Advertisement

A Lifespan Model of Interference Resolution and Inhibitory Control: Risk for Depression and Changes with Illness Progression

  • Katie L. Bessette
  • Aimee J. Karstens
  • Natania A. Crane
  • Amy T. Peters
  • Jonathan P. Stange
  • Kathleen H. Elverman
  • Sarah Shizuko Morimoto
  • Sara L. Weisenbach
  • Scott A. LangeneckerEmail author
Review

Abstract

The cognitive processes involved in inhibitory control accuracy (IC) and interference resolution speed (IR) or broadly – inhibition – are discussed in this review, and both are described within the context of a lifespan model of mood disorders. Inhibitory control (IC) is a binary outcome (success or no for response selection and inhibition of unwanted responses) for any given event that is influenced to an extent by IR. IR refers to the process of inhibition, which can be manipulated by task design in earlier and later stages through use of distractors and timing, and manipulation of individual differences in response proclivity. We describe the development of these two processes across the lifespan, noting factors that influence this development (e.g., environment, adversity and stress) as well as inherent difficulties in assessing IC/IR prior to adulthood (e.g., cross-informant reports). We use mood disorders as an illustrative example of how this multidimensional construct can be informative to state, trait, vulnerability and neuroprogression of disease. We present aggregated data across numerous studies and methodologies to examine the lifelong development and degradation of this subconstruct of executive function, particularly in mood disorders. We highlight the challenges in identifying and measuring IC/IR in late life, including specificity to complex, comorbid disease processes. Finally, we discuss some potential avenues for treatment and accommodation of these difficulties across the lifespan, including newer treatments using cognitive remediation training and neuromodulation.

Keywords

Inhibitory control Interference resolution Mood disorders Lifespan Development 

Abbreviations

BA

Brodmann’s Area

BD

Bipolar Disorder

CCN

cognitive control network

GNG

Go/No-Go task

HPA axis

hypothalamic pituitary adrenal axis

IC

inhibitory control

IFG

inferior frontal gyrus

IR

interference resolution

MDD

Major Depressive Disorder

PFC

prefrontal cortex

SMA

supplemental motor area

SST

Stop-Signal Task

Notes

Acknowledgements

Work on this manuscript was funded in part by the National Institute of Mental Health (T32 MH067631 to KLB and NAC; MH101487 to SAL, KLB, JPS, ATP, NAC), and the National Institute on Aging (T32 AG057468 to AJK).

Supplementary material

11065_2019_9424_MOESM1_ESM.pdf (373 kb)
ESM 1 (PDF 372 kb)

References

  1. Ahern, E., & Semkovska, M. (2017). Cognitive functioning in the first-episode of major depressive disorder: A systematic review and meta-analysis. Neuropsychology, 31(1), 52–72.  https://doi.org/10.1037/neu0000319 PubMedCrossRefGoogle Scholar
  2. Aite, A., Cassotti, M., Linzarini, A., Osmont, A., Houde, O., & Borst, G. (2018). Adolescents' inhibitory control: Keep it cool or lose control. Developmental Science, 21(1).  https://doi.org/10.1111/desc.12491 CrossRefGoogle Scholar
  3. Aizenstein, H. J., Butters, M. A., Clark, K. A., Figurski, J. L., Andrew Stenger, V., Nebes, R. D., & Carter, C. S. (2006). Prefrontal and striatal activation in elderly subjects during concurrent implicit and explicit sequence learning. Neurobiology of Aging, 27(5), 741–751.  https://doi.org/10.1016/j.neurobiolaging.2005.03.017 PubMedCrossRefGoogle Scholar
  4. Aizenstein, H. J., Butters, M. A., Figurski, J. L., Stenger, V. A., Reynolds 3rd, C. F., & Carter, C. S. (2005). Prefrontal and striatal activation during sequence learning in geriatric depression. Biological Psychiatry, 58(4), 290–296.  https://doi.org/10.1016/j.biopsych.2005.04.023 PubMedCrossRefGoogle Scholar
  5. Aizenstein, H. J., Butters, M. A., Wu, M., Mazurkewicz, L. M., Stenger, V. A., Gianaros, P. J., & Carter, C. S. (2009). Altered functioning of the executive control circuit in late-life depression: Episodic and persistent phenomena. The American Journal of Geriatric Psychiatry, 17(1), 30–42.  https://doi.org/10.1097/JGP.0b013e31817b60af PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aker, M., Bo, R., Harmer, C., Stiles, T. C., & Landro, N. I. (2016). Inhibition and response to error in remitted major depression. Psychiatry Research, 235, 116–122.  https://doi.org/10.1016/j.psychres.2015.11.038 PubMedCrossRefGoogle Scholar
  7. Alexopoulos, G. S. (2001). "The depression-executive dysfunction syndrome of late life": A specific target for D3 agonists? The American Journal of Geriatric Psychiatry, 9(1), 22–29.  https://doi.org/10.1097/00019442-200102000-00004 PubMedGoogle Scholar
  8. Alexopoulos, G. S. (2002). Frontostriatal and limbic dysfunction in late-life depression. American Journal of Geriatric Psychiatry, 10(6), 687–695.  https://doi.org/10.1097/00019442-200211000-00007 PubMedCrossRefGoogle Scholar
  9. Alexopoulos, G. S., Hoptman, M. J., Kanellopoulos, D., Murphy, C. F., Lim, K. O., & Gunning, F. M. (2012). Functional connectivity in the cognitive control network and the default mode network in late-life depression. Journal of Affective Disorders, 139(1), 56–65.  https://doi.org/10.1016/j.jad.2011.12.002 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Alexopoulos, G. S., Hoptman, M. J., Yuen, G., Kanellopoulos, D., Seirup, J. K., Lim, K. O., & Gunning, F. M. (2013). Functional connectivity in apathy of late-life depression: A preliminary study. Journal of Affective Disorders, 149(1–3), 398–405.  https://doi.org/10.1016/j.jad.2012.11.023 PubMedCrossRefGoogle Scholar
  11. Alexopoulos, G. S., Kiosses, D. N., Heo, M., Murphy, C. F., Shanmugham, B., & Gunning-Dixon, F. (2005). Executive dysfunction and the course of geriatric depression. Biological Psychiatry, 58(3), 204–210.  https://doi.org/10.1016/j.biopsych.2005.04.024 PubMedCrossRefGoogle Scholar
  12. Alexopoulos, G. S., & Morimoto, S. S. (2011). The inflammation hypothesis in geriatric depression. International Journal of Geriatric Psychiatry, 26(11), 1109–1118.  https://doi.org/10.1002/gps.2672 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Anzman-Frasca, S., Francis, L. A., & Birch, L. L. (2015). Inhibitory control is associated with psychosocial, cognitive, and weight outcomes in a longitudinal sample of girls. Translational Issues in Psychological Science, 1(3), 203–216.  https://doi.org/10.1037/tps0000028 PubMedCrossRefGoogle Scholar
  14. Ariza, P., Solesio-Jofre, E., Martinez, J. H., Pineda-Pardo, J. A., Niso, G., Maestu, F., & Buldu, J. M. (2015). Evaluating the effect of aging on interference resolution with time-varying complex networks analysis. Frontiers in Human Neuroscience, 9(255), 255.  https://doi.org/10.3389/fnhum.2015.00255 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Aron, A. R., Durston, S., Eagle, D. M., Logan, G. D., Stinear, C. M., & Stuphorn, V. (2007). Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. The Journal of Neuroscience, 27(44), 11860–11864.  https://doi.org/10.1523/JNEUROSCI.3644-07.2007 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115–116.  https://doi.org/10.1038/nn1003 PubMedCrossRefGoogle Scholar
  17. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18(4), 177–185.  https://doi.org/10.1016/j.tics.2013.12.003 PubMedCrossRefGoogle Scholar
  18. Arterburn, D., Westbrook, E. O., Ludman, E. J., Operskalski, B., Linde, J. A., Rohde, P., & Simon, G. E. (2012). Relationship between obesity, depression, and disability in middle-aged women. Obesity Research & Clinical Practice, 6(3), e197–e206.  https://doi.org/10.1016/j.orcp.2012.02.007 CrossRefGoogle Scholar
  19. Baune, B. T., Ponath, G., Rothermundt, M., Riess, O., Funke, H., & Berger, K. (2008). Association between genetic variants of IL-1beta, IL-6 and TNF-alpha cytokines and cognitive performance in the elderly general population of the MEMO-study. Psychoneuroendocrinology, 33(1), 68–76.  https://doi.org/10.1016/j.psyneuen.2007.10.002 PubMedCrossRefGoogle Scholar
  20. Baune, B. T., Smith, E., Reppermund, S., Air, T., Samaras, K., Lux, O., & Trollor, J. N. (2012). Inflammatory biomarkers predict depressive, but not anxiety symptoms during aging: The prospective Sydney memory and aging study. Psychoneuroendocrinology, 37(9), 1521–1530.  https://doi.org/10.1016/j.psyneuen.2012.02.006 PubMedCrossRefGoogle Scholar
  21. Bedard, A. C., Nichols, S., Barbosa, J. A., Schachar, R., Logan, G. D., & Tannock, R. (2002). The development of selective inhibitory control across the life span. Developmental Neuropsychology, 21(1), 93–111.  https://doi.org/10.1207/S15326942DN2101_5 PubMedCrossRefGoogle Scholar
  22. Belleau, E. L., Phillips, M. L., Birmaher, B., Axelson, D. A., & Ladouceur, C. D. (2013). Aberrant executive attention in unaffected youth at familial risk for mood disorders. Journal of Affective Disorders, 147(1–3), 397–400.  https://doi.org/10.1016/j.jad.2012.08.020 PubMedCrossRefGoogle Scholar
  23. Bender, A. R., Völkle, M. C., & Raz, N. (2016). Differential aging of cerebral white matter in middle-aged and older adults: A seven-year follow-up. Neuroimage, 125, 74–83.  https://doi.org/10.1016/j.neuroimage.2015.10.030 PubMedCrossRefGoogle Scholar
  24. Berens, A. E., Jensen, S. K. G., & Nelson 3rd., C. A. (2017). Biological embedding of childhood adversity: From physiological mechanisms to clinical implications. BMC Medicine, 15(1), 135.  https://doi.org/10.1186/s12916-017-0895-4 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Berkman, E. T., Kahn, L. E., & Merchant, J. S. (2014). Training-induced changes in inhibitory control network activity. The Journal of Neuroscience, 34(1), 149–157.  https://doi.org/10.1523/JNEUROSCI.3564-13.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Berman, M. G., Nee, D. E., Casement, M., Kim, H. S., Deldin, P., Kross, E., .Jonides, J. (2011). Neural and behavioral effects of interference resolution in depression and rumination. Cognitive, Affective, & Behavioral Neuroscience, 11(1), 85–96. doi: https://doi.org/10.3758/s13415-010-0014-x CrossRefGoogle Scholar
  27. Bessette, K. L., Burkhouse, K. L., & Langenecker, S. A. (2018). An interactive developmental neuroscience perspective on adolescent resilience to familial depression. JAMA Psychiatry, 75(5), 503–504.  https://doi.org/10.1001/jamapsychiatry.2018.0050 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bessette, K. L., Jenkins, L. M., Skerrett, K. A., Gowins, J. R., DelDonno, S. R., Zubieta, J. K., & Langenecker, S. A. (2018). Reliability, convergent validity and time invariance of default mode network deviations in early adult major depressive disorder. Frontiers in Psychiatry, 9, 244.  https://doi.org/10.3389/fpsyt.2018.00244 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Bessette, K. L., Nave, A. M., Caprihan, A., & Stevens, M. C. (2014). White matter abnormalities in adolescents with major depressive disorder. Brain Imaging and Behavior, 8(4), 531–541.  https://doi.org/10.1007/s11682-013-9274-8 PubMedCrossRefGoogle Scholar
  30. Bhaumik, R., Jenkins, L. M., Gowins, J. R., Jacobs, R. H., Barba, A., Bhaumik, D. K., & Langenecker, S. A. (2017). Multivariate pattern analysis strategies in detection of remitted major depressive disorder using resting state functional connectivity. Neuroimage: Clinical, 16, 390–398.  https://doi.org/10.1016/j.nicl.2016.02.018 CrossRefGoogle Scholar
  31. Bick, J., & Nelson, C. A. (2016). Early adverse experiences and the developing brain. Neuropsychopharmacology, 41(1), 177–196.  https://doi.org/10.1038/npp.2015.252 PubMedCrossRefGoogle Scholar
  32. Black, P. H. (2002). Stress and the inflammatory response: A review of neurogenic inflammation. Brain, Behavior, and Immunity, 16(6), 622–653.  https://doi.org/10.1016/S0889-1591(02)00021-1 PubMedCrossRefGoogle Scholar
  33. Blair, C., & Raver, C. C. (2016). Poverty, stress, and brain development: New directions for prevention and intervention. Academic Pediatrics, 16(3 Suppl), S30–S36.  https://doi.org/10.1016/j.acap.2016.01.010 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bobb, D. S., Jr., Adinoff, B., Laken, S. J., McClintock, S. M., Rubia, K., Huang, H. W., .Kozel, F. A. (2012). Neural correlates of successful response inhibition in unmedicated patients with late-life depression. The American Journal of Geriatric Psychiatry, 20(12), 1057–1069. doi: https://doi.org/10.1097/JGP.0b013e318235b728 PubMedCrossRefGoogle Scholar
  35. Borson, S., McDonald, G. J., Gayle, T., Deffebach, M., Lakshminarayan, S., & VanTuinen, C. (1992). Improvement in mood, physical symptoms, and function with nortriptyline for depression in patients with chronic obstructive pulmonary disease. Psychosomatics, 33(2), 190–201.  https://doi.org/10.1016/S0033-3182(92)71995-1 PubMedCrossRefGoogle Scholar
  36. Boschloo, A., Krabbendam, L., Aben, A., de Groot, R., & Jolles, J. (2014). Sorting test, tower test, and BRIEF-SR do not predict school performance of healthy adolescents in preuniversity education. Frontiers in Psychology, 5, 287.  https://doi.org/10.3389/fpsyg.2014.00287 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Breiner, K., Li, A., Cohen, A. O., Steinberg, L., Bonnie, R. J., Scott, E. S., . Galvan, A. (2018). Combined effects of peer presence, social cues, and rewards on cognitive control in adolescents. Developmental Psychobiology, 60(3), 292–302. doi: https://doi.org/10.1002/dev.21599 PubMedCrossRefGoogle Scholar
  38. Bruce, J., Fisher, P. A., Graham, A. M., Moore, W. E., Peake, S. J., & Mannering, A. M. (2013). Patterns of brain activation in foster children and nonmaltreated children during an inhibitory control task. Development and Psychopathology, 25(4 Pt 1), 931–941.  https://doi.org/10.1017/S095457941300028X PubMedCrossRefGoogle Scholar
  39. Bruehl, H., Wolf, O. T., Sweat, V., Tirsi, A., Richardson, S., & Convit, A. (2009). Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus. Brain Research, 1280, 186–194.  https://doi.org/10.1016/j.brainres.2009.05.032 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Bufferd, S. J., Dougherty, L. R., Olino, T. M., Dyson, M. W., Laptook, R. S., Carlson, G. A., & Klein, D. N. (2014). Predictors of the onset of depression in young children: A multi-method, multi-informant longitudinal study from ages 3 to 6. Journal of Child Psychology and Psychiatry, 55(11), 1279–1287.  https://doi.org/10.1111/jcpp.12252 PubMedCrossRefGoogle Scholar
  41. Burkhouse, K. L., Stange, J. P., Jacobs, R. H., Bhaumik, R., Bessette, K. L., Peters, A. T., & Langenecker, S. A. (2018). Developmental changes in resting-state functional networks among individuals with and without internalizing psychopathologies. Depression and Anxiety, 36, 141-152.  https://doi.org/10.1002/da.22864 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Butters, M. A., Young, J. B., Lopez, O., Aizenstein, H. J., Mulsant, B. H., Reynolds 3rd, C. F., & Becker, J. T. (2008). Pathways linking late-life depression to persistent cognitive impairment and dementia. Dialogues in Clinical Neuroscience, 10(3), 345–357.PubMedPubMedCentralGoogle Scholar
  43. Carlson, S. M. (2005). Developmentally sensitive measures of executive function in preschool children. Developmental Neuropsychology, 28(2), 595–616.  https://doi.org/10.1207/s15326942dn2802_3 PubMedCrossRefGoogle Scholar
  44. Carrion, V. G., Garrett, A., Menon, V., Weems, C. F., & Reiss, A. L. (2008). Posttraumatic stress symptoms and brain function during a response-inhibition task: An fMRI study in youth. Depression and Anxiety, 25(6), 514–526.  https://doi.org/10.1002/da.20346 PubMedCrossRefGoogle Scholar
  45. Casey, B., & Caudle, K. (2013). The teenage brain: Self control. Current Directions in Psychological Science, 22(2), 82–87.  https://doi.org/10.1177/0963721413480170 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Casey, B., Jones, R. M., & Somerville, L. H. (2011). Braking and accelerating of the adolescent brain. Journal of Research on Adolescence, 21(1), 21–33.  https://doi.org/10.1111/j.1532-7795.2010.00712.x PubMedPubMedCentralCrossRefGoogle Scholar
  47. Chikazoe, J., Konishi, S., Asari, T., Jimura, K., & Miyashita, Y. (2007). Activation of right inferior frontal gyrus during response inhibition across response modalities. Journal of Cognitive Neuroscience, 19(1), 69–80.  https://doi.org/10.1162/jocn.2007.19.1.69 PubMedCrossRefGoogle Scholar
  48. Clapp, W. C., Rubens, M. T., Sabharwal, J., & Gazzaley, A. (2011). Deficit in switching between functional brain networks underlies the impact of multitasking on working memory in older adults. Proceedings of the National Academy of Sciences of the United States of America, 108(17), 7212–7217.  https://doi.org/10.1073/pnas.1015297108 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Cochran, A. L., McInnis, M. G., & Forger, D. B. (2016). Data-driven classification of bipolar I disorder from longitudinal course of mood. Translational Psychiatry, 6(10), e912.  https://doi.org/10.1038/tp.2016.166 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Congdon, E., Mumford, J. A., Cohen, J. R., Galvan, A., Canli, T., & Poldrack, R. A. (2012). Measurement and reliability of response inhibition. Frontiers in Psychology, 3, 37.  https://doi.org/10.3389/fpsyg.2012.00037 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Craik, F. I. M., & Jennings, J. M. (1992). Human Memory. In F. I. M. Craik & T. A. Salthouse (Eds.), The Handbook of Aging and Cognition (p. 51-110). New York, NY: Psychology Press.Google Scholar
  52. Crane, N. A., Jenkins, L. M., Bhaumik, R., Dion, C., Gowins, J. R., Mickey, B. J., & Langenecker, S. A. (2017). Multidimensional prediction of treatment response to antidepressants with cognitive control and functional MRI. Brain, 140(2), 472–486.  https://doi.org/10.1093/brain/aww326 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Crane, N. A., Jenkins, L. M., Dion, C., Meyers, K. K., Weldon, A. L., Gabriel, L. B., & Langenecker, S. A. (2016). Comorbid anxiety increases cognitive control activation in major depressive disorder. Depression and Anxiety, 33(10), 967–977.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Crane, N. A., Verges, A., Kamali, M., Bhaumik, R., Ryan, K. A., Marshall, D. F., & Langenecker, S. A. (2018). Developing dimensional, Pandiagnostic inhibitory control constructs with self-report and neuropsychological data. Assessment.  https://doi.org/10.1177/1073191118754704
  55. Criaud, M., & Boulinguez, P. (2013). Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and critical review. Neuroscience and Biobehavioral Reviews, 37(1), 11–23.  https://doi.org/10.1016/j.neubiorev.2012.11.003 PubMedCrossRefGoogle Scholar
  56. Dalby, R. B., Frandsen, J., Chakravarty, M. M., Ahdidan, J., Sorensen, L., Rosenberg, R., & Videbech, P. (2012). Correlations between Stroop task performance and white matter lesion measures in late-onset major depression. Psychiatry Research, 202(2), 142–149.  https://doi.org/10.1016/j.pscychresns.2011.12.009 PubMedCrossRefGoogle Scholar
  57. Danese, A., & McEwen, B. S. (2012). Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiology & Behavior, 106(1), 29–39.  https://doi.org/10.1016/j.physbeh.2011.08.019 CrossRefGoogle Scholar
  58. Davidovich, S., Collishaw, S., Thapar, A. K., Harold, G., Thapar, A., & Rice, F. (2016). Do better executive functions buffer the effect of current parental depression on adolescent depressive symptoms? Journal of Affective Disorders, 199, 54–64.  https://doi.org/10.1016/j.jad.2016.03.049 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Dawson, E. L., Caveney, A. F., Meyers, K. K., Weisenbach, S. L., Giordani, B., Avery, E. T., & Langenecker, S. A. (2017). Executive functioning at baseline prospectively predicts depression treatment response. The Primary Care Companion for CNS Disorders, 19(1), e1–e7.  https://doi.org/10.4088/PCC.16m01949
  60. De Los Reyes, A., Thomas, S. A., Goodman, K. L., & Kundey, S. M. (2013). Principles underlying the use of multiple informants' reports. Annual Review of Clinical Psychology, 9(1), 123–149.  https://doi.org/10.1146/annurev-clinpsy-050212-185617 PubMedCrossRefGoogle Scholar
  61. Disabato, B. M., Morris, C., Hranilovich, J., D'Angelo, G. M., Zhou, G., Wu, N., & Sheline, Y. I. (2014). Comparison of brain structural variables, neuropsychological factors, and treatment outcome in early-onset versus late-onset late-life depression. The American Journal of Geriatric Psychiatry, 22(10), 1039–1046.  https://doi.org/10.1016/j.jagp.2013.02.005 PubMedCrossRefGoogle Scholar
  62. Duckworth, A. L., & Kern, M. L. (2011). A meta-analysis of the convergent validity of self-control measures. Journal of Research in Personality, 45(3), 259–268.  https://doi.org/10.1016/j.jrp.2011.02.004 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Dumas, J. A., & Newhouse, P. A. (2015). Impaired working memory in geriatric depression: An FMRI study. The American Journal of Geriatric Psychiatry, 23(4), 433–436.  https://doi.org/10.1016/j.jagp.2014.09.011 PubMedCrossRefGoogle Scholar
  64. Elgh, E., Astot, A. L., Fagerlund, M., Eriksson, S., Olsson, T., & Nasman, B. (2006). Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer's disease. Biological Psychiatry, 59(2), 155–161.  https://doi.org/10.1016/j.biopsych.2005.06.017 PubMedCrossRefGoogle Scholar
  65. Enticott, P. G., Ogloff, J. R. P., & Bradshaw, J. L. (2006). Associations between laboratory measures of executive inhibitory control and self-reported impulsivity. Personality and Individual Differences, 41(2), 285–294.  https://doi.org/10.1016/j.paid.2006.01.011 CrossRefGoogle Scholar
  66. Felger, J. C., Li, Z., Haroon, E., Woolwine, B. J., Jung, M. Y., Hu, X., & Miller, A. H. (2015). Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Molecular Psychiatry, 21, 1358.  https://doi.org/10.1038/mp.2015.168 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Finch, J. E., & Obradović, J. (2017). Unique effects of socioeconomic and emotional parental challenges on children's executive functions. Journal of Applied Developmental Psychology, 52, 126–137.  https://doi.org/10.1016/j.appdev.2017.07.004 CrossRefGoogle Scholar
  68. Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133(1), 101–135.  https://doi.org/10.1037/0096-3445.133.1.101 CrossRefGoogle Scholar
  69. Friedman, N. P., Miyake, A., Robinson, J. L., & Hewitt, J. K. (2011). Developmental trajectories in toddlers' self-restraint predict individual differences in executive functions 14 years later: A behavioral genetic analysis. Developmental Psychology, 47(5), 1410–1430.  https://doi.org/10.1037/a0023750 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Gallagher, D., Kiss, A., Lanctot, K., & Herrmann, N. (2017). Depression with inflammation: Longitudinal analysis of a proposed depressive subtype in community dwelling older adults. International Journal of Geriatric Psychiatry, 32(12), e18–e24.  https://doi.org/10.1002/gps.4645 PubMedCrossRefGoogle Scholar
  71. Goldsmith, D. R., Haroon, E., Woolwine, B. J., Jung, M. Y., Wommack, E. C., Harvey, P. D., & Miller, A. H. (2016). Inflammatory markers are associated with decreased psychomotor speed in patients with major depressive disorder. Brain, Behavior, and Immunity, 56, 281–288.  https://doi.org/10.1016/j.bbi.2016.03.025 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Gomide, V. A., Sergeant, J., Correa, H., Mattos, P., & Malloy-Diniz, L. (2014). When self-report diverges from performance: The usage of BIS-11 along with neuropsychological tests. Psychiatry Research, 218(1–2), 236–243.  https://doi.org/10.1016/j.psychres.2014.03.002 CrossRefGoogle Scholar
  73. Greendale, G. A., Kritz-Silverstein, D., Seeman, T., & Barrett-Connor, E. (2000). Higher basal cortisol predicts verbal memory loss in postmenopausal women: Rancho Bernardo study. Journal of the American Geriatrics Society, 48(12), 1655–1658.  https://doi.org/10.1111/j.1532-5415.2000.tb03878.x PubMedCrossRefGoogle Scholar
  74. Gunning-Dixon, F. M., & Raz, N. (2000). The cognitive correlates of white matter abnormalities in normal aging: A quantitative review. Neuropsychology, 14(2), 224–232.  https://doi.org/10.1037/0894-4105.14.2.224 PubMedCrossRefGoogle Scholar
  75. Guy, S. C., Isquith, P. K., & Gioia, G. A. (2004). Behavior Rating Inventory of Executive Function: Self-Report Version. Lutz, FL: Psychological Assessment Resources.Google Scholar
  76. Hampshire, A., & Sharp, D. J. (2015). Contrasting network and modular perspectives on inhibitory control. Trends in Cognitive Sciences, 19(8), 445–452.  https://doi.org/10.1016/j.tics.2015.06.006 PubMedCrossRefGoogle Scholar
  77. Hanson, J. L., Adluru, N., Chung, M. K., Alexander, A. L., Davidson, R. J., & Pollak, S. D. (2013). Early neglect is associated with alterations in white matter integrity and cognitive functioning. Child Development, 84(5), 1566–1578.  https://doi.org/10.1111/cdev.12069 PubMedCrossRefGoogle Scholar
  78. Hart, H., & Rubia, K. (2012). Neuroimaging of child abuse: A critical review. Frontiers in Human Neuroscience, 6, 52.  https://doi.org/10.3389/fnhum.2012.00052 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hasher, L., Zacks, R. T., & May, C. P. (1999). Inhibitory control, circadian arousal, and age. In D. Gopher & A. Koriat (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 653–675). Cambridge, MA: The MIT Press.Google Scholar
  80. Heald, A. H., Ghosh, S., Bray, S., Gibson, C., Anderson, S. G., Buckler, H., & Fowler, H. L. (2004). Long-term negative impact on quality of life in patients with successfully treated Cushing's disease. Clinical Endocrinology, 61(4), 458–465.  https://doi.org/10.1111/j.1365-2265.2004.02118.x PubMedCrossRefGoogle Scholar
  81. Hedden, T., & Gabrieli, J. D. (2004). Insights into the ageing mind: A view from cognitive neuroscience. Nature Reviews Neuroscience, 5(2), 87–96.  https://doi.org/10.1038/nrn1323 PubMedCrossRefGoogle Scholar
  82. Heringa, S. M., van den Berg, E., Reijmer, Y. D., Nijpels, G., Stehouwer, C. D. A., Schalkwijk, C. G., & Biessels, G. J. (2014). Markers of low-grade inflammation and endothelial dysfunction are related to reduced information processing speed and executive functioning in an older population–the Hoorn study. Psychoneuroendocrinology, 40, 108–118.  https://doi.org/10.1016/j.psyneuen.2013.11.011 PubMedCrossRefGoogle Scholar
  83. Hongwanishkul, D., Happaney, K. R., Lee, W. S., & Zelazo, P. D. (2005). Assessment of hot and cool executive function in young children: Age-related changes and individual differences. Developmental Neuropsychology, 28(2), 617–644.  https://doi.org/10.1207/s15326942dn2802_4 PubMedCrossRefGoogle Scholar
  84. Hughes, C., Roman, G., Hart, M. J., & Ensor, R. (2013). Does maternal depression predict young children's executive function? - a 4-year longitudinal study. Journal of Child Psychology and Psychiatry, 54(2), 169–177.  https://doi.org/10.1111/jcpp.12014 PubMedCrossRefGoogle Scholar
  85. Huizinga, M., Dolan, C. V., & van der Molen, M. W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44(11), 2017–2036.  https://doi.org/10.1016/j.neuropsychologia.2006.01.010 PubMedCrossRefGoogle Scholar
  86. Ilieva, I. P., Alexopoulos, G. S., Dubin, M. J., Morimoto, S. S., Victoria, L. W., & Gunning, F. M. (2018). Age-related repetitive Transcranial magnetic stimulation effects on executive function in depression: A systematic review. The American Journal of Geriatric Psychiatry, 26(3), 334–346.  https://doi.org/10.1016/j.jagp.2017.09.002 PubMedCrossRefGoogle Scholar
  87. Irigaray, T. Q., Pachecob, J. B., Grassi-Oliveiraa, R., Fonsecaa, R. P., de Carvalho, J. C., & Kristensen, C. H. (2013). Child maltreatment and later cognitive functioning: A systematic review. Psicologia: Reflexão e Crítica, 26(2), 376–387.  https://doi.org/10.1590/s0102-79722013000200018 CrossRefGoogle Scholar
  88. Jacobs, R. H., Jenkins, L. M., Gabriel, L. B., Barba, A., Ryan, K. A., Weisenbach, S. L., & Welsh, R. C. (2014). Increased coupling of intrinsic networks in remitted depressed youth predicts rumination and cognitive control. PLoS One, 9(8), e104366.  https://doi.org/10.1371/journal.pone.0104366 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Jacobs, R. H., Watkins, E. R., Peters, A. T., Feldhaus, C. G., Barba, A., Carbray, J., & Langenecker, S. A. (2016). Targeting ruminative thinking in adolescents at risk for depressive relapse: Rumination-focused cognitive behavior therapy in a pilot randomized controlled trial with resting state fMRI. PLoS One, 11(11), e0163952.  https://doi.org/10.1371/journal.pone.0163952 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Jaworska, N., MacMaster, F. P., Gaxiola, I., Cortese, F., Goodyear, B., & Ramasubbu, R. (2014). A preliminary study of the influence of age of onset and childhood trauma on cortical thickness in major depressive disorder. BioMed Research International, 2014, 410472.  https://doi.org/10.1155/2014/410472 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Joormann, J., & Gotlib, I. H. (2010). Emotion regulation in depression: Relation to cognitive inhibition. Cognition and Emotion, 24(2), 281–298.  https://doi.org/10.1080/02699930903407948 PubMedCrossRefGoogle Scholar
  92. Kane, M., Hasher, L., Stoltzfus, E., Zacks, R., & Connelly, S. (1994). Inhibitory attentional mechanisms and aging. Psychology and Aging, 9, 103–112.PubMedCrossRefGoogle Scholar
  93. Karstens, A. J., Ajilore, O., Rubin, L. H., Yang, S., Zhang, A., Leow, A., & Lamar, M. (2017a). Investigating the separate and interactive associations of trauma and depression on brain structure: Implications for cognition and aging. International Journal of Geriatric Psychiatry, 32(11), 1190–1199.  https://doi.org/10.1002/gps.4755 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Karstens, A. J., Rubin, L. H., Shankman, S. A., Ajilore, O., Libon, D. J., Kumar, A., & Lamar, M. (2017b). Investigating the separate and interactive associations of trauma and depression on neurocognition in urban dwelling adults. Journal of Psychiatric Research, 89, 6–13.  https://doi.org/10.1016/j.jpsychires.2017.01.008 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Khng, K. H., & Lee, K. (2014). The relationship between Stroop and stop-signal measures of inhibition in adolescents: Influences from variations in context and measure estimation. PLoS One, 9(7), e101356.  https://doi.org/10.1371/journal.pone.0101356 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kim, J. M., Stewart, R., Kim, J. W., Kang, H. J., Bae, K. Y., Kim, S. W., & Yoon, J. S. (2018). Changes in pro-inflammatory cytokine levels and late-life depression: A two year population based longitudinal study. Psychoneuroendocrinology, 90, 85–91.  https://doi.org/10.1016/j.psyneuen.2018.02.006 PubMedCrossRefGoogle Scholar
  97. Klenberg, L., Narhi, V., Korkman, M., & Hokkanen, L. (2015). Examining methodological variation in response inhibition: The effects of outcome measures and task characteristics on age-related differences. Child Neuropsychology, 21(5), 586–602.  https://doi.org/10.1080/09297049.2014.950215 PubMedCrossRefGoogle Scholar
  98. Kohman, R. A., & Rhodes, J. S. (2013). Neurogenesis, inflammation and behavior. Brain, Behavior, and Immunity, 27(1), 22–32.  https://doi.org/10.1016/j.bbi.2012.09.003 PubMedCrossRefGoogle Scholar
  99. Korkman, M., Kirk, U., & Kemp, S. (2007). NEPSY-II: Clinical and interpretive manual. San Antonio: The Psychological Corporation.Google Scholar
  100. Koster, E. H. W., Hoorelbeke, K., Onraedt, T., Owens, M., & Derakshan, N. (2017). Cognitive control interventions for depression: A systematic review of findings from training studies. Clinical Psychology Review, 53, 79–92.  https://doi.org/10.1016/j.cpr.2017.02.002 PubMedCrossRefGoogle Scholar
  101. Langenecker, S. A., Bieliauskas, L. A., Rapport, L. J., Zubieta, J. K., Wilde, E. A., & Berent, S. (2005). Face emotion perception and executive functioning deficits in depression. Journal of Clinical and Experimental Neuropsychology, 27(3), 320–333.  https://doi.org/10.1080/13803390490490515720 PubMedCrossRefGoogle Scholar
  102. Langenecker, S. A., Briceno, E. M., Hamid, N. M., & Nielson, K. A. (2007). An evaluation of distinct volumetric and functional MRI contributions toward understanding age and task performance: A study in the basal ganglia. Brain Research, 1135(1), 58–68.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Langenecker, S. A., Caveney, A. F., Giordani, B., Young, E. A., Nielson, K. A., Rapport, L. J., & Zubieta, J. K. (2007). The sensitivity and psychometric properties of a brief computer-based cognitive screening battery in a depression clinic. Psychiatry Research, 152(2–3), 143–154.  https://doi.org/10.1016/j.psychres.2006.03.019 PubMedCrossRefGoogle Scholar
  104. Langenecker, S. A., Jacobs, R. H., & Passarotti, A. M. (2014). Current neural and Behavioral dimensional constructs across mood disorders. Current Behavioral Neuroscience Reports, 1(3), 144–153.  https://doi.org/10.1007/s40473-014-0018-x PubMedPubMedCentralCrossRefGoogle Scholar
  105. Langenecker, S. A., Jenkins, L. M., Stange, J. P., Chang, Y. S., DelDonno, S. R., Bessette, K. L., & Jacobs, R. H. (2018). Cognitive control neuroimaging measures differentiate between those with and without future recurrence of depression. Neuroimage: Clinical, 20, 1001–1009.  https://doi.org/10.1016/j.nicl.2018.10.004 CrossRefGoogle Scholar
  106. Langenecker, S. A., & Nielson, K. A. (2003). Frontal recruitment during response inhibition in older adults replicated with fMRI. Neuroimage, 20(2), 1384–1392.  https://doi.org/10.1016/S1053-8119(03)00372-0 PubMedCrossRefGoogle Scholar
  107. Langenecker, S. A., Nielson, K. A., & Rao, S. M. (2004). fMRI of healthy older adults during Stroop interference. Neuroimage, 21(1), 192–200.  https://doi.org/10.1016/j.neuroimage.2003.08.027 PubMedCrossRefGoogle Scholar
  108. Latzman, R. D., & Markon, K. E. (2010). The factor structure and age-related factorial invariance of the delis-Kaplan executive function system (D-KEFS). Assessment, 17(2), 172–184.  https://doi.org/10.1177/1073191109356254 PubMedCrossRefGoogle Scholar
  109. Lawson, G. M., Hook, C. J., & Farah, M. J. (2017). A meta-analysis of the relationship between socioeconomic status and executive function performance among children. Developmental Science.  https://doi.org/10.1111/desc.12529 CrossRefGoogle Scholar
  110. Leonard, B. E. (2017). Major depression as a neuroprogressive prelude to dementia: What is the evidence? In A. Halaris & B. E. Leonard (Eds.), Modern Trends in Pharmacopsychiatry (vol. 31, pp. 56–66). Basel: Karger Publishers.Google Scholar
  111. Li, Q., Yang, G., Li, Z., Qi, Y., Cole, M. W., & Liu, X. (2017). Conflict detection and resolution rely on a combination of common and distinct cognitive control networks. Neuroscience and Biobehavioral Reviews, 83, 123–131.  https://doi.org/10.1016/j.neubiorev.2017.09.032 PubMedCrossRefGoogle Scholar
  112. Lockwood, K. A., Alexopoulos, G. S., & van Gorp, W. G. (2002). Executive dysfunction in geriatric depression. The American Journal of Psychiatry, 159(7), 1119–1126.  https://doi.org/10.1176/appi.ajp.159.7.1119 PubMedCrossRefGoogle Scholar
  113. Logan, G. D. (1994). On the ability to inhibit thought and action: A users' guide to the stop signal paradigm. In D. Dagenbach & T. H. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 189–239). San Diego, CA: Academic Press.Google Scholar
  114. Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action - a theory of an act of control. Psychological Review, 91(3), 295–327.  https://doi.org/10.1037/0033-295x.91.3.295 CrossRefGoogle Scholar
  115. Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). Maturation of cognitive processes from late childhood to adulthood. Child Development, 75(5), 1357–1372.  https://doi.org/10.1111/j.1467-8624.2004.00745.x PubMedCrossRefGoogle Scholar
  116. Luna, B., Padmanabhan, A., & O'Hearn, K. (2010). What has fMRI told us about the development of cognitive control through adolescence? Brain and Cognition, 72(1), 101–113.  https://doi.org/10.1016/j.bandc.2009.08.005 PubMedCrossRefGoogle Scholar
  117. Lupien, S. J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Thakur, M., .Meaney, M. J. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neuroscience, 1(1), 69–73. doi: https://doi.org/10.1038/271 PubMedCrossRefGoogle Scholar
  118. Lupien, S. J., Lecours, A. R., Schwartz, G., Sharma, S., Hauger, R. L., Meaney, M. J., & Nair, N. P. (1996). Longitudinal study of basal cortisol levels in healthy elderly subjects: Evidence for subgroups. Neurobiology of Aging, 17(1), 95–105.  https://doi.org/10.1016/0197-4580(95)02005-5 PubMedCrossRefGoogle Scholar
  119. Lupien, S. J., Schwartz, G., Ng, Y. K., Fiocco, A., Wan, N., Pruessner, J. C., & Nair, N. P. V. (2005). The Douglas Hospital longitudinal study of Normal and pathological aging: Summary of findings. Journal of Psychiatry & Neuroscience, 30(5), 328–334.Google Scholar
  120. Macdonald, J. A., Beauchamp, M. H., Crigan, J. A., & Anderson, P. J. (2014). Age-related differences in inhibitory control in the early school years. Child Neuropsychology, 20(5), 509–526.  https://doi.org/10.1080/09297049.2013.822060 PubMedCrossRefGoogle Scholar
  121. MacQueen, G. M., & Memedovich, K. A. (2017). Cognitive dysfunction in major depression and bipolar disorder: Assessment and treatment options. Psychiatry and Clinical Neurosciences, 71(1), 18–27.  https://doi.org/10.1111/pcn.12463 PubMedCrossRefGoogle Scholar
  122. Maillard, P., Carmichael, O. T., Reed, B., Mungas, D., & DeCarli, C. (2015). Cooccurrence of vascular risk factors and late-life white-matter integrity changes. Neurobiology of Aging, 36(4), 1670–1677.  https://doi.org/10.1016/j.neurobiolaging.2015.01.007 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Malarbi, S., Abu-Rayya, H. M., Muscara, F., & Stargatt, R. (2017). Neuropsychological functioning of childhood trauma and post-traumatic stress disorder: A meta-analysis. Neuroscience and Biobehavioral Reviews, 72, 68–86.  https://doi.org/10.1016/j.neubiorev.2016.11.004 PubMedCrossRefGoogle Scholar
  124. Marshall, D. F., Passarotti, A. M., Ryan, K. A., Kamali, M., Saunders, E. F., Pester, B., & Langenecker, S. A. (2016). Deficient inhibitory control as an outcome of childhood trauma. Psychiatry Research, 235, 7–12.  https://doi.org/10.1016/j.psychres.2015.12.013 PubMedCrossRefGoogle Scholar
  125. Mast, B. T., Miles, T., Penninx, B. W., Yaffe, K., Rosano, C., Satterfield, S., & Simonsick, E. M. (2008). Vascular disease and future risk of depressive symptomatology in older adults: Findings from the health, aging, and body composition study. Biological Psychiatry, 64(4), 320–326.  https://doi.org/10.1016/j.biopsych.2008.01.025 PubMedCrossRefGoogle Scholar
  126. McAuley, T., Christ, S. E., & White, D. A. (2011). Mapping the development of response inhibition in young children using a modified day-night task. Developmental Neuropsychology, 36(5), 539–551.  https://doi.org/10.1080/87565641.2010.549871 PubMedCrossRefGoogle Scholar
  127. McAuley, T., & White, D. A. (2011). A latent variables examination of processing speed, response inhibition, and working memory during typical development. Journal of Experimental Child Psychology, 108(3), 453–468.  https://doi.org/10.1016/j.jecp.2010.08.009 PubMedPubMedCentralCrossRefGoogle Scholar
  128. McEwen, B. S. (2006). Sleep deprivation as a neurobiologic and physiologic stressor: Allostasis and allostatic load. Metabolism, 55(10 Suppl 2), S20–S23.  https://doi.org/10.1016/j.metabol.2006.07.008 PubMedCrossRefGoogle Scholar
  129. McEwen, B. S., Nasca, C., & Gray, J. D. (2016). Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology, 41(1), 3–23.  https://doi.org/10.1038/npp.2015.171 PubMedCrossRefGoogle Scholar
  130. Merz, E. C., Harle, K. M., Noble, K. G., & McCall, R. B. (2016). Executive function in previously institutionalized children. Child Development Perspectives, 10(2), 105–110.  https://doi.org/10.1111/cdep.12170 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Mettenburg, J. M., Benzinger, T. L., Shimony, J. S., Snyder, A. Z., & Sheline, Y. I. (2012). Diminished performance on neuropsychological testing in late life depression is correlated with microstructural white matter abnormalities. Neuroimage, 60(4), 2182–2190.  https://doi.org/10.1016/j.neuroimage.2012.02.044 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Meyer, G. J., Finn, S. E., Eyde, L. D., Kay, G. G., Moreland, K. L., Dies, R. R., . Reed, G. M. (2001). Psychological testing and psychological assessment. A review of evidence and issues. The American Psychologist, 56(2), 128–165. doi: https://doi.org/10.1037/0003-066X.56.2.128 PubMedCrossRefGoogle Scholar
  133. Micco, J. A., Henin, A., Biederman, J., Rosenbaum, J. F., Petty, C., Rindlaub, L. A., & Hirshfeld-Becker, D. R. (2009). Executive functioning in offspring at risk for depression and anxiety. Depression and Anxiety, 26(9), 780–790.  https://doi.org/10.1002/da.20573 PubMedCrossRefGoogle Scholar
  134. Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalek, T., & Cohen, N. J. (2002). Attentional control in the aging brain: Insights from an fMRI study of the stroop task. Brain and Cognition, 49(3), 277–296.  https://doi.org/10.1006/brcg.2001.1501 PubMedCrossRefGoogle Scholar
  135. Miller, A. H., Maletic, V., & Raison, C. L. (2009). Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biological Psychiatry, 65(9), 732–741.  https://doi.org/10.1016/j.biopsych.2008.11.029 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Miller, G. E., & Cole, S. W. (2012). Clustering of depression and inflammation in adolescents previously exposed to childhood adversity. Biological Psychiatry, 72(1), 34–40.  https://doi.org/10.1016/j.biopsych.2012.02.034 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Miyake, A., & Friedman, N. P. (2012). The nature and Organization of Individual Differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 8–14.  https://doi.org/10.1177/0963721411429458 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100.  https://doi.org/10.1006/cogp.1999.0734 PubMedCrossRefGoogle Scholar
  139. Morimoto, S. S., Gunning, F. M., Murphy, C. F., Kanellopoulos, D., Kelly, R. E., & Alexopoulos, G. S. (2011). Executive function and short-term remission of geriatric depression: The role of semantic strategy. The American Journal of Geriatric Psychiatry, 19(2), 115–122.  https://doi.org/10.1097/JGP.0b013e3181e751c4 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Morimoto, S. S., Gunning, F. M., Wexler, B. E., Hu, W., Ilieva, I., Liu, J., & Alexopoulos, G. S. (2016). Executive dysfunction predicts treatment response to neuroplasticity-based computerized cognitive remediation (nCCR-GD) in elderly patients with major depression. The American Journal of Geriatric Psychiatry, 24(10), 816–820.  https://doi.org/10.1016/j.jagp.2016.06.010 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Morimoto, S. S., Wexler, B. E., & Alexopoulos, G. S. (2012). Neuroplasticity-based computerized cognitive remediation for geriatric depression. International Journal of Geriatric Psychiatry, 27(12), 1239–1247.  https://doi.org/10.1002/gps.3776 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Motter, J. N., Pimontel, M. A., Rindskopf, D., Devanand, D. P., Doraiswamy, P. M., & Sneed, J. R. (2016). Computerized cognitive training and functional recovery in major depressive disorder: A meta-analysis. Journal of Affective Disorders, 189, 184–191.  https://doi.org/10.1016/j.jad.2015.09.022 PubMedCrossRefGoogle Scholar
  143. Mueller, S. C., Maheu, F. S., Dozier, M., Peloso, E., Mandell, D., Leibenluft, E., & Ernst, M. (2010). Early-life stress is associated with impairment in cognitive control in adolescence: An fMRI study. Neuropsychologia, 48(10), 3037–3044.  https://doi.org/10.1016/j.neuropsychologia.2010.06.013 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Murphy, C. F., Gunning-Dixon, F. M., Hoptman, M. J., Lim, K. O., Ardekani, B., Shields, J. K., & Alexopoulos, G. S. (2007). White-matter integrity predicts stroop performance in patients with geriatric depression. Biological Psychiatry, 61(8), 1007–1010.  https://doi.org/10.1016/j.biopsych.2006.07.028 PubMedCrossRefGoogle Scholar
  145. Myint, A. M. (2013). Inflammation, neurotoxins and psychiatric disorders. Modern Trends in Pharmacopsychiatry, 28, 61–74.  https://doi.org/10.1159/000343968 CrossRefGoogle Scholar
  146. Naude, P. J., den Boer, J. A., Comijs, H. C., Bosker, F. J., Zuidersma, M., Groenewold, N. A., & Oude Voshaar, R. C. (2014). Sex-specific associations between neutrophil Gelatinase-associated Lipocalin (NGAL) and cognitive domains in late-life depression. Psychoneuroendocrinology, 48, 169–177.  https://doi.org/10.1016/j.psyneuen.2014.06.016 PubMedCrossRefGoogle Scholar
  147. Nebes, R. D., Pollock, B. G., Houck, P. R., Butters, M. A., Mulsant, B. H., Zmuda, M. D., & Reynolds, C. F. (2003). Persistence of cognitive impairment in geriatric patients following antidepressant treatment: A randomized, double-blind clinical trial with nortriptyline and paroxetine. Journal of Psychiatric Research, 37(2), 99–108.  https://doi.org/10.1016/S0022-3956(02)00085-7 PubMedCrossRefGoogle Scholar
  148. Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral Neuroscience, 7(1), 1–17.CrossRefGoogle Scholar
  149. Nelson, J. K., Reuter-Lorenz, P. A., Persson, J., Sylvester, C. Y., & Jonides, J. (2009). Mapping interference resolution across task domains: A shared control process in left inferior frontal gyrus. Brain Research, 1256, 92–100.  https://doi.org/10.1016/j.brainres.2008.12.001 PubMedCrossRefGoogle Scholar
  150. Nielson, K. A., Langenecker, S. A., & Garavan, H. (2002). Differences in the functional neuroanatomy of inhibitory control across the adult life span. Psychology and Aging, 17(1), 56–71.  https://doi.org/10.1037/0882-7974.17.1.56 PubMedCrossRefGoogle Scholar
  151. Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241–268.  https://doi.org/10.3758/s13415-011-0083-5 CrossRefGoogle Scholar
  152. Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: Vews from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126(2), 220–246.PubMedCrossRefGoogle Scholar
  153. Odaka, H., Adachi, N., & Numakawa, T. (2017). Impact of glucocorticoid on neurogenesis. Neural Regeneration Research, 12(7), 1028–1035.  https://doi.org/10.4103/1673-5374.211174 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Oosterlaan, J., Logan, G. D., & Sergeant, J. A. (1998). Response inhibition in AD/HD, CD, comorbid AD/HD + CD, anxious, and control children: A meta-analysis of studies with the stop task. Journal of Child Psychology and Psychiatry, 39(3), 411–425.PubMedCrossRefGoogle Scholar
  155. Ordaz, S. J., Foran, W., Velanova, K., & Luna, B. (2013). Longitudinal growth curves of brain function underlying inhibitory control through adolescence. The Journal of Neuroscience, 33(46), 18109–18124.  https://doi.org/10.1523/JNEUROSCI.1741-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Paquola, C., Bennett, M. R., & Lagopoulos, J. (2016). Understanding heterogeneity in grey matter research of adults with childhood maltreatment-a meta-analysis and review. Neuroscience and Biobehavioral Reviews, 69, 299–312.  https://doi.org/10.1016/j.neubiorev.2016.08.011 PubMedCrossRefGoogle Scholar
  157. Park, J., Carp, J., Kennedy, K. M., Rodrigue, K. M., Bischof, G. N., Huang, C. M., & Park, D. C. (2012). Neural broadening or neural attenuation? Investigating age-related dedifferentiation in the face network in a large lifespan sample. The Journal of Neuroscience, 32(6), 2154–2158.  https://doi.org/10.1523/JNEUROSCI.4494-11.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Peters, A. T., Burkhouse, K., Feldhaus, C. C., Langenecker, S. A., & Jacobs, R. H. (2016). Aberrant resting-state functional connectivity in limbic and cognitive control networks relates to depressive rumination and mindfulness: A pilot study among adolescents with a history of depression. Journal of Affective Disorders, 200(Supplement C), 178–181.  https://doi.org/10.1016/j.jad.2016.03.059 PubMedCrossRefGoogle Scholar
  159. Peters, A. T., Jacobs, R. H., Crane, N. A., Ryan, K. A., Weisenbach, S. L., Ajilore, O., & Langenecker, S. A. (2017). Domain-specific impairment in cognitive control among remitted youth with a history of major depression. Early Intervention in Psychiatry, 11(5), 383–392.  https://doi.org/10.1111/eip.12253 PubMedCrossRefGoogle Scholar
  160. Petkus, A. J., Wetherell, J. L., Stein, M. B., Liu, L., & Barrett-Connor, E. (2012). History of sexual assault is associated with greater declines in executive functioning in older adults with APOE epsilon4. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 67(6), 653–659.  https://doi.org/10.1093/geronb/gbr163 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Pfeifer, J. H., & Allen, N. B. (2012). Arrested development? Reconsidering dual-systems models of brain function in adolescence and disorders. Trends in Cognitive Sciences, 16(6), 322–329.  https://doi.org/10.1016/j.tics.2012.04.011 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Potter, G. G., Kittinger, J. D., Wagner, H. R., Steffens, D. C., & Krishnan, K. R. (2004). Prefrontal neuropsychological predictors of treatment remission in late-life depression. Neuropsychopharmacology, 29(12), 2266–2271.  https://doi.org/10.1038/sj.npp.1300551 PubMedCrossRefGoogle Scholar
  163. Prencipe, A., Kesek, A., Cohen, J., Lamm, C., Lewis, M. D., & Zelazo, P. D. (2011). Development of hot and cool executive function during the transition to adolescence. Journal of Experimental Child Psychology, 108(3), 621–637.  https://doi.org/10.1016/j.jecp.2010.09.008 PubMedCrossRefGoogle Scholar
  164. Quinn, M. E., Stange, J. P., Jenkins, L. M., Corwin, S., DelDonno, S. R., Bessette, K. L., & Langenecker, S. A. (2018). Cognitive control and network disruption in remitted depression: A correlate of childhood adversity. Social Cognitive and Affective Neuroscience, 13(10), 1081–1090.  https://doi.org/10.1093/scan/nsy077 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Raison, C. L., Capuron, L., & Miller, A. H. (2006). Cytokines sing the blues: Inflammation and the pathogenesis of depression. Trends in Immunology, 27(1), 24–31.  https://doi.org/10.1016/j.it.2005.11.006 PubMedCrossRefGoogle Scholar
  166. Rao, J. A., Kassel, M. T., Weldon, A. L., Avery, E. T., Briceno, E. M., Mann, M., & Weisenbach, S. L. (2015). The double burden of age and major depressive disorder on the cognitive control network. Psychology and Aging, 30(2), 475–485.  https://doi.org/10.1037/pag0000027 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Rubia, K., Russell, T., Overmeyer, S., Brammer, M. J., Bullmore, E. T., Sharma, T., & Taylor, E. (2001). Mapping motor inhibition: Conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage, 13(2), 250–261.  https://doi.org/10.1006/nimg.2000.0685 PubMedCrossRefGoogle Scholar
  168. Rubia, K., Smith, A. B., Taylor, E., & Brammer, M. (2007). Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Human Brain Mapping, 28(11), 1163–1177.  https://doi.org/10.1002/hbm.20347 PubMedCrossRefGoogle Scholar
  169. Ryan, K. A., Assari, S., Angers, K., Marshall, D. F., Hinrichs, K., Easter, R., & McInnis, M. G. (2017). Equivalent linear change in cognition between individuals with bipolar disorder and healthy controls over 5 years. Bipolar Disorders, 19(8), 689–697.  https://doi.org/10.1111/bdi.12532 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Ryan, K. A., Vederman, A. C., McFadden, E. M., Weldon, A. L., Kamali, M., Langenecker, S. A., & McInnis, M. G. (2012). Differential executive functioning performance by phase of bipolar disorder. Bipolar Disorders, 14(5), 527–536.  https://doi.org/10.1111/j.1399-5618.2012.01032.x PubMedPubMedCentralCrossRefGoogle Scholar
  171. Saleh, A., Potter, G. G., McQuoid, D. R., Boyd, B., Turner, R., MacFall, J. R., & Taylor, W. D. (2017). Effects of early life stress on depression, cognitive performance and brain morphology. Psychological Medicine, 47(1), 171–181.  https://doi.org/10.1017/S0033291716002403 PubMedCrossRefGoogle Scholar
  172. Saleh, K., Carballedo, A., Lisiecka, D., Fagan, A. J., Connolly, G., Boyle, G., & Frodl, T. (2012). Impact of family history and depression on amygdala volume. Psychiatry Research, 203(1), 24–30.  https://doi.org/10.1016/j.pscychresns.2011.10.004 PubMedCrossRefGoogle Scholar
  173. Salthouse, T. A. (1996). The processing speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428.  https://doi.org/10.1037/0033-295X.103.3.403 PubMedCrossRefGoogle Scholar
  174. Salthouse, T. A., & Babcock, R. L. (1991). Decomposing adult aging differences in working memory. Developmental Psychology, 27(5), 763–776.CrossRefGoogle Scholar
  175. Santiago, J. A., & Potashkin, J. A. (2015). Blood biomarkers associated with cognitive decline in early stage and drug-naive Parkinson's disease patients. PLoS One, 10(11), e0142582.  https://doi.org/10.1371/journal.pone.0142582 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Schall, J. D., & Godlove, D. C. (2012). Current advances and pressing problems in studies of stopping. Current Opinion in Neurobiology, 22(6), 1012–1021.  https://doi.org/10.1016/j.conb.2012.06.002 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Schel, M. A., & Crone, E. A. (2013). Development of response inhibition in the context of relevant versus irrelevant emotions. Frontiers in Psychology, 4(383), 383.  https://doi.org/10.3389/fpsyg.2013.00383 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Sebastian, A., Pohl, M. F., Klöppel, S., Feige, B., Lange, T., Stahl, C., & Tüscher, O. (2013). Disentangling common and specific neural subprocesses of response inhibition. Neuroimage, 64(Supplement C), 601–615.  https://doi.org/10.1016/j.neuroimage.2012.09.020 PubMedCrossRefGoogle Scholar
  179. Sexton, C. E., Le Masurier, M., Allan, C. L., Jenkinson, M., McDermott, L., Kalu, U. G., & Ebmeier, K. P. (2012). Magnetic resonance imaging in late-life depression: Vascular and glucocorticoid cascade hypotheses. The British Journal of Psychiatry, 201(1), 46–51.  https://doi.org/10.1192/bjp.bp.111.105361 PubMedCrossRefGoogle Scholar
  180. Sheline, Y. I., Price, J. L., Vaishnavi, S. N., Mintun, M. A., Barch, D. M., Epstein, A. A., & McKinstry, R. C. (2008). Regional white matter hyperintensity burden in automated segmentation distinguishes late-life depressed subjects from comparison subjects matched for vascular risk factors. The American Journal of Psychiatry, 165(4), 524–532.  https://doi.org/10.1176/appi.ajp.2007.07010175 PubMedPubMedCentralCrossRefGoogle Scholar
  181. Sheline, Y. I., Price, J. L., Yan, Z., & Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11020–11025.  https://doi.org/10.1073/pnas.1000446107 PubMedPubMedCentralCrossRefGoogle Scholar
  182. Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G., & Vannier, M. W. (1996). Hippocampal atrophy in recurrent major depression. Proceedings of the National Academy of Sciences of the United States of America, 93(9), 3908–3913.  https://doi.org/10.1073/pnas.93.9.3908 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Shiozawa, P., Fregni, F., Bensenor, I. M., Lotufo, P. A., Berlim, M. T., Daskalakis, J. Z., & Brunoni, A. R. (2014). Transcranial direct current stimulation for major depression: An updated systematic review and meta-analysis. The International Journal of Neuropsychopharmacology, 17(9), 1443–1452.  https://doi.org/10.1017/S1461145714000418 PubMedCrossRefGoogle Scholar
  184. Silver, C. H. (2014). Sources of data about children's executive functioning: Review and commentary. Child Neuropsychology, 20(1), 1–13.  https://doi.org/10.1080/09297049.2012.727793 PubMedCrossRefGoogle Scholar
  185. Sneed, J. R., Culang, M. E., Keilp, J. G., Rutherford, B. R., Devanand, D. P., & Roose, S. P. (2010). Antidepressant medication and executive dysfunction: A deleterious interaction in late-life depression. The American Journal of Geriatric Psychiatry, 18(2), 128–135.  https://doi.org/10.1097/JGP.0b013e3181c796d2 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychological Bulletin, 139(1), 81–132.  https://doi.org/10.1037/a0028727 PubMedCrossRefGoogle Scholar
  187. Somerville, L. H., Hare, T., & Casey, B. J. (2011). Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents. Journal of Cognitive Neuroscience, 23(9), 2123–2134.  https://doi.org/10.1162/jocn.2010.21572 PubMedCrossRefGoogle Scholar
  188. Sorensen, L., Plessen, K. J., Adolfsdottir, S., & Lundervold, A. J. (2014). The specificity of the Stroop interference score of errors to ADHD in boys. Child Neuropsychology, 20(6), 677–691.  https://doi.org/10.1080/09297049.2013.855716 PubMedCrossRefGoogle Scholar
  189. Stange, J. P., Alloy, L. B., & Fresco, D. M. (2017). Inflexibility as a vulnerability to depression: A systematic qualitative review. Clinical Psychology Science and Practice, 24(3), 245–276.  https://doi.org/10.1111/cpsp.12201 PubMedCrossRefGoogle Scholar
  190. Stange, J. P., Bessette, K. L., Jenkins, L. M., Peters, A. T., Feldhaus, C., Crane, N. A., & Langenecker, S. A. (2017). Attenuated intrinsic connectivity within cognitive control network among individuals with remitted depression: Temporal stability and association with negative cognitive styles. Human Brain Mapping, 38(6), 2939–2954.  https://doi.org/10.1002/hbm.23564 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Stange, J. P., Jenkins, L. M., Hamlat, E. J., Bessette, K. L., DelDonno, S. R., Kling, L. R., & Langenecker, S. A. (2018). Disrupted engagement of networks supporting hot and cold cognition in remitted major depressive disorder. Journal of Affective Disorders, 227(Supplement C), 183–191.  https://doi.org/10.1016/j.jad.2017.10.018 PubMedCrossRefGoogle Scholar
  192. Starkman, M. N., Gebarski, S. S., Berent, S., & Schteingart, D. E. (1992). Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing's syndrome. Biological Psychiatry, 32(9), 756–765.  https://doi.org/10.1016/0006-3223(92)90079-F PubMedCrossRefGoogle Scholar
  193. Steffens, D. C. (2016). J'accuse! Depression as a likely culprit in cases of AD. International Psychogeriatrics, 28(9), 1407–1408.  https://doi.org/10.1017/S1041610216000855 PubMedCrossRefGoogle Scholar
  194. Stein, M. B., Kennedy, C. M., & Twamley, E. W. (2002). Neuropsychological function in female victims of intimate partner violence with and without posttraumatic stress disorder. Biological Psychiatry, 52(11), 1079–1088.  https://doi.org/10.1016/S0006-3223(02)01414-2 PubMedCrossRefGoogle Scholar
  195. Stevens, M. C., Kiehl, K. A., Pearlson, G. D., & Calhoun, V. D. (2007). Functional neural networks underlying response inhibition in adolescents and adults. Behavioural Brain Research, 181(1), 12–22.  https://doi.org/10.1016/j.bbr.2007.03.023 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Stevens, M. C., Kiehl, K. A., Pearlson, G. D., & Calhoun, V. D. (2009). Brain network dynamics during error commission. Human Brain Mapping, 30(1), 24–37.  https://doi.org/10.1002/hbm.20478 PubMedPubMedCentralCrossRefGoogle Scholar
  197. Swann, N. C., Cai, W., Conner, C. R., Pieters, T. A., Claffey, M. P., George, J. S., & Tandon, N. (2012). Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: Electrophysiological responses and functional and structural connectivity. Neuroimage, 59(3), 2860–2870.  https://doi.org/10.1016/j.neuroimage.2011.09.049 PubMedCrossRefGoogle Scholar
  198. Teasdale, J. D., Lloyd, C. A., & Hutton, J. M. (1998). Depressive thinking and dysfunctional schematic mental models. British Journal of Clinical Psychology, 37(Pt 3), 247–257.  https://doi.org/10.1111/j.2044-8260.1998.tb01383.x PubMedCrossRefGoogle Scholar
  199. Toplak, M. E., West, R. F., & Stanovich, K. E. (2013). Practitioner review: Do performance-based measures and ratings of executive function assess the same construct? Journal of Child Psychology and Psychiatry, 54(2), 131–143.  https://doi.org/10.1111/jcpp.12001 PubMedCrossRefGoogle Scholar
  200. Tottenham, N., Hare, T. A., & Casey, B. J. (2011). Behavioral assessment of emotion discrimination, emotion regulation, and cognitive control in childhood, adolescence, and adulthood. Frontiers in Psychology, 2(39), 39.  https://doi.org/10.3389/fpsyg.2011.00039 PubMedPubMedCentralCrossRefGoogle Scholar
  201. Ursache, A., & Noble, K. G. (2016). Neurocognitive development in socioeconomic context: Multiple mechanisms and implications for measuring socioeconomic status. Psychophysiology, 53(1), 71–82.  https://doi.org/10.1111/psyp.12547 PubMedPubMedCentralCrossRefGoogle Scholar
  202. Valkanova, V., Ebmeier, K. P., & Allan, C. L. (2013). CRP, IL-6 and depression: A systematic review and meta-analysis of longitudinal studies. Journal of Affective Disorders, 150(3), 736–744.  https://doi.org/10.1016/j.jad.2013.06.004 PubMedCrossRefGoogle Scholar
  203. Van der Voort, T. Y., Seldenrijk, A., van Meijel, B., Goossens, P. J., Beekman, A. T., Penninx, B. W., & Kupka, R. W. (2015). Functional versus syndromal recovery in patients with major depressive disorder and bipolar disorder. The Journal of Clinical Psychiatry, 76(6), e809–e814.  https://doi.org/10.4088/JCP.14m09548 PubMedCrossRefGoogle Scholar
  204. Vanderhasselt, M. A., De Raedt, R., Dillon, D. G., Dutra, S. J., Brooks, N., & Pizzagalli, D. A. (2012). Decreased cognitive control in response to negative information in patients with remitted depression: An event-related potential study. Journal of Psychiatry & Neuroscience, 37(4), 250–258.  https://doi.org/10.1503/jpn.110089 CrossRefGoogle Scholar
  205. Vanderhasselt, M. A., De Raedt, R., Namur, V., Lotufo, P. A., Bensenor, I. M., Boggio, P. S., & Brunoni, A. R. (2015). Transcranial electric stimulation and neurocognitive training in clinically depressed patients: A pilot study of the effects on rumination. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 57, 93–99.  https://doi.org/10.1016/j.pnpbp.2014.09.015 CrossRefGoogle Scholar
  206. Velanova, K., Wheeler, M. E., & Luna, B. (2008). Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cerebral Cortex, 18(11), 2505–2522.  https://doi.org/10.1093/cercor/bhn012 PubMedCrossRefGoogle Scholar
  207. Venables, N. C., Foell, J., Yancey, J. R., Kane, M. J., Engle, R. W., & Patrick, C. J. (2018). Quantifying inhibitory control as externalizing proneness: A cross-domain model. Clinical Psychological Science, 6(4), 561–580.  https://doi.org/10.1177/2167702618757690 CrossRefGoogle Scholar
  208. Vijayakumar, N., Whittle, S., Yucel, M., Byrne, M. L., Schwartz, O., Simmons, J. G., & Allen, N. B. (2016). Impaired maturation of cognitive control in adolescents who develop major depressive disorder. Journal of Clinical Child and Adolescent Psychology, 45(1), 31–43.  https://doi.org/10.1080/15374416.2014.987381 PubMedCrossRefGoogle Scholar
  209. Wagner, C., Abramson, L. Y., & Alloy, L. B. (2015). Brief report: Executive functions in adolescent offspring of mothers with a history of depression. Journal of Adolescence, 44, 32–36.  https://doi.org/10.1016/j.adolescence.2015.06.005 PubMedPubMedCentralCrossRefGoogle Scholar
  210. Watanabe, T., Hanajima, R., Shirota, Y., Tsutsumi, R., Shimizu, T., Hayashi, T., & Konishi, S. (2015). Effects of rTMS of pre-supplementary motor area on fronto basal ganglia network activity during stop-signal task. The Journal of Neuroscience, 35(12), 4813–4823.  https://doi.org/10.1523/JNEUROSCI.3761-14.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  211. Weisenbach, S. L., Marshall, D., Weldon, A. L., Ryan, K. A., Vederman, A. C., Kamali, M., & Langenecker, S. A. (2014). The double burden of age and disease on cognition and quality of life in bipolar disorder. International Journal of Geriatric Psychiatry, 29(9), 952–961.  https://doi.org/10.1002/gps.4084 PubMedCrossRefGoogle Scholar
  212. Whitton, A. E., Van't Veer, A., Kakani, P., Dillon, D. G., Ironside, M. L., Haile, A., & Pizzagalli, D. A. (2017). Acute stress impairs frontocingulate activation during error monitoring in remitted depression. Psychoneuroendocrinology, 75, 164–172.  https://doi.org/10.1016/j.psyneuen.2016.10.007 PubMedCrossRefGoogle Scholar
  213. Williams, B. R., Ponesse, J. S., Schachar, R. J., Logan, G. D., & Tannock, R. (1999). Development of inhibitory control across the life span. Developmental Psychology, 35(1), 205–213.  https://doi.org/10.1037//0012-1649.35.1.205 PubMedCrossRefGoogle Scholar
  214. Wimber, M., Rutschmann, R. M., Greenlee, M. W., & Bauml, K. H. (2009). Retrieval from episodic memory: Neural mechanisms of interference resolution. Journal of Cognitive Neuroscience, 21(3), 538–549.  https://doi.org/10.1162/jocn.2009.21043 PubMedCrossRefGoogle Scholar
  215. Wolkenstein, L., & Plewnia, C. (2013). Amelioration of cognitive control in depression by transcranial direct current stimulation. Biological Psychiatry, 73(7), 646–651.  https://doi.org/10.1016/j.biopsych.2012.10.010 PubMedCrossRefGoogle Scholar
  216. Wright, S. L., & Langenecker, S. A. (2008). Differential risk for emotion processing difficulties by gender and age in major depressive disorder. In P. Hernandez & S. Alonso (Eds.), Women and Depression. New York: Nova Science Publishers, Inc.Google Scholar
  217. Wright, S. L., Langenecker, S. A., Deldin, P. J., Rapport, L. J., Nielson, K. A., Kade, A. M., & Zubieta, J. K. (2009). Gender-specific disruptions in emotion processing in younger adults with depression. Depression and Anxiety, 26(2), 182–189.  https://doi.org/10.1002/da.20502 PubMedPubMedCentralCrossRefGoogle Scholar
  218. Yang, Y., Cao, S., Shields, G. S., Teng, Z., & Liu, Y. (2017). The relationships between rumination and core executive functions: A meta-analysis. Depression and Anxiety, 34(1), 37–50.  https://doi.org/10.1002/da.22539 PubMedCrossRefGoogle Scholar
  219. Yehuda, R., Halligan, S. L., Grossman, R., Golier, J. A., & Wong, C. (2002). The cortisol and glucocorticoid receptor response to low dose dexamethasone administration in aging combat veterans and holocaust survivors with and without posttraumatic stress disorder. Biological Psychiatry, 52(5), 393–403.  https://doi.org/10.1016/S0006-3223(02)01357-4 PubMedCrossRefGoogle Scholar
  220. Yehuda, R., Teicher, M. H., Trestman, R. L., Levengood, R. A., & Siever, L. J. (1996). Cortisol regulation in posttraumatic stress disorder and major depression: A Chronobiological analysis. Biological Psychiatry, 40(2), 79–88.  https://doi.org/10.1016/0006-3223(95)00451-3 PubMedCrossRefGoogle Scholar
  221. Zhang, R., Geng, X., & Lee, T. M. C. (2017). Large-scale functional neural network correlates of response inhibition: An fMRI meta-analysis. Brain Structure & Function, 222(9), 3973–3990.  https://doi.org/10.1007/s00429-017-1443-x CrossRefGoogle Scholar
  222. Zhang, Y., Wu, J., Wu, W., Liu, R., Pang, L., Guan, D., & Xu, Y. (2018). Reduction of white matter integrity correlates with apathy in Parkinson's disease. The International Journal of Neuroscience, 128(1), 25–31.  https://doi.org/10.1080/00207454.2017.1347170 PubMedCrossRefGoogle Scholar
  223. Zhu, D. C., Zacks, R. T., & Slade, J. M. (2010). Brain activation during interference resolution in young and older adults: An fMRI study. Neuroimage, 50(2), 810–817.  https://doi.org/10.1016/j.neuroimage.2009.12.087 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Katie L. Bessette
    • 1
    • 2
  • Aimee J. Karstens
    • 1
  • Natania A. Crane
    • 1
  • Amy T. Peters
    • 3
    • 4
  • Jonathan P. Stange
    • 1
  • Kathleen H. Elverman
    • 5
  • Sarah Shizuko Morimoto
    • 2
  • Sara L. Weisenbach
    • 2
    • 6
  • Scott A. Langenecker
    • 1
    • 2
    Email author
  1. 1.Departments of Psychiatry and PsychologyUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of PsychiatryUniversity of UtahSalt Lake CityUSA
  3. 3.Department of PsychiatryMassachusetts General HospitalBostonUSA
  4. 4.Department of PsychiatryHarvard Medical SchoolBostonUSA
  5. 5.Neuropsychology Center, Aurora St. Luke’s Medical CenterMilwaukeeUSA
  6. 6.Mental Health Services, VA Salt Lake CitySalt Lake CityUSA

Personalised recommendations