A Patient-Tailored Evidence-Based Approach for Developing Early Neuropsychological Training Programs in Addiction Settings

  • Benjamin Rolland
  • Fabien D’Hondt
  • Solène Montègue
  • Mélanie Brion
  • Eric Peyron
  • Julia D’Aviau de Ternay
  • Philippe de Timary
  • Mikaïl Nourredine
  • Pierre Maurage


Substance use disorders (SUDs) are associated with impairments of cognitive functions, and cognitive training programs are thus rapidly developing in SUD treatment. However, neuropsychological impairments observed early after withdrawal (i.e., early impairments), that is, approximately in the first six months, may be widespread. Consequently, it might not be possible to train all the identified early impairments. In these situations, we propose that the priority of cognitive training should be given to the early impairments found to be associated with early dropout or relapse (i.e., relapse-related impairments). However, substance-specific relapse-related impairments have not been singled out among all early impairments so far. Using a systematic literature search, we identified the types of established early impairments for all SUDs, and we assessed the extent to which these early impairments were found to be associated with relapse-related impairments. All cognitive functions were investigated according to a classification based on current neuropsychological models, distinguishing classical cognitive, substance-bias, and social cognition systems. According to the current evidence, demonstrated relapse-related impairments in alcohol use disorder comprised impulsivity, long-term memory, and higher-order executive functions. For cannabis use disorder, the identified relapse-related impairments were impulsivity and working memory. For stimulant use disorder, the identified relapse-related impairments were attentional abilities and higher-order executive functions. For opioid use disorder, the only identified relapse-related impairments were higher executive functions. However, many early impairments were not explored with respect to dropout/relapse, particularly for stimulant and opioid use disorders. The current literature reveals substance-specific relapse-related impairments, which supports a pragmatic patient-tailored approach for defining which early impairments should be prioritized in terms of training among patients with SUDs.


Cognitive remediation Substance-use disorders Alcohol Cannabis Stimulants Opioid Relapse Treatment dropout Cognitive impairments 


Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

11065_2018_9395_MOESM1_ESM.docx (77 kb)
Supplementary Figure 1 (DOCX 76.7 kb)
11065_2018_9395_MOESM2_ESM.docx (23 kb)
Supplementary Table 1 (DOCX 22 kb)
11065_2018_9395_MOESM3_ESM.docx (60 kb)
Supplementary Table 2 (DOCX 60 kb)


  1. Adinoff, B., Carmody, T. J., Walker, R., Donovan, D. M., Brigham, G. S., & Winhusen, T. M. (2016). Decision-making processes as predictors of relapse and subsequent use in stimulant-dependent patients. The American Journal of Drug and Alcohol Abuse, 42(1), 88–97.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen, C. D., Lee, S., Koob, G. F., & Rivier, C. (2011). Immediate and prolonged effects of alcohol exposure on the activity of the hypothalamic–pituitary–adrenal axis in adult and adolescent rats. Brain, Behavior, and Immunity, 25, S50–S60.PubMedPubMedCentralCrossRefGoogle Scholar
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.CrossRefGoogle Scholar
  4. Baldacchino, A., Balfour, D. J. K. J. K., Passetti, F., Humphris, G., & Matthews, K. (2012). Neuropsychological consequences of chronic opioid use: A quantitative review and meta-analysis. Neuroscience & Biobehavioral Reviews, 36(9), 2056–2068.CrossRefGoogle Scholar
  5. Bayrakçı, A., Sert, E., Zorlu, N., Erol, A., Sarıçiçek, A., & Mete, L. (2015). Facial emotion recognition deficits in abstinent cannabis dependent patients. Comprehensive Psychiatry, 58, 160–164.PubMedCrossRefGoogle Scholar
  6. Biernacki, K., McLennan, S. N., Terrett, G., Labuschagne, I., & Rendell, P. G. (2016). Decision-making ability in current and past users of opiates: A meta-analysis. Neuroscience & Biobehavioral Reviews, 71, 342–351.CrossRefGoogle Scholar
  7. Bora, E., & Zorlu, N. (2017). Social cognition in alcohol use disorder: A meta-analysis. Addiction, 112(1), 40–48.PubMedCrossRefGoogle Scholar
  8. Bowden-Jones, H., McPhillips, M., Rogers, R., Hutton, S., & Joyce, E. (2005). Risk-taking on tests sensitive to ventromedial prefrontal cortex dysfunction predicts early relapse in alcohol dependency: A pilot study. The Journal of Neuropsychiatry and Clinical Neurosciences, 17(3), 417–420.PubMedCrossRefGoogle Scholar
  9. Brady, O. L. (1994). PSSCogReHab version 95: Technical manual. Indianapolis: Psychological Software Services.Google Scholar
  10. Broyd, S. J., van Hell, H. H., Beale, C., Yücel, M., & Solowij, N. (2016). Acute and chronic effects of cannabinoids on human cognition—A systematic review. Biological Psychiatry, 79(7), 557–567.PubMedCrossRefGoogle Scholar
  11. Carpenter, K. M., Schreiber, E., Church, S., & McDowell, D. (2006). Drug Stroop performance: Relationships with primary substance of use and treatment outcome in a drug-dependent outpatient sample. Addictive Behaviors, 31(1), 174–181.PubMedCrossRefGoogle Scholar
  12. Castellano, F., Bartoli, F., Crocamo, C., Gamba, G., Tremolada, M., Santambrogio, J., … Carrà, G. (2015). Facial emotion recognition in alcohol and substance use disorders: A meta-analysis. Neuroscience and Biobehavioral Reviews, 59, 147–154.PubMedCrossRefGoogle Scholar
  13. Charles, M., Wellington, C. E., Mokrysz, C., Freeman, T. P., O’Ryan, D., & Curran, H. V. (2015). Attentional bias and treatment adherence in substitute-prescribed opiate users. Addictive Behaviors, 46, 100–105.PubMedCrossRefGoogle Scholar
  14. Christiansen, P., Schoenmakers, T. M., & Field, M. (2015). Less than meets the eye: Reappraising the clinical relevance of attentional bias in addiction. Addictive Behaviors, 44, 43–50.PubMedCrossRefGoogle Scholar
  15. Clark, V. P., Beatty, G. K., Anderson, R. E., Kodituwakku, P., Phillips, J. P., Lane, T. D. R., … Calhoun, V. D. (2014). Reduced fMRI activity predicts relapse in patients recovering from stimulant dependence. Human Brain Mapping, 35(2), 414–428.PubMedCrossRefGoogle Scholar
  16. Constantinou, N., Morgan, C. J. A., Battistella, S., O’Ryan, D., Davis, P., & Curran, H. V. (2010). Attentional bias, inhibitory control and acute stress in current and former opiate addicts. Drug and Alcohol Dependence, 109(1–3), 220–225.PubMedCrossRefGoogle Scholar
  17. Coskunpinar, A., & Cyders, M. A. (2013). Impulsivity and substance-related attentional bias: A meta-analytic review. Drug and Alcohol Dependence, 133(1), 1–14.PubMedCrossRefGoogle Scholar
  18. Cox, W. M., Hogan, L. M., Kristian, M. R., & Race, J. H. (2002). Alcohol attentional bias as a predictor of alcohol abusers' treatment outcome. Drug and Alcohol Dependence, 68(3), 237–243.PubMedCrossRefGoogle Scholar
  19. Craparo, G., Gori, A., Dell’Aera, S., Costanzo, G., Fasciano, S., Tomasello, A., & Vicario, C. M. (2016). Impaired emotion recognition is linked to alexithymia in heroin addicts. PeerJ, 4, e1864.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Crean, R. D., Crane, N. A., & Mason, B. J. (2011). An evidence-based review of acute and long-term effects of Cannabis use on executive cognitive functions. Journal of Addiction Medicine, 5(1), 1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cristea, I. A., Kok, R. N., & Cuijpers, P. (2016). The effectiveness of cognitive bias modification interventions for substance addictions: A meta-analysis. PLoS One, 11(9), e0162226.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cui, C., Noronha, A., Warren, K. R., Koob, G. F., Sinha, R., Thakkar, M., … Sullivan, E. V. (2015). Brain pathways to recovery from alcohol dependence. Alcohol, 49(5), 435–452.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Czapla, M., Simon, J. J., Richter, B., Kluge, M., Friederich, H.-C., Herpertz, S., … Loeber, S. (2016). The impact of cognitive impairment and impulsivity on relapse of alcohol-dependent patients: Implications for psychotherapeutic treatment. Addiction Biology, 21(4), 873–884.PubMedCrossRefGoogle Scholar
  24. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168.CrossRefGoogle Scholar
  25. Domínguez-Salas, S., Díaz-Batanero, C., Lozano-Rojas, O. M., & Verdejo-García, A. (2016). Impact of general cognition and executive function deficits on addiction treatment outcomes: Systematic review and discussion of neurocognitive pathways. Neuroscience and Biobehavioral Reviews, 71, 772–801.PubMedCrossRefGoogle Scholar
  26. Ekhtiari, H., Nasseri, P., Yavari, F., Mokri, A., & Monterosso, J. (2016). Neuroscience of drug craving for addiction medicine: From circuits to therapies. Progress in Brain Research, 223, 115–141.PubMedCrossRefGoogle Scholar
  27. Fadardi, J. S., Cox, W. M., & Rahmani, A. (2016). Neuroscience of attentional processes for addiction medicine. In Progress in brain research (Vol. 223, pp. 77–89).Google Scholar
  28. Fernández-Serrano, M. J., Pérez-García, M., & Verdejo-García, A. (2011). What are the specific vs. generalized effects of drugs of abuse on neuropsychological performance? Neuroscience and Biobehavioral Reviews, 35(3), 377–406.PubMedCrossRefGoogle Scholar
  29. Field, M., Caren, R., Fernie, G., & De Houwer, J. (2011a). Alcohol approach tendencies in heavy drinkers: Comparison of effects in a relevant stimulus-response compatibility task and an approach/avoidance Simon task. Psychology of Addictive Behaviors, 25(4), 697–701.PubMedCrossRefGoogle Scholar
  30. Field, M., & Cox, W. (2008). Attentional bias in addictive behaviors: A review of its development, causes, and consequences. Drug and Alcohol Dependence, 97(1–2), 1–20.PubMedCrossRefGoogle Scholar
  31. Field, M., Kiernan, A., Eastwood, B., & Child, R. (2008). Rapid approach responses to alcohol cues in heavy drinkers. Journal of Behavior Therapy and Experimental Psychiatry, 39(3), 209–218.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Field, M., Hogarth, L., Bleasdale, D., Wright, P., Fernie, G., & Christiansen, P. (2011b). Alcohol expectancy moderates attentional bias for alcohol cues in light drinkers. Addiction, 106(6), 1097–1103.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fiske, S. T., & Taylor, S. E. (2013). Social cognition : From brains to culture. Sage.Google Scholar
  34. Franken, I. H. A., & van de Wetering, B. J. M. (2015). Bridging the gap between the neurocognitive lab and the addiction clinic. Addictive Behaviors, 44, 108–114.PubMedCrossRefGoogle Scholar
  35. Garland, E. L., Franken, I. H. A., & Howard, M. O. (2012). Cue-elicited heart rate variability and attentional bias predict alcohol relapse following treatment. Psychopharmacology, 222(1), 17–26.CrossRefGoogle Scholar
  36. Garland, E. L., Froeliger, B. E., Passik, S. D., & Howard, M. O. (2013). Attentional bias for prescription opioid cues among opioid dependent chronic pain patients. Journal of Behavioral Medicine, 36(6), 611–620.PubMedCrossRefGoogle Scholar
  37. Garland, E. L., & Howard, M. O. (2014). Opioid attentional bias and cue-elicited craving predict future risk of prescription opioid misuse among chronic pain patients. Drug and Alcohol Dependence, 144, 283–287.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gossop, M., Stewart, D., Browne, N., & Marsden, J. (2002). Factors associated with abstinence, lapse or relapse to heroin use after residential treatment: Protective effect of coping responses. Addiction (Abingdon, England), 97(10), 1259–1267.CrossRefGoogle Scholar
  39. Grant, I., Gonzalez, R., Carey, C. L., Natarajan, L., & Wolfson, T. (2003). Non-acute (residual) neurocognitive effects of cannabis use: A meta-analytic study. Journal of the International Neuropsychological Society, 9(5), 679–689.PubMedCrossRefGoogle Scholar
  40. Happé, F., Cook, J. L., & Bird, G. (2017). The structure of social cognition: In(ter)dependence of Sociocognitive processes. Annual Review of Psychology, 68, 243–267.PubMedCrossRefGoogle Scholar
  41. Henry, J. D., Mazur, M., & Rendell, P. G. (2009). Social-cognitive difficulties in former users of methamphetamine. British Journal of Clinical Psychology, 48(3), 323–327.PubMedCrossRefGoogle Scholar
  42. Horan, W.P., Dolinsky, M., Lee, J., Kern, R.S., Hellemann, G., Sugar, C.A., … Green, M.F. (2017). Social cognitive skills training for psychosis with community-based training exercises: A randomized controlled trial. Schizophrenia Bulletin, In press.Google Scholar
  43. Hulka, L. M., Eisenegger, C., Preller, K. H., Vonmoos, M., Jenni, D., Bendrick, K., … Quednow, B. B. (2014). Altered social and non-social decision-making in recreational and dependent cocaine users. Psychological Medicine, 44(5), 1015–1028.PubMedCrossRefGoogle Scholar
  44. Jones, E. B., & Sharpe, L. (2017). Cognitive bias modification: A review of meta-analyses. Journal of Affective Disorders, 223, 175–183.PubMedCrossRefGoogle Scholar
  45. Kennedy, A. P., Gross, R. E., Ely, T., Drexler, K. P. G., & Kilts, C. D. (2014). Clinical correlates of attentional bias to drug cues associated with cocaine dependence. The American Journal on Addictions, 23(5), 478–484.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Keshavan, M. S., Vinogradov, S., Rumsey, J., Sherrill, J., & Wagner, A. (2014). Cognitive training in mental disorders: Update and future directions. American Journal of Psychiatry, 171(5), 510–522. CrossRefPubMedGoogle Scholar
  47. Kim, Y.-T., Kwon, D.-H., & Chang, Y. (2011). Impairments of facial emotion recognition and theory of mind in methamphetamine abusers. Psychiatry Research, 186(1), 80–84.PubMedCrossRefGoogle Scholar
  48. Kornreich, C., Foisy, M. L., Philippot, P., Dan, B., Tecco, J., Noël, X., … Verbanck, P. (2003). Impaired emotional facial expression recognition in alcoholics, opiate dependence subjects, methadone maintained subjects and mixed alcohol-opiate antecedents subjects compared with normal controls. Psychiatry Research, 119(3), 251–260.PubMedCrossRefGoogle Scholar
  49. Kurtz, M. M., & Richardson, C. L. (2012). Social cognitive training for schizophrenia: A meta-analytic investigation of controlled research. Schizophrenia Bulletin, 38(5), 1092–1104.PubMedCrossRefGoogle Scholar
  50. Le Berre, A.-P., Fama, R., & Sullivan, E. V. (2017). Executive functions, memory, and social cognitive deficits and recovery in chronic alcoholism: A critical review to inform future research. Alcoholism: Clinical and Experimental Research, 41(8), 1432–1443.CrossRefGoogle Scholar
  51. Leeman, R. F., Robinson, C. D., Waters, A. J., & Sofuoglu, M. (2014). A critical review of the literature on attentional bias in cocaine use disorder and suggestions for future research. Experimental and Clinical Psychopharmacology, 22(6), 469–483.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Leshner, A. I. (1997). Addiction is a brain disease, and it matters. Science (New York, N.Y.), 278(5335), 45–47.CrossRefGoogle Scholar
  53. Levi-Bolin, B., Alcorn, J. L., Lile, J. A., Rush, C. R., Rayapati, A. O., Hays, L. R., & Stoops, W. W. (2017). N -acetylcysteine reduces cocaine-cue attentional bias and differentially alters cocaine self-administration based on dosing order. Drug and Alcohol Dependence, 178, 452–460.PubMedCrossRefGoogle Scholar
  54. Leung, D., Staiger, P. K., Hayden, M., Lum, J. A., Hall, K., Manning, V., & Verdejo-Garcia, A. (2017). Meta-analysis of the relationship between impulsivity and substance-related cognitive biases. Drug and Alcohol Dependence, 172, 21–33.PubMedCrossRefGoogle Scholar
  55. Lindgren, K. P., Hendershot, C. S., Ramirez, J. J., Bernat, E., Rangel-Gomez, M., Peterson, K. P., & Murphy, J. G. (2018). A dual process perspective on advances in cognitive science and alcohol use disorder. Clinical Psychology Review In press.Google Scholar
  56. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med, 21(7), e1000097.CrossRefGoogle Scholar
  57. Moriyama, Y., Mimura, M., Kato, M., Yoshino, A., Hara, T., Kashima, H., … Watanabe, A. (2002). Executive dysfunction and clinical outcome in chronic alcoholics. Alcoholism, Clinical and Experimental Research, 26(8), 1239–1244.PubMedCrossRefGoogle Scholar
  58. Mukherjee, K. A. (2010). Dual system model of preferences under risk. Psychology Review, 117(1), 243–255.CrossRefGoogle Scholar
  59. Nandrino, J. L., El Haj, M., Torre, J., Naye, D., Douchet, H., Danel, T., & Cottençin, O. (2016). Autobiographical memory deficits in alcohol-dependent patients with short- and long-term abstinence. Alcoholism, Clinical and Experimental Research, 40(4), 865–873.PubMedCrossRefGoogle Scholar
  60. Nejtek, V. A., Kaiser, K. A., Zhang, B., & Djokovic, M. (2013). Iowa gambling task scores predict future drug use in bipolar disorder outpatients with stimulant dependence. Psychiatry Research, 210(3), 871–879.PubMedCrossRefGoogle Scholar
  61. Norberg, M. M., Kavanagh, D. J., Olivier, J., & Lyras, S. (2016). Craving cannabis: A meta-analysis of self-report and psychophysiological cue-reactivity studies. Addiction, 111(11), 1923–1934.PubMedCrossRefGoogle Scholar
  62. Papinczak, Z. E., Connor, J. P., Feeney, G. F. X., Young, R. M., & Gullo, M. J. (2017). Treatment seeking in cannabis dependence: The role of social cognition. Drug and Alcohol Dependence, 170, 142–146.PubMedCrossRefGoogle Scholar
  63. Passetti, F., Clark, L., Davis, P., Mehta, M. A., White, S., Checinski, K., … Abou-Saleh, M. (2011). Risky decision-making predicts short-term outcome of community but not residential treatment for opiate addiction. Implications for case management. Drug and Alcohol Dependence, 118(1), 12–18.PubMedCrossRefGoogle Scholar
  64. Passetti, F., Clark, L., Mehta, M. A., Joyce, E., & King, M. (2008). Neuropsychological predictors of clinical outcome in opiate addiction. Drug and Alcohol Dependence, 94(1–3), 82–91.PubMedCrossRefGoogle Scholar
  65. Passetti, F., Verdejo-Garcia, A., & Abou-Saleh, M. (2013). Comparatively preserved impulse control in late-onset opiate users. Psychopharmacology, 230(3), 499–505.PubMedCrossRefGoogle Scholar
  66. Peters, E. N., Nich, C., & Carroll, K. M. (2011). Primary outcomes in two randomized controlled trials of treatments for cannabis use disorders. Drug and Alcohol Dependence, 118(2–3), 408–416.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pitel, A. L., Rivier, J., Beaunieux, H., Vabret, F., Desgranges, B., & Eustache, F. (2009). Changes in the episodic memory and executive functions of abstinent and relapsed alcoholics over a 6-month period. Alcoholism, Clinical and Experimental Research, 33, 490–498.PubMedCrossRefGoogle Scholar
  68. Platt, B., Kamboj, S., Morgan, C. J. A., & Curran, H. V. (2010). Processing dynamic facial affect in frequent cannabis-users: Evidence of deficits in the speed of identifying emotional expressions. Drug and Alcohol Dependence, 112(1–2), 27–32.PubMedCrossRefGoogle Scholar
  69. Potvin, S., Stavro, K., Rizkallah, É., & Pelletier, J. (2014). Cocaine and cognition: A systematic quantitative review. Journal of Addiction Medicine, 8(5), 368–376.PubMedCrossRefGoogle Scholar
  70. Preller, K. H., Herdener, M., Schilbach, L., Stampfli, P., Hulka, L. M., Vonmoos, M., … Quednow, B. B. (2014a). Functional changes of the reward system underlie blunted response to social gaze in cocaine users. Proceedings of the National Academy of Sciences, 111(7), 2842–2847.CrossRefGoogle Scholar
  71. Preller, K. H., Hulka, L. M., Vonmoos, M., Jenni, D., Baumgartner, M. R., Seifritz, E., … Quednow, B. B. (2014b). Impaired emotional empathy and related social network deficits in cocaine users. Addiction Biology, 19(3), 452–466.PubMedCrossRefGoogle Scholar
  72. Rezapour, T., DeVito, E. E., Sofuoglu, M., & Ekhtiari, H. (2016). Perspectives on neurocognitive rehabilitation as an adjunct treatment for addictive disorders. In Progress in brain research (Vol. 224, pp. 345–369).Google Scholar
  73. Roser, P., Lissek, S., Tegenthoff, M., Nicolas, V., Juckel, G., & Brüne, M. (2012). Alterations of theory of mind network activation in chronic cannabis users. Schizophrenia Research, 139(1–3), 19–26.PubMedCrossRefGoogle Scholar
  74. Rupp, C. I., Beck, J. K., Heinz, A., Kemmler, G., Manz, S., Tempel, K., & Fleischhacker, W. W. (2016). Impulsivity and alcohol dependence treatment completion: Is there a neurocognitive risk factor at treatment entry? Alcoholism: Clinical and Experimental Research, 40(1), 152–160.CrossRefGoogle Scholar
  75. Rupp, C. I., Derntl, B., Osthaus, F., Kemmler, G., & Fleischhacker, W. W. (2017). Impact of social cognition on alcohol dependence treatment outcome: Poorer facial emotion recognition predicts relapse/dropout. Alcoholism: Clinical and Experimental Research, 41(12), 2197–2206.CrossRefGoogle Scholar
  76. Rupp, C. I., Kemmler, G., Kurz, M., Hinterhuber, H., & Fleischhacker, W. W. (2012). Cognitive remediation therapy during treatment for alcohol dependence. Journal of Studies on Alcohol and Drugs, 73(4), 625–634.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Sanvicente-Vieira, B., Romani-Sponchiado, A., Kluwe-Schiavon, B., Brietzke, E., Araujo, R. B., & Grassi-Oliveira, R. (2017). Theory of mind in substance users: A systematic Minireview. Substance Use & Misuse, 52(1), 127–133.CrossRefGoogle Scholar
  78. Schulte, M. H. J., Cousijn, J., den Uyl, T. E., Goudriaan, A. E., van den Brink, W., Veltman, D. J., … Wiers, R. W. (2014). Recovery of neurocognitive functions following sustained abstinence after substance dependence and implications for treatment. Clinical Psychology Review, 34(7), 531–550.Google Scholar
  79. Snelleman, M., Schoenmakers, T. M., & van de Mheen, D. (2015). Attentional Bias and approach/avoidance tendencies do not predict relapse or time to relapse in alcohol dependency. Alcoholism, Clinical and Experimental Research, 39(9), 1734–1739.Google Scholar
  80. Snider, S. E., Deshpande, H. U., Lisinski, J. M., Koffarnus, M. N., LaConte, S. M., & Bickel, W. K. (2018). Working memory training improves alcohol users' episodic future thinking: A rate-dependent analysis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(2), 160–167.Google Scholar
  81. Spronk, D. B., van Wel, J. H. P., Ramaekers, J. G., & Verkes, R. J. (2013). Characterizing the cognitive effects of cocaine: A comprehensive review. Neuroscience and Biobehavioral Reviews, 37(8), 1838–1859.PubMedCrossRefGoogle Scholar
  82. Stacy, A. W., & Wiers, R. W. (2010). Implicit cognition and addiction: A tool for explaining paradoxical behavior. Annual Review of Clinical Psychology, 6, 551–575.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Stavro, K., Pelletier, J., & Potvin, S. (2013). Widespread and sustained cognitive deficits in alcoholism: A meta-analysis. Addiction Biology, 18(2), 203–213.PubMedCrossRefGoogle Scholar
  84. Stevens, L., Verdejo-García, A., Goudriaan, A. E., Roeyers, H., Dom, G., & Vanderplasschen, W. (2014). Impulsivity as a vulnerability factor for poor addiction treatment outcomes: A review of neurocognitive findings among individuals with substance use disorders. Journal of Substance Abuse Treatment, 47(1), 58–72.PubMedCrossRefGoogle Scholar
  85. Streeter, C. C., Terhune, D. B., Whitfield, T. H., Gruber, S., Sarid-Segal, O., Silveri, M. M., … Yurgelun-Todd, D. A. (2008). Performance on the Stroop predicts treatment compliance in cocaine-dependent individuals. Neuropsychopharmacology, 33(4), 827–836.PubMedCrossRefGoogle Scholar
  86. Turner, T. H., LaRowe, S., Horner, M. D., Herron, J., & Malcolm, R. (2009). Measures of cognitive functioning as predictors of treatment outcome for cocaine dependence. Journal of Substance Abuse Treatment, 37(4), 328–334.PubMedCrossRefGoogle Scholar
  87. von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., Vandenbroucke, J. P., & STROBE Initiative. (2007). Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ, 335(7624), 806–808.CrossRefGoogle Scholar
  88. van Holst, R. J., & Schilt, T. (2011). Drug-related decrease in neuropsychological functions of abstinent drug users. Current Drug Abuse Reviews, 4(1), 42–56.PubMedCrossRefGoogle Scholar
  89. Verdejo-Garcia, A., Albein-Urios, N., Martinez-Gonzalez, J. M., Civit, E., de la Torre, R., & Lozano, O. (2014). Decision-making impairment predicts 3-month hair-indexed cocaine relapse. Psychopharmacology, 231(21), 4179–4187.Google Scholar
  90. Verdejo-García, A., Albein-Urios, N., Molina, E., Ching-López, A., Martínez-González, J. M., & Gutiérrez, B. (2013). A MAOA gene*cocaine severity interaction on impulsivity and neuropsychological measures of orbitofrontal dysfunction: Preliminary results. Drug and Alcohol Dependence, 133(1), 287–290.PubMedCrossRefGoogle Scholar
  91. Volkow, N. D., Koob, G. F., & McLellan, A. T. (2016). Neurobiologic advances from the brain disease model of addiction. New England Journal of Medicine, 374(4), 363–371.PubMedCrossRefGoogle Scholar
  92. Volkow, N. D., & Li, T.-K. (2004). Science and society: Drug addiction: The neurobiology of behaviour gone awry. Nature Reviews Neuroscience, 5(12), 963–970.PubMedCrossRefGoogle Scholar
  93. Wang, G. Y., Wouldes, T. A., Kydd, R., Jensen, M., & Russell, B. R. (2014). Neuropsychological performance of methadone-maintained opiate users. Journal of Psychopharmacology, 28(8), 789–799.PubMedCrossRefGoogle Scholar
  94. Wang, G. Y., Wouldes, T. A., & Russell, B. R. (2013). Methadone maintenance treatment and cognitive function: A systematic review. Current Drug Abuse Reviews, 6(3), 220–230.PubMedCrossRefGoogle Scholar
  95. Waters, A. J., Marhe, R., & Franken, I. H. A. (2012). Attentional bias to drug cues is elevated before and during temptations to use heroin and cocaine. Psychopharmacology, 219(3), 909–921.PubMedCrossRefGoogle Scholar
  96. Wiers, R. W. (2018). Cognitive training in addiction: Does it have clinical potential? Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(2), 101–102.Google Scholar
  97. Wiers, R. W., Boffo, M., & Field, M. (2018). What's in a trial? On the importance of distinguishing between experimental lab studies and randomized controlled trials: The case of cognitive bias modification and alcohol use disorders. Journal of Studies on Alcohol and Drugs, 79(3), 333–343.PubMedCrossRefGoogle Scholar
  98. Woicik, P. A., Moeller, S. J., Alia-Klein, N., Maloney, T., Lukasik, T. M., Yeliosof, O., … Goldstein, R. Z. (2009). The neuropsychology of cocaine addiction: Recent cocaine use masks impairment. Neuropsychopharmacology, 34(5), 1112–1122.PubMedCrossRefGoogle Scholar
  99. Zywiak, W. H., Stout, R. L., Longabaugh, R., Dyck, I., Connors, G. J., & Maisto, S. A. (2006). Relapse-onset factors in project MATCH: The relapse questionnaire. Journal of Substance Abuse Treatment, 31(4), 341–345.PubMedCrossRefGoogle Scholar
  100. Zywiak, W. H., Westerberg, V. S., Connors, G. J., & Maisto, S. A. (2003). Exploratory findings from the reasons for drinking questionnaire. Journal of Substance Abuse Treatment, 25(4), 287–292.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Benjamin Rolland
    • 1
    • 2
  • Fabien D’Hondt
    • 3
    • 4
  • Solène Montègue
    • 2
  • Mélanie Brion
    • 5
  • Eric Peyron
    • 6
  • Julia D’Aviau de Ternay
    • 2
  • Philippe de Timary
    • 5
    • 7
  • Mikaïl Nourredine
    • 2
  • Pierre Maurage
    • 5
  1. 1.Univ Lyon; UCBL ; INSERM U1028 ; CNRS UMR5292Centre de Recherche en Neuroscience de Lyon (CRNL)BronFrance
  2. 2.Service Universitaire d’Addictologie de Lyon (SUAL)BronFrance
  3. 3.Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences AffectivesLilleFrance
  4. 4.Clinique de PsychiatrieCHU LilleLilleFrance
  5. 5.Laboratory for Experimental Psychopathology (LEP), Psychological Science Research InstituteUniversité catholique de LouvainLouvain-la-NeuveBelgium
  6. 6.AddiPsyLyonFrance
  7. 7.Cliniques Universitaires Saint-LucBrusselsBelgium

Personalised recommendations