Advertisement

The Cerebellum in Frontotemporal Dementia: a Meta-Analysis of Neuroimaging Studies

  • Yu Chen
  • Fiona Kumfor
  • Ramon Landin-Romero
  • Muireann Irish
  • Olivier PiguetEmail author
Review

Abstract

Frontotemporal dementia (FTD) is a neurodegenerative brain disorder primarily affecting the frontal and/or temporal lobes. Three main subtypes have been recognized: behavioural-variant FTD (bvFTD), semantic dementia (SD), and progressive nonfluent aphasia (PNFA), each of which has a distinct clinical and cognitive profile. Although the role of the cerebellum in cognition is increasingly accepted, knowledge of cerebellar changes across neuroimaging modalities and their contribution to behavioural and cognitive changes in FTD syndromes is currently scant. We conducted an anatomical/activation likelihood estimation (ALE) meta-analysis in 53 neuroimaging studies (structural MRI: 42; positron emission tomography: 6; functional MRI: 4; single-photon emission computed tomography: 1) to identify the patterns of cerebellar changes and their relations to profiles of behavioural and cognitive deficits in FTD syndromes. Overall, widespread bilateral cerebellar changes were found in FTD and notably the patterns were subtype specific. In bvFTD, ALE peaks were identified in the bilateral Crus, left lobule VI, right lobules VIIb and VIIIb. In SD, focal cerebellar changes were located in the left Crus I and lobule VI. A separate ALE meta-analysis on PNFA studies was not performed due to the limited number of studies available. In addition, the ALE analysis indicated that bilateral Crus I and Crus II were associated with behavioural disruption and cognitive dysfunction. This ALE meta-analysis provides the quantification of the location and extent of cerebellar changes across the main FTD syndromes, which in turn provides evidence of cerebellar contributions to behavioural and cognitive changes in FTD. These results bring new insights into the mechanisms mediating FTD symptomatology.

Keywords

Frontotemporal dementia Cerebellum Cognition Meta-analysis Structural imaging Functional imaging 

Notes

Acknowledgements

The authors are grateful for the kind assistance of the authors of the publications that were included in this study. We would like to thank Chengtao Liang for his help with ALE pipeline establishment. The authors wish to acknowledge the Sydney Informatics Hub at the University of Sydney for providing access to High Performance Computing (HPC). This work was supported in part by funding to Forefront, a collaborative research group specialised in the study of frontotemporal dementia and motor neuron disease, from the National Health and Medical Research Council (NHMRC) of Australia program grant (APP1037746) and the Australian Research Council (ARC) Centre of Excellence in Cognition and its Disorders Memory Program (CE110001021). YC is supported by the State Scholarship Fund of China (No. 201608200010). FK is supported by an NHMRC-ARC Dementia Research Development Fellowship (APP1097026). RLR is supported by the Appenzeller Neuroscience Fellowship in Alzheimer’s Disease and the ARC Centre of Excellence in Cognition and its Disorders Memory Program (CE110001021). MI is supported by an ARC Future Fellowship (FT160100096). OP is supported by an NHMRC Senior Research Fellowship (APP1103258).

Supplementary material

11065_2019_9414_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1181 kb)

References

References Marked with an Asterisk Indicate Studies Included in the Meta-Analysis

  1. Acar, F., Seurinck, R., Eickhoff, S. B., & Moerkerke, B. (2018). Assessing robustness against potential publication bias in activation likelihood estimation (ALE) meta-analyses for fMRI. PLoS One, 13(11), e0208177.  https://doi.org/10.1371/journal.pone.0208177 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Addis, D. R., Moloney, E. E., Tippett, L. J., & Hach, S. (2016). Characterizing cerebellar activity during autobiographical memory retrieval: ALE and functional connectivity investigations. Neuropsychologia, 90, 80–93.  https://doi.org/10.1016/j.neuropsychologia.2016.05.025 CrossRefPubMedGoogle Scholar
  3. *Ahmed, R. M., Irish, M., Henning, E., Dermody, N., Bartley, L., Kiernan, M. C., Piguet O., Farooqi S., Hodges J. R. (2016). Assessment of eating behavior disturbance and associated neural networks in frontotemporal dementia. JAMA Neurology, 73(3), 282–290, doi: https://doi.org/10.1001/jamaneurol.2015.4478.CrossRefPubMedGoogle Scholar
  4. *Amanzio, M., D'Agata, F., Palermo, S., Rubino, E., Zucca, M., Galati, A., et al. (2016). Neural correlates of reduced awareness in instrumental activities of daily living in frontotemporal dementia. Experimental Gerontology, 83, 158–164, doi: https://doi.org/10.1016/j.exger.2016.08.008.CrossRefPubMedGoogle Scholar
  5. Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological Psychiatry, 64(2), 81–88.  https://doi.org/10.1016/j.biopsych.2008.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Belzil, V. V., Bauer, P. O., Prudencio, M., Gendron, T. F., Stetler, C. T., Yan, I. K., … Petrucelli, L. (2013). Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathologica, 126(6), 895–905.  https://doi.org/10.1007/s00401-013-1199-1 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bernard, J. A., & Mittal, V. A. (2015). Dysfunctional activation of the cerebellum in schizophrenia: A functional neuroimaging meta-analysis. Clinical Psychological Science: A Journal of the Association for Psychological Science, 3(4), 545–566.  https://doi.org/10.1177/2167702614542463 CrossRefGoogle Scholar
  8. *Bertoux, M. F.;Hobbs, M.;Ruiz-Tagle, A.;Delgado, C.;Miranda, M.;Ibanez, A.;Slachevsky, A.;Hornberger, M. (2018). Structural anatomical investigation of long-term memory deficit in behavioral frontotemporal dementia. Journal of Alzheimer's Disease, 62(4), 1887–1900, doi: https://doi.org/10.3233/jad-170771.CrossRefPubMedGoogle Scholar
  9. Boeve, B. F., Boylan, K. B., Graff-Radford, N. R., DeJesus-Hernandez, M., Knopman, D. S., Pedraza, O., … Rademakers, R. (2012). Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain, 135(Pt 3), 765–783.  https://doi.org/10.1093/brain/aws004 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bossier, H., Seurinck, R., Kuhn, S., Banaschewski, T., Barker, G. J., Bokde, A. L. W., et al. (2017). The influence of study-level inference models and study set size on coordinate-based fMRI meta-analyses. Frontiers in Neuroscience, 11, 745.  https://doi.org/10.3389/fnins.2017.00745 CrossRefPubMedGoogle Scholar
  11. *Chen, Y., Kumfor, F., Landin-Romero, R., Irish, M., Hodges, J. R., & Piguet, O. (2018). Cerebellar atrophy and its contribution to cognition in frontotemporal dementias. Annals of Neurology, 84(1), 98–109, doi: https://doi.org/10.1002/ana.25271.CrossRefPubMedGoogle Scholar
  12. Cheng, D. T., Meintjes, E. M., Stanton, M. E., Dodge, N. C., Pienaar, M., Warton, C. M. R., … Jacobson, S. W. (2017). Functional MRI of human Eyeblink classical conditioning in children with fetal alcohol Spectrum disorders. Cerebral Cortex, 27(7), 3752–3767.  https://doi.org/10.1093/cercor/bhw273 CrossRefPubMedGoogle Scholar
  13. *Cistaro, A., Pagani, M., Montuschi, A., Calvo, A., Moglia, C., Canosa, A., Restagno G., Brunetti M., Traynor B. J., Nobili F., Carrara G., Fania P., Lopiano L., Valentini M. C., Chiò A. (2014). The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients. European Journal of Nuclear Medicine and Molecular Imaging, 41(5), 844–852, doi: https://doi.org/10.1007/s00259-013-2667-5.CrossRefPubMedGoogle Scholar
  14. Colloby, S. J., O'Brien, J. T., & Taylor, J. P. (2014). Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimers disease: A VBM-DARTEL study. Psychiatry Research, 223(3), 187–191.  https://doi.org/10.1016/j.pscychresns.2014.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Coyle-Gilchrist, I. T., Dick, K. M., Patterson, K., Vazquez Rodriquez, P., Wehmann, E., Wilcox, A., et al. (2016). Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology, 86(18), 1736–1743.  https://doi.org/10.1212/WNL.0000000000002638 CrossRefPubMedPubMedCentralGoogle Scholar
  16. de Azevedo, P. C., Guimaraes, R. P., Piccinin, C. C., Piovesana, L. G., Campos, L. S., Zuiani, J. R., et al. (2017). Cerebellar Gray Matter Alterations in Huntington Disease: A Voxel-Based Morphometry Study. In Cerebellar gray matter alterations in Huntington. Disease: A Voxel-Based Morphometry Study. Cerebellum.  https://doi.org/10.1007/s12311-017-0865-6 CrossRefGoogle Scholar
  17. *De Winter, F. L., Timmers, D., de Gelder, B., Van Orshoven, M., Vieren, M., Bouckaert, M., et al. (2016). Face shape and face identity processing in behavioral variant fronto-temporal dementia: A specific deficit for familiarity and name recognition of famous faces. NeuroImage: Clinical, 11, 368–377.CrossRefGoogle Scholar
  18. DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M., Rutherford, N. J., … Rademakers, R. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 72(2), 245–256.  https://doi.org/10.1016/j.neuron.2011.09.011 CrossRefPubMedPubMedCentralGoogle Scholar
  19. *Dermody, N., Wong, S., Ahmed, R., Piguet, O., Hodges, J. R., & Irish, M. (2016). Uncovering the neural bases of cognitive and affective empathy deficits in Alzheimer's disease and the behavioral-variant of frontotemporal dementia. Journal of Alzheimer's Disease, 53(3), 801–816, doi: https://doi.org/10.3233/jad-160175.CrossRefPubMedGoogle Scholar
  20. Devenney, E., Hornberger, M., Irish, M., Mioshi, E., Burrell, J., Tan, R., … Hodges, J. R. (2014). Frontotemporal dementia associated with the C9ORF72 mutation: A unique clinical profile. JAMA Neurology, 71(3), 331–339.  https://doi.org/10.1001/jamaneurol.2013.6002 CrossRefPubMedGoogle Scholar
  21. *Devenney, E., Landin-Romero, R., Irish, M., Hornberger, M., Mioshi, E., Halliday, G. M., et al. (2017). The neural correlates and clinical characteristics of psychosis in the frontotemporal dementia continuum and the C9orf72 expansion. Neuroimage Clin, 13, 439–445, doi: https://doi.org/10.1016/j.nicl.2016.11.028.CrossRefPubMedGoogle Scholar
  22. Dogan, I., Tinnemann, E., Romanzetti, S., Mirzazade, S., Costa, A. S., Werner, C. J., … Reetz, K. (2016). Cognition in Friedreich's ataxia: A behavioral and multimodal imaging study. Annals of Clinical Translational Neurology, 3(8), 572–587.  https://doi.org/10.1002/acn3.315 CrossRefPubMedGoogle Scholar
  23. Dukart, J., Mueller, K., Horstmann, A., Barthel, H., Moller, H. E., Villringer, A., et al. (2011). Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS One, 6(3), e18111.  https://doi.org/10.1371/journal.pone.0018111 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dukart, J., Mueller, K., Horstmann, A., Vogt, B., Frisch, S., Barthel, H., … Schroeter, M. L. (2010). Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. Neuroimage, 49(2), 1490–1495.  https://doi.org/10.1016/j.neuroimage.2009.09.017 CrossRefPubMedGoogle Scholar
  25. Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. Neuroimage, 59(3), 2349–2361.  https://doi.org/10.1016/j.neuroimage.2011.09.017 CrossRefPubMedGoogle Scholar
  26. Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926.  https://doi.org/10.1002/hbm.20718 CrossRefPubMedPubMedCentralGoogle Scholar
  27. *Farb, N. A., Grady, C. L., Strother, S., Tang-Wai, D. F., Masellis, M., Black, S., et al. (2013). Abnormal network connectivity in frontotemporal dementia: Evidence for prefrontal isolation. Cortex, 49(7), 1856–1873, doi: https://doi.org/10.1016/j.cortex.2012.09.008.CrossRefPubMedGoogle Scholar
  28. Ferrer, I., Legati, A., Garcia-Monco, J. C., Gomez-Beldarrain, M., Carmona, M., Blanco, R., et al. (2015). Familial behavioral variant frontotemporal dementia associated with astrocyte-predominant tauopathy. Journal of Neuropathology and Experimental Neurology, 74(4), 370–379.CrossRefGoogle Scholar
  29. Gao, L., Zhang, J., Hou, Y., Hallett, M., Chan, P., & Wu, T. (2017). The cerebellum in dual-task performance in Parkinson's disease. Scientific Reports, 7(1), 45662.  https://doi.org/10.1038/srep45662 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gellersen, H. M., Guo, C. C., O'Callaghan, C., Tan, R. H., Sami, S., & Hornberger, M. (2017). Cerebellar atrophy in neurodegeneration-a meta-analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 88(9), 780–788.  https://doi.org/10.1136/jnnp-2017-315607 CrossRefPubMedGoogle Scholar
  31. Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., … Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 1006–1014.  https://doi.org/10.1212/WNL.0b013e31821103e6 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gross-Tsur, V., Ben-Bashat, D., Shalev, R. S., Levav, M., & Sira, L. B. (2006). Evidence of a developmental cerebello-cerebral disorder. Neuropsychologia, 44(12), 2569–2572.  https://doi.org/10.1016/j.neuropsychologia.2006.04.028 CrossRefPubMedGoogle Scholar
  33. *Grossman, M., McMillan, C., Moore, P., Ding, L. J., Glosser, G., Work, M., et al. (2004). What's in a name: Voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer's disease, frontotemporal dementia and corticobasal degeneration. Brain, 127, 628–649, doi: https://doi.org/10.1093/brain/awh075, 3.CrossRefPubMedGoogle Scholar
  34. *Guo, C. C., Tan, R., Hodges, J. R., Hu, X., Sami, S., & Hornberger, M. (2016). Network-selective vulnerability of the human cerebellum to Alzheimer's disease and frontotemporal dementia. Brain, 139(Pt 5), 1527–1538, doi: https://doi.org/10.1093/brain/aww003.CrossRefPubMedPubMedCentralGoogle Scholar
  35. *Henley, S. M., Downey, L. E., Nicholas, J. M., Kinnunen, K. M., Golden, H. L., Buckley, A., et al. (2014). Degradation of cognitive timing mechanisms in behavioural variant frontotemporal dementia. Neuropsychologia, 65, 88–101, doi: https://doi.org/10.1016/j.neuropsychologia.2014.10.009.CrossRefPubMedPubMedCentralGoogle Scholar
  36. *Hutchings, R. P.;Bruggemann, J.;Hodges, J. R.;Piguet, O.;Kumfor, F. (2018). Looking but not seeing: Increased eye fixations in behavioural-variant frontotemporal dementia. Cortex, 103, 71–81, doi: https://doi.org/10.1016/j.cortex.2018.02.011.CrossRefPubMedGoogle Scholar
  37. *Irish, M., Devenney, E., Wong, S., Dobson-Stone, C., Kwok, J. B., Piguet, O., Hodges J. R., Hornberger M. (2013). Neural substrates of episodic memory dysfunction in behavioural variant frontotemporal dementia with and without C9ORF72 expansions. Neuroimage Clin, 2, 836–843, doi: https://doi.org/10.1016/j.nicl.2013.06.005.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jacobs, H. I. L., Hopkins, D. A., Mayrhofer, H. C., Bruner, E., van Leeuwen, F. W., Raaijmakers, W., & Schmahmann, J. D. (2017). The cerebellum in Alzheimer’s disease: Evaluating its role in cognitive decline. Brain, 141(1), 37–47.  https://doi.org/10.1093/brain/awx194 CrossRefGoogle Scholar
  39. Jiskoot, L. C. P., Meeter, L. H., Dopper, E. G. P., Donker Kaat, L., Franzen, S., van der Ende, E. L., … van Swieten, J. C. (2019). Longitudinal multimodal MRI as prognostic and diagnostic biomarker in presymptomatic familial frontotemporal dementia. Brain, 142(1), 193–208.  https://doi.org/10.1093/brain/awy288 CrossRefPubMedGoogle Scholar
  40. Jissendi, P., Baudry, S., & Baleriaux, D. (2008). Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: A study at 3T. Journal of Neuroradiology, 35(1), 42–50.  https://doi.org/10.1016/j.neurad.2007.11.001 CrossRefGoogle Scholar
  41. Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. The Journal of Neuroscience, 23(23), 8432–8444.CrossRefGoogle Scholar
  42. *Kloeters, S., Bertoux, M., O'Callaghan, C., Hodges, J. R., & Hornberger, M. (2013). Money for nothing - atrophy correlates of gambling decision making in behavioural variant frontotemporal dementia and Alzheimer's disease. Neuroimage Clin, 2, 263–272, doi: https://doi.org/10.1016/j.nicl.2013.01.011.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Krienen, F. M., & Buckner, R. L. (2009). Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebral Cortex, 19(10), 2485–2497.  https://doi.org/10.1093/cercor/bhp135 CrossRefPubMedGoogle Scholar
  44. *Kumfor, F., Honan, C., McDonald, S., Hazelton, J. L., Hodges, J. R., & Piguet, O. (2017). Assessing the "social brain" in dementia: Applying TASIT-S. Cortex, 93, 166–177, doi: https://doi.org/10.1016/j.cortex.2017.05.022.CrossRefPubMedGoogle Scholar
  45. Kumfor, F., Ibanez, A., Hutchings, R., Hazelton, J. L., Hodges, J. R., & Piguet, O. (2018a). Beyond the face: How context modulates emotion processing in frontotemporal dementia subtypes. Brain, 141(4), 1172–1185.  https://doi.org/10.1093/brain/awy002 CrossRefPubMedGoogle Scholar
  46. *Kumfor, F., Irish, M., Hodges, J. R., & Piguet, O. (2013a). Discrete neural correlates for the recognition of negative emotions: Insights from frontotemporal dementia. PLoS One, 8(6), e67457, doi: https://doi.org/10.1371/journal.pone.0067457.CrossRefPubMedPubMedCentralGoogle Scholar
  47. *Kumfor, F., Irish, M., Hodges, J. R., & Piguet, O. (2013b). The orbitofrontal cortex is involved in emotional enhancement of memory: Evidence from the dementias. Brain, 136(Pt 10), 2992–3003, doi: https://doi.org/10.1093/brain/awt185.CrossRefPubMedGoogle Scholar
  48. Kumfor, F., Landin-Romero, R., Devenney, E., Hutchings, R., Grasso, R., Hodges, J. R., & Piguet, O. (2016). On the right side? A longitudinal study of left- versus right-lateralized semantic dementia. Brain, 139(Pt 3), 986–998.  https://doi.org/10.1093/brain/awv387 CrossRefPubMedGoogle Scholar
  49. *Kumfor, F., Zhen, A., Hodges, J. R., Piguet, O., & Irish, M. (2018b). Apathy in Alzheimer's disease and frontotemporal dementia: Distinct clinical profiles and neural correlates. Cortex, 103, 350–359, doi: https://doi.org/10.1016/j.cortex.2018.03.019.CrossRefPubMedGoogle Scholar
  50. Laidi, C., Boisgontier, J., Chakravarty, M. M., Hotier, S., d'Albis, M. A., Mangin, J. O., et al. (2017). Cerebellar anatomical alterations and attention to eyes in autism. Scientific Reports, 7(1), 12008.  https://doi.org/10.1038/s41598-017-11883-w CrossRefPubMedPubMedCentralGoogle Scholar
  51. *Laisney, M., Matuszewski, V., Mezenge, F., Belliard, S., de la Sayette, V., Eustache, F., et al. (2009). The underlying mechanisms of verbal fluency deficit in frontotemporal dementia and semantic dementia. Journal of Neurology, 256(7), 1083–1094, doi: https://doi.org/10.1007/s00415-009-5073-y.CrossRefPubMedGoogle Scholar
  52. Lancaster, J. L., Tordesillas-Gutierrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., et al. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping, 28(11), 1194–1205.  https://doi.org/10.1002/hbm.20345 CrossRefPubMedGoogle Scholar
  53. Lange, I., Kasanova, Z., Goossens, L., Leibold, N., De Zeeuw, C. I., van Amelsvoort, T., et al. (2015). The anatomy of fear learning in the cerebellum: A systematic meta-analysis. Neuroscience and Biobehavioral Reviews, 59, 83–91.  https://doi.org/10.1016/j.neubiorev.2015.09.019 CrossRefPubMedGoogle Scholar
  54. Lee, S. E., Khazenzon, A. M., Trujillo, A. J., Guo, C. C., Yokoyama, J. S., Sha, S. J., … Seeley, W. W. (2014). Altered network connectivity in frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. Brain, 137(Pt 11), 3047–3060.  https://doi.org/10.1093/brain/awu248 CrossRefPubMedPubMedCentralGoogle Scholar
  55. *Meijboom, R., Steketee, R. M., de Koning, I., Osse, R. J., Jiskoot, L. C., de Jong, F. J., et al. (2016). Functional connectivity and microstructural white matter changes in phenocopy frontotemporal dementia. European Radiology, doi: https://doi.org/10.1007/s00330-016-4490-4, 27, 4, 1352, 1360.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Muller, V. I., Cieslik, E. C., Laird, A. R., Fox, P. T., Radua, J., Mataix-Cols, D., et al. (2018). Ten simple rules for neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 84, 151–161.  https://doi.org/10.1016/j.neubiorev.2017.11.012 CrossRefPubMedGoogle Scholar
  57. Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., … Benson, D. F. (1998). Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology, 51(6), 1546–1554.CrossRefGoogle Scholar
  58. Petacchi, A., Laird, A. R., Fox, P. T., & Bower, J. M. (2005). Cerebellum and auditory function: An ALE meta-analysis of functional neuroimaging studies. Human Brain Mapping, 25(1), 118–128.  https://doi.org/10.1002/hbm.20137 CrossRefPubMedGoogle Scholar
  59. Ramnani, N. (2006). The primate cortico-cerebellar system: Anatomy and function. Nature Reviews. Neuroscience, 7(7), 511–522.  https://doi.org/10.1038/nrn1953 CrossRefPubMedGoogle Scholar
  60. Ramnani, N. (2012). Frontal lobe and posterior parietal contributions to the cortico-cerebellar system. Cerebellum, 11(2), 366–383.  https://doi.org/10.1007/s12311-011-0272-3 CrossRefPubMedGoogle Scholar
  61. Ramnani, N., Behrens, T. E., Johansen-Berg, H., Richter, M. C., Pinsk, M. A., Andersson, J. L., et al. (2006). The evolution of prefrontal inputs to the cortico-pontine system: Diffusion imaging evidence from macaque monkeys and humans. Cerebral Cortex, 16(6), 811–818.  https://doi.org/10.1093/cercor/bhj024 CrossRefPubMedGoogle Scholar
  62. Rascovsky, K., Hodges, J. R., Kipps, C. M., Johnson, J. K., Seeley, W. W., Mendez, M. F., … Miller, B. M. (2007). Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): Current limitations and future directions. Alzheimer Disease and Associated Disorders, 21(4), S14–S18.  https://doi.org/10.1097/WAD.0b013e31815c3445 CrossRefPubMedGoogle Scholar
  63. Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H., Neuhaus, J., … Miller, B. L. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134(Pt 9), 2456–2477.  https://doi.org/10.1093/brain/awr179 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ratnavalli, E., Brayne, C., Dawson, K., & Hodges, J. R. (2002). The prevalence of frontotemporal dementia. Neurology, 58(11), 1615–1621.CrossRefGoogle Scholar
  65. Renton, A. E., Majounie, E., Waite, A., Simon-Sanchez, J., Rollinson, S., Gibbs, J. R., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 72(2), 257–268.  https://doi.org/10.1016/j.neuron.2011.09.010 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Riedel, M. C., Ray, K. L., Dick, A. S., Sutherland, M. T., Hernandez, Z., Fox, P. M., … Laird, A. R. (2015). Meta-analytic connectivity and behavioral parcellation of the human cerebellum. Neuroimage, 117, 327–342.  https://doi.org/10.1016/j.neuroimage.2015.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rosen, H. J., Gorno-Tempini, M. L., Goldman, W. P., Perry, R. J., Schuff, N., Weiner, M., et al. (2002). Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology, 58(2), 198–208.CrossRefGoogle Scholar
  68. Savica, R., Adeli, A., Vemuri, P., Knopman, D. S., Dejesus-Hernandez, M., Rademakers, R., et al. (2012). Characterization of a family with c9FTD/ALS associated with the GGGGCC repeat expansion in C9ORF72. Archives of Neurology, 69(9), 1164–1169.  https://doi.org/10.1001/archneurol.2012.772 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schmahmann, J. D., & Pandya, D. N. (1995). Prefrontal cortex projections to the basilar pons in rhesus monkey: Implications for the cerebellar contribution to higher function. Neuroscience Letters, 199(3), 175–178.CrossRefGoogle Scholar
  70. Schmahmann, J. D., & Pandya, D. N. (1997a). Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. The Journal of Neuroscience, 17(1), 438–458.CrossRefGoogle Scholar
  71. Schmahmann, J. D., & Pandya, D. N. (1997b). The cerebrocerebellar system. International Review of Neurobiology, 41, 31–60.CrossRefGoogle Scholar
  72. Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(4), 561–579.CrossRefGoogle Scholar
  73. *Seelaar, H., Papma, J. M., Garraux, G., de Koning, I., Reijs, A. E., Valkema, R., Rozemuller A. J. M., Salmon E., van Swieten J. C. (2011). Brain perfusion patterns in familial frontotemporal lobar degeneration. Neurology, 77(4), 384–392, doi: https://doi.org/10.1212/WNL.0b013e3182270456.CrossRefPubMedGoogle Scholar
  74. Seeley, W. W., Crawford, R., Rascovsky, K., Kramer, J. H., Weiner, M., Miller, B. L., & Gorno-Tempini, M. L. (2008). Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Archives of Neurology, 65(2), 249–255.  https://doi.org/10.1001/archneurol.2007.38 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sha, S. J., Takada, L. T., Rankin, K. P., Yokoyama, J. S., Rutherford, N. J., Fong, J. C., … Boxer, A. L. (2012). Frontotemporal dementia due to C9ORF72 mutations: Clinical and imaging features. Neurology, 79(10), 1002–1011.  https://doi.org/10.1212/WNL.0b013e318268452e CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shinn, A. K., Roh, Y. S., Ravichandran, C. T., Baker, J. T., Ongur, D., & Cohen, B. M. (2017). Aberrant cerebellar connectivity in bipolar disorder with psychosis. Biol Psychiatry Cogn Neurosci Neuroimaging, 2(5), 438–448.  https://doi.org/10.1016/j.bpsc.2016.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. Neuroimage, 44(2), 489–501.  https://doi.org/10.1016/j.neuroimage.2008.08.039 CrossRefGoogle Scholar
  78. Strenziok, M., Pulaski, S., Krueger, F., Zamboni, G., Clawson, D., & Grafman, J. (2011). Regional brain atrophy and impaired decision making on the balloon analog risk task in behavioral variant frontotemporal dementia. Cognitive and Behavioral Neurology, 24(2), 59–67.  https://doi.org/10.1097/WNN.0b013e3182255a7c CrossRefPubMedGoogle Scholar
  79. Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32(1), 413–434.  https://doi.org/10.1146/annurev.neuro.31.060407.125606 CrossRefPubMedGoogle Scholar
  80. Strong, M. J., Grace, G. M., Freedman, M., Lomen-Hoerth, C., Woolley, S., Goldstein, L. H., … Figlewicz, D. (2009). Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 10(3), 131–146.CrossRefGoogle Scholar
  81. *Sturm, V. E., Yokoyama, J. S., Eckart, J. A., Zakrzewski, J., Rosen, H. J., Miller, B. L., Seeley W. W., Levenson R. W. (2015). Damage to left frontal regulatory circuits produces greater positive emotional reactivity in frontotemporal dementia. Cortex, 64, 55–67, doi: https://doi.org/10.1016/j.cortex.2014.10.002.CrossRefPubMedGoogle Scholar
  82. Suarez-Calvet, M., Camacho, V., Gomez-Anson, B., Anton, S., Vives-Gilabert, Y., Dols-Icardo, O., et al. (2015). Early cerebellar Hypometabolism in patients with frontotemporal dementia carrying the C9orf72 expansion. Alzheimer Disease and Associated Disorders, 29(4), 353–356.  https://doi.org/10.1097/WAD.0000000000000056 CrossRefPubMedGoogle Scholar
  83. *Synn, A., Mothakunnel, A., Kumfor, F., Chen, Y., Piguet, O., Hodges, J. R., et al. (2017). Mental states in moving shapes: Distinct cortical and subcortical contributions to theory of mind impairments in dementia. Journal of Alzheimer's Disease, 61(2), 521-535, doi:  https://doi.org/10.3233/JAD-170809.CrossRefGoogle Scholar
  84. Synn, A., Mothakunnel, A., Kumfor, F., Chen, Y., Piguet, O., Hodges, J. R., & Irish, M. (2018). Mental states in moving shapes: Distinct cortical and subcortical contributions to theory of mind impairments in dementia. Journal of Alzheimer's Disease, 61(2), 521–535.  https://doi.org/10.3233/JAD-170809 CrossRefPubMedGoogle Scholar
  85. Tan, R. H., Devenney, E., Dobson-Stone, C., Kwok, J. B., Hodges, J. R., Kiernan, M. C., … Hornberger, M. (2014). Cerebellar integrity in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS One, 9(8), e105632.  https://doi.org/10.1371/journal.pone.0105632 CrossRefPubMedPubMedCentralGoogle Scholar
  86. *Tan, R. H., Devenney, E., Kiernan, M. C., Halliday, G. M., Hodges, J. R., & Hornberger, M. (2015). Terra incognita-cerebellar contributions to neuropsychiatric and cognitive dysfunction in behavioral variant frontotemporal dementia. Frontiers in Aging Neuroscience, 7, 121, doi: https://doi.org/10.3389/fnagi.2015.00121.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. Neuroimage, 16(3 Pt 1), 765–780.CrossRefGoogle Scholar
  88. Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Mapping, 33(1), 1–13.  https://doi.org/10.1002/hbm.21186 CrossRefPubMedGoogle Scholar
  89. Van Overwalle, F., Baetens, K., Marien, P., & Vandekerckhove, M. (2014). Social cognition and the cerebellum: A meta-analysis of over 350 fMRI studies. Neuroimage, 86, 554–572.  https://doi.org/10.1016/j.neuroimage.2013.09.033 CrossRefPubMedGoogle Scholar
  90. Van Overwalle, F., D'Aes, T., & Marien, P. (2015). Social cognition and the cerebellum: A meta-analytic connectivity analysis. Human Brain Mapping, 36(12), 5137–5154.  https://doi.org/10.1002/hbm.23002 CrossRefPubMedGoogle Scholar
  91. Vemuri, P., Simon, G., Kantarci, K., Whitwell, J. L., Senjem, M. L., Przybelski, S. A., … Jack, C. R., Jr. (2011). Antemortem differential diagnosis of dementia pathology using structural MRI: Differential-STAND. Neuroimage, 55(2), 522–531.  https://doi.org/10.1016/j.neuroimage.2010.12.073 CrossRefPubMedGoogle Scholar
  92. Whitwell, J. L., Avula, R., Senjem, M. L., Kantarci, K., Weigand, S. D., Samikoglu, A., … Jack, C. R. (2010). Gray and white matter water diffusion in the syndromic variants of frontotemporal dementia. Neurology, 74(16), 1279–1287.  https://doi.org/10.1212/WNL.0b013e3181d9edde CrossRefPubMedPubMedCentralGoogle Scholar
  93. Whitwell, J. L., Weigand, S. D., Boeve, B. F., Senjem, M. L., Gunter, J. L., DeJesus-Hernandez, M., … Josephs, K. A. (2012). Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain, 135(Pt 3), 794–806.  https://doi.org/10.1093/brain/aws001 CrossRefPubMedPubMedCentralGoogle Scholar
  94. *Wong, S., Irish, M., O'Callaghan, C., Kumfor, F., Savage, G., Hodges, J. R., et al. (2017). Should I trust you? Learning and memory of social interactions in dementia. Neuropsychologia, 104, 157–167, doi: https://doi.org/10.1016/j.neuropsychologia.2017.08.016.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The University of Sydney, School of Psychology, Brain & Mind CentreSydneyAustralia
  2. 2.Australian Research Council Centre of Excellence in Cognition and its DisordersSydneyAustralia

Personalised recommendations