R. (1996). Growing artificial societies: social science from the bottom up. Washington: Brookings Institution Press.Google Scholar
  20. 20.
    Fink, A., & Voss, S. (2003). Anwendung von Metaheuristiken zur Lösung betrieblicher Planungsprobleme. Wirtschaftsinformatik, 45(4), 395–407.CrossRefGoogle Scholar
  21. 21.
    Fu, M.C. (2002). Optimization for simulation: theory vs. practice. INFORMS Journal on Computing, 14(3), 192–215.CrossRefGoogle Scholar
  22. 22.
    Fu, M.C., Glover, F.W., April, J. (2005). Simulation optimization: a review, new developments, and applications. In M.E. Kuhl, N.M. Steiger, F.B. Armstrong, J.A. Joines (Eds.), Proceedings of the winter simulation conference (WSC 2005), Orlando (pp. 83–95). New York: Association for Computing Machinery.Google Scholar
  23. 23.
    Gendreau, M. (2003). An introduction to tabu search. In F. Glover & G.A. Kochenberger (Eds.), Handbook of metaheuristics (pp. 37–54). Boston: Kluwer Academic Publisher.Google Scholar
  24. 24.
    Gerolamo, G.P.B., Franco, J.H.A., Holanda, G.M. (2004). An agent-based model for evaluating the deployment of telecom services in a competitive market. In H. Coelho & B. Espinasse (Eds.), Proceedings of the 5th workshop on agent-based simulation (ABS 2004) Lisbon (pp. 87–92). Erlangen: SCS Publishing House.Google Scholar
  25. 25.
    Gibbons, J.D., & Chakraborti, S. (2003). Nonparametric statistical inference. New York: Dekker.Google Scholar
  26. 26.
    Gilbert, N. (2007). Agent-based models. Los Angeles: Sage Publications.Google Scholar
  27. 27.
    Gonçalves, J.F., & Resende, M.G.C. (2011). Biased random-key genetic algorithms for combinatorial optimization. Journal of Heuristics, 17(5), 487–525.CrossRefGoogle Scholar
  28. 28.
    Gosavi, A. (2003). Simulation-based optimization. Boston: Kluwer Academic Publishers.Google Scholar
  29. 29.
    Gruber, H. (2005). The economics of mobile telecommunications. Cambridge: Cambridge University Press.Google Scholar
  30. 30.
    Heath, B., Hill, R., Ciarallo, F. (2009). A survey of agent-based modeling practices. Journal of Artificial Societies and Social Simulation, 12(4). http://jasss.soc.surrey.ac.uk/12/4/9.html.
  31. 31.
    Henderson, D., Jacobson, S.H., Johnson, A.W. (2003). The theory and practice of simulated annealing. In F. Glover & G.A. Kochenberger (Eds.), Handbook of metaheuristics (pp. 287–320). Boston: Kluwer Academic Publishers.Google Scholar
  32. 32.
    Heppenstall, A.J., Evans, A.J., Birkin, M.H. (2007). Genetic algorithm optimisation of an agent-based model for simulating a retail market. Environment and Planning B: Planning and Design, 34(6), 1051–1070.CrossRefGoogle Scholar
  33. 33.
    Hong, L.J., & Nelson, B.L. (2006). Discrete optimization via simulation using COMPASS. Operations Research, 54(1), 115–129.CrossRefGoogle Scholar
  34. 34.
    Hong, L.J., & Nelson, B.L. (2007). Selecting the best system when systems are revealed sequentially. IIE Transactions, 39(7), 723–734.CrossRefGoogle Scholar
  35. 35.
    Kim, S.-H., & Nelson, B.L. (2006). Selecting the best system. In S.G. Henderson & B.L. Nelson (Eds.), Handbooks in operations research and management science: simulation (Vol.13, pp. 501–534). Amsterdam: North Holland.Google Scholar
  36. 36.
    Kleywegt, A.J., Shapiro, A., de Mello, T.H. (2001). The sample average approximation method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2), 479–502.CrossRefGoogle Scholar
  37. 37.
    Laguna, M., & Marti, R.C. (2003). Scatter search: methodology and implementations in C. Boston: Kluwer Academic Publishers.Google Scholar
  38. 38.
    Law, A.M. (2007). Simulation modelling and analysis. New York: McGraw-Hill Professional.Google Scholar
  39. 39.
    Le Cadre, H., Bouhtou, M., Tuffin, B. (2009). Consumers’ preference modeling to price bundle offers in the telecommunications industry: a game with competition among operators. NETNOMICS: Economic Research and Electronic Networking, 10(2), 171–208.CrossRefGoogle Scholar
  40. 40.
    Lehmann, E.L. (2006). Nonparametrics: statistical methods based on ranks. New York: Springer.Google Scholar
  41. 41.
    Lin, X., & Lee, L.H. (2006). A new approach to discrete stochastic optimization problems. European Journal of Operational Research, 172(3), 761–782.CrossRefGoogle Scholar
  42. 42.
    Macal, C.M., & North, M.J. (2010). Tutorial on agent-based modelling and simulation. Journal of Simulation, 4(3), 151–162.CrossRefGoogle Scholar
  43. 43.
    Nakayama, M.K. (2008). Statistical analysis of simulation output. In S.J. Mason, R.R. Hill, L. Mönch, O. Rose, T. Jefferson, J.W. Fowler (Eds.), Proceedings of the winter simulation conference (WSC 2008), Miami (pp. 62–72). New York: Association for Computing Machinery.Google Scholar
  44. 44.
    Narzisi, G., Mysore, V., Mishra, B. (2006). Multi-objective evolutionary optimization of agent-based models: an application to emergency response planning. In B. Kovalerchuk (Ed.), Proceedings of the second IASTED international conference on computational intelligence (CI 2006), San Francisco. Calgary: ACTA Press.Google Scholar
  45. 45.
    Olafsson, S. (2006). Metaheuristics. In S.G. Henderson & B.L. Nelson (Eds.), Handbooks in operations research and management science: simulation (Vol.13, pp. 633–654). Amsterdam: North-Holland.Google Scholar
  46. 46.
    Olafsson, S., & Kim, J. (2002). Simulation optimization. In E. Yücesan, C.-H. Chena, J.L. Snowdon, J.M. Charnes (Eds.), Proceedings of the winter simulation conference (WSC 2002), San Diego (pp. 79–84). New York: Association for Computing Machinery.Google Scholar
  47. 47.
    Petrowski, A. (1996). A clearing procedure as a niching method for genetic algorithms. In Proceedings of the IEEE international conference on evolutionary computation (ICEC 1996), Nagoya (pp. 798–803). New York: IEEE Press.CrossRefGoogle Scholar
  48. 48.
    Schade, S., Frey, T., Mahmoud, N. (2009). Simulating discount-pricing strategies for the GSM-mobile market. Business & Information Systems Engineering, 51(4), 289–300.CrossRefGoogle Scholar
  49. 49.
    Schelling, T.C. (1978). Micromotives and macrobehavior. New York: Norton.Google Scholar
  50. 50.
    Schutte, S. (2010). Optimization and falsification in empirical agent-based models. Journal of Artificial Societies and Social Simulation, 13(1). http://jasss.soc.surrey.ac.uk/13/1/2.html.
  51. 51.
    Shapiro, A. (2003). Monte carlo sampling methods. In A. Ruszczynski & A. Shapiro (Eds.), Handbooks in operations research and management science: stochastic programming (Vol. 10, pp. 353–425). Amsterdam: North Holland.Google Scholar
  52. 52.
    Shi, L., & Olafsson, S. (2000). Nested partitions method for stochastic optimization. Methodology and Computing in Applied Probability, 2(3), 271–291.CrossRefGoogle Scholar
  53. 53.
    Spall, J.C. (2003). Introduction to stochastic search and optimization: estimation, simulation, and control. Hoboken: Wiley-Interscience.CrossRefGoogle Scholar
  54. 54.
    Spall, J.C. (2004). Stochastic optimization. In J.E. Gentle, E. Härdle, Y. Mori (Eds.), Handbook of computational statistics (pp. 169–197). New York: Springer.Google Scholar
  55. 55.
    Swisher, J.R., Hyden, P.D., Jacobson, S.H., Schruben, L.W. (2004). A survey of recent advances in discrete input parameter discrete-event simulation optimization. IIE Transactions, 36(6), 591–600.CrossRefGoogle Scholar
  56. 56.
    Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: a comprehensive review on theory and applications. IIE Transactions, 36(11), 1067–1081.CrossRefGoogle Scholar
  57. 57.
    Terano, T. (2007). Exploring the vast parameter space of multi-agent based simulation. In L. Antunes & K. Takadama (Eds.), Multi-agent-based simulation VII (Vol. 4442, pp. 1–14). Berlin: Springer.CrossRefGoogle Scholar
  58. 58.
    Tesfatsion, L. (2002). Agent-based computational economics: growing economies from the bottom up. Artificial Life, 8(1), 55–82.CrossRefGoogle Scholar
  59. 59.
    Thengvall, B., & Glover, F. (2009). A framework for the optimization and analysis of agent-based models. In M.D. Rossetti, R.R. Hill, B. Johansson, A. Dunkin, R.G. Ingalls (Eds.), Proceedings of the winter simulation conference (WSC 2009), Austin (pp. 1737–1744). New York: Association for Computing Machinery.CrossRefGoogle Scholar
  60. 60.
    Tonmukayakul, A., & Weiss, M.B.H. (2008). A study of secondary spectrum use using agent-based computational economics. NETNOMICS: Economic Research and Electronic Networking, 9(2), 125–151.CrossRefGoogle Scholar
  61. 61.
    Tsekeris, T., & Vogiatzoglou, K. (2011). Spatial agent-based modeling of household and firm location with endogenous transport costs. NETNOMICS: Economic Research and Electronic Networking, 12(2), 77–98.CrossRefGoogle Scholar
  62. 62.
    Wolpert, D.H., & Macready, W.G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.CrossRefGoogle Scholar
  63. 63.
    Xu, J., Nelson, B.L., Hong, J.L. (2010). Industrial strength compass: a comprehensive algorithm and software for optimization via simulation. ACM Transactions on Modeling and Computer Simulation, 20(1), article 3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Statistics and Economic TheoryUniversity of AugsburgAugsburgGermany

Personalised recommendations