Advertisement

Neuropsychology Review

, Volume 27, Issue 4, pp 403–439 | Cite as

Cognitive Interventions for Cognitively Healthy, Mildly Impaired, and Mixed Samples of Older Adults: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials

  • Catherine M. MewbornEmail author
  • Cutter A. Lindbergh
  • L. Stephen Miller
Review

Abstract

Cognitive interventions may improve cognition, delay age-related cognitive declines, and improve quality of life for older adults. The current meta-analysis was conducted to update and expand previous work on the efficacy of cognitive interventions for older adults and to examine the impact of key demographic and methodological variables. EBSCOhost and Embase online databases and reference lists were searched to identify relevant randomized-controlled trials (RCTs) of cognitive interventions for cognitively healthy or mildly impaired (MCI) older adults (60+ years). Interventions trained a single cognitive domain (e.g., memory) or were multi-domain training, and outcomes were assessed immediately post-intervention using standard neuropsychological tests. In total, 279 effects from 97 studies were pooled based on a random-effects model and expressed as Hedges’ g (unbiased). Overall, results indicated that cognitive interventions produce a small, but significant, improvement in the cognitive functioning of older adults, relative to active and passive control groups (g = 0.298, p < .001, 95% CI = 0.248–0.347). These results were confirmed using multi-level analyses adjusting for nesting of effect sizes within studies (g = 0.362, p < .001, 95% CI = 0.275, 0.449). Age, education, and cognitive status (healthy vs. MCI) were not significant moderators. Working memory interventions proved most effective (g = 0.479), though memory, processing speed, and multi-domain interventions also significantly improved cognition. Effects were larger for directly trained outcomes but were also significant for non-trained outcomes (i.e., “transfer effects”). Implications for future research and clinical practice are discussed. This project was pre-registered with PROSPERO (#42016038386).

Keywords

Cognitive intervention Cognitive training Older adults Randomized-controlled trials RCT Meta-analysis 

References

* Indicates Studies that Were Included in the Meta-Analysis

  1. Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer's & Dementia, 7(3), 270–279.CrossRefGoogle Scholar
  2. *Allaire, J. C. (2001). Performance gains and fluctuations: The effects of cognitive practice and the role of intraindividual cognitive variability in older adults (unpublished doctoral dissertation). Detroit, Michigan: Wayne State University.Google Scholar
  3. *Angelucci, F., Peppe, A., Carlesimo, G. A., Serafini, F., Zabberoni, S., Barban, F., et al. (2015). A pilot study on the effect of cognitive training on BDNF serum levels in individuals with Parkinson’s disease. Frontiers in Human Neuroscience, 9(130). doi: 10.3389/fnhum.2015.00130.
  4. *Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., et al. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97–101. doi: 10.1038/nature12486.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bahar-Fuchs, A., Clare, L., & Woods, B. (2013). Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer’s or vascular type: A review. Alzheimer's Research & Therapy, 5(35). doi: 10.1186/alzrt189.
  6. *Ball, K., Berch, D. B., Helmers, K. R., Jobe, J. B., Leveck, M. D., Marsiske, M., et al. (2002). Effects of cognitive training interventions with older adults: A randomized controlled trial. JAMA, 288(18), 2271–2281.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ball, K., Edwards, J. D., & Ross, L. A. (2007). The impact of speed of processing training on cognitive and everyday functions. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 62(Special issue 1), 19–31.CrossRefGoogle Scholar
  8. Ballesteros, S., Kraft, E., Santana, S., & Tziraki, C. (2015). Maintaining older brain functionality: A targeted review. Neuroscience and Biobehavioral Reviews, 55, 453–477. doi: 10.1016/j.neubiorev.2015.06.008.PubMedCrossRefGoogle Scholar
  9. *Baltes, P. B., Kliegal, R., & Dittmann- Kohli, F. (1988). On the locus of training gains in research on the plasticity of fluid intelligence in old age. Journal of Educational Psychology, 80(3), 392–400.CrossRefGoogle Scholar
  10. *Barnes, D. E., Santos-Modesitt, W., Poelke, G., Kramer, A. F., Castro, C., Middleton, L. E., & Yaffe, K. (2013). The mental activity and exercise (MAX) trial: A randomized controlled trial to enhance cognitive function in older adults. JAMA Internal Medicine, 173(9), 797–804. doi: 10.1001/jamainternmed.2013.189.PubMedCrossRefGoogle Scholar
  11. Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637. doi: 10.1037//0033-2909.128.4.612.PubMedCrossRefGoogle Scholar
  12. *Belchior, P., Marsiske, M., Sisco, S. M., Yam, A., Bavelier, D., Ball, K., & Mann, W. C. (2013). Video game training to improve selective visual attention in older adults. Computers in Human Behavior, 29(4), 1318–1324. doi: 10.1016/j.chb.2013.01.034.PubMedPubMedCentralCrossRefGoogle Scholar
  13. *Bier, B., de Boysson, C., & Belleville, S. (2014). Identifying training modalities to improve multitasking in older adults. Age, 36(9688). doi: 10.1007/s11357-014-9688-2.
  14. *Bivens, S. F. (2006). Cognitive training interventions using computers as an aid for improving cognitive performance in older adults (unpublished doctoral dissertation). Houston, Texas: University of Houston.Google Scholar
  15. *Borella, E., Carretti, B., Riboldi, F., & De Beni, R. (2010). Working memory training in older adults: Evidence of transfer and maintenance effects. Psychology and Aging, 25(4), 767–778. doi: 10.1037/a0020683.PubMedCrossRefGoogle Scholar
  16. *Borella, E., Carretti, B., Cantarella, A., Rioldi, F., Zavagnin, M., & De Beni, R. (2014). Benefits of training visuospatial working memory in young-old and old-old. Developmental Psychology, 50(3), 714–727. doi: 10.1037/a0034293.PubMedCrossRefGoogle Scholar
  17. Borenstein, M., Hedges, L., & Rothstein, H. (2007). Meta-analysis: Fixed effect vs. random effects. Retrieved from https://www.meta-analysis.com/downloads/Meta-analysis%20fixed%20effect%20vs%20random%20effects.pdf
  18. Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2011). Introduction to meta-analysis. West Sussex, UK: John Wiley & Sons.Google Scholar
  19. *Bozoki, A., Radovanovic, M., Winn, B., Hetter, C., & Anthony, J. C. (2013). Effects of a computer-based cognitive exercise program on age-related cognitive decline. Archives of Gerontology and Geriatrics, 57(1), 1–7. doi: 10.1016/j.archger.2013.02.009.PubMedCrossRefGoogle Scholar
  20. *Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: Training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6(63). doi: 10.3389/fnhum.2012.00063.
  21. *Brehmer, Y., Shing, Y. L., Heekeren, H. R., Lindenberger, U., & Bäckman, L. (2015). Training-induced changes in subsequent-memory effects: No major differences among children, younger adults, and older adults. NeuroImage, 131, 214–225. doi: 10.1016/j.neuroimage.2015.11.074.PubMedCrossRefGoogle Scholar
  22. Brooks, J. O., Friedman, L. F., Pearman, A. M., Gray, C., & Yesavage, J. A. (1999). Mnemonic training in older adults: Effects of age, length of training, and type of cognitive pre-training. International Psychogeriatrics, 11(1), 75–84.PubMedCrossRefGoogle Scholar
  23. *Buiza, C., Etxeberria, I., Galdona, N., Gonzalez, M. F., Arriola, E., Lopez de Munain, A., et al. (2008). A randomized, two-year study of the efficacy of cognitive intervention on elderly people: The Donostia longitudinal study. International Journal of Geriatric Psychiatry, 23(1), 85–94. doi: 10.1002/gps.1846.PubMedCrossRefGoogle Scholar
  24. *Burki, C. N., Ludwig, C., Chicherio, C., & de Ribaupierre, A. (2014). Individual differences in cognitive plasticity: An investigation of training curves in younger and older adults. Psychological Research, 78(6), 821–835. doi: 10.1007/s00426-014-0559-3.PubMedCrossRefGoogle Scholar
  25. Buschert, V., Bokde, A. L., & Hampel, H. (2010). Cognitive intervention in Alzheimer disease. Nature Reviews. Neurology, 6(9), 508–517. doi: 10.1038/nrneurol.2010.113.PubMedCrossRefGoogle Scholar
  26. Cahn-Weiner, D. A., Malloy, P. F., Boyle, P. A., Marran, M., & Salloway, S. (2000). Prediction of functional status from neuropsychological tests in community-dwelling elderly individuals. The Clinical Neuropsychologist, 14(2), 187–195.PubMedCrossRefGoogle Scholar
  27. *Candela, F., Zucchetti, G., Magistro, D., & Rabaglietti, R. (2015). The effects of a physical activity program and a cognitive training program on the long-term memory and selective attention of older adults: A comparative study. Activities, Adaptation, & Aging, 39(1), 77–91. doi: 10.1080/01924788.2014.977191.CrossRefGoogle Scholar
  28. *Cantarella, A., Borella, E., Carretti, B., Kliegel, M., & de Beni, R. (2016). Benefits in tasks related to everyday life competences after a working memory training in older adults. International Journal of Geriatric Psychiatry. doi: 10.1002/gps.4448.
  29. *Carretti, B., Borella, E., Fostinelli, S., & Zavagnin, M. (2013a). Benefits of training working memory in amnestic mild cognitive impairment: Specific and transfer effects. International Psychogeriatrics, 25(4), 617–626. doi: 10.1017/S1041610212002177.PubMedCrossRefGoogle Scholar
  30. *Carretti, B., Borella, E., Zavagnin, M., & de Beni, R. (2013b). Gains in language comprehension relating to working memory training in healthy older adults. International Journal of Geriatric Psychiatry, 28(5), 539–546. doi: 10.1002/gps.3859.PubMedCrossRefGoogle Scholar
  31. *Carvalho, F. C. R., Neri, A. L., & Yassuda, M. S. (2010). Episodic memory training with emphasis on categorization for older adults without dementia and depression. Psicologia: Reflexao e Critica, 23(2), 317–323.Google Scholar
  32. *Cavallini, E., Bottiroli, S., Capotosto, E., De Beni, R., Pavan, G., Vecchi, T., & Borella, E. (2015). Self-help memory training for healthy older adults in a residential care center: Specific and transfer effects on performance and beliefs. International Journal of Geriatric Psychiatry, 30(8), 870–880. doi: 10.1002/gps.4230.PubMedCrossRefGoogle Scholar
  33. *Chan, J. S. Y., Wu, Q., Liang, D., & Yan, J. H. (2015). Visuospatial working memory training facilities visually-aided explicit sequence learning. Acta Psychologica, 161, 145–153. doi: 10.1016/j.actpsy.2015.09.008.PubMedCrossRefGoogle Scholar
  34. Clare, L. (2003). Cognitive training and cognitive rehabilitation for people with early-stage dementia. Reviews in Clinical Gerontology, 13, 75–83.CrossRefGoogle Scholar
  35. Clark, D. O., Xu, H., Unverzagt, F. W., & Hendrie, H. (2016). Does targeted cognitive training reduce educational disparities in cognitive function among cognitively normal older adults? Int. Journal of Geriatric Psychiatry, 31(7), 809–817. doi: 10.1002/gps.4395.CrossRefGoogle Scholar
  36. Couture, M., Larivière, N., & Lefrançois, R. (2005). Psychological distress in older adults with low functional independence: A multidimensional perspective. Archives of Gerontology and Geriatrics, 41(1), 101–111. doi: 10.1016/j.archger.2004.12.004.PubMedCrossRefGoogle Scholar
  37. *Craik, F. I. M., Winocur, G., Palmer, H., Binns, M. A., Edwards, M., Bridges, K., et al. (2007). Cognitive rehabilitation in the elderly: Effects on memory. Journal of the International Neuropsychological Society, 13(01), 132–142. doi: 10.10170/S1355617707070166.PubMedCrossRefGoogle Scholar
  38. *Dahlin, E., Nyberg, L., Bäckman, L., & Stigsdotter Neely, A. (2008). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720–730. doi: 10.1037/a0014296.PubMedCrossRefGoogle Scholar
  39. *Daugherty, M. K. (2000). Verbal memory performance in able older adults: Impact of memory, attention, and relaxation training (unpublished doctoral dissertation). Lansing, Michigan: Michigan State University.Google Scholar
  40. Denney, N. W., & Heidrich, S. M. (1990). Training effects on Raven’s advanced progressive matrices in young, middle-aged, and elderly adults. Psychology and Aging, 5(1), 144–145.PubMedCrossRefGoogle Scholar
  41. *Derwinger, A., Stigsdotter Neely, A., MacDonald, S., & Bäckman, L. (2005). Forgetting numbers in old age: Strategy and learning speed matter. Gerontology, 51(4), 277–2284. doi: 10.1159/000085124.PubMedCrossRefGoogle Scholar
  42. Dinse, H. R. (2005). Treating the aging brain: Cortical reorganization and behavior. Re-Engineering of the Damaged Brain and Spinal Cord: Evidence-Based Neurorehabilitation, 93, 79–84.CrossRefGoogle Scholar
  43. *Dunlosky, J., Kubat-Silman, A. K., & Hertzog, C. (2003). Training monitoring skills improves older adults’ self-paced associated learning. Psychology and Aging, 18(2), 340–345. doi: 10.1037/0882-7974.18.2.340.PubMedCrossRefGoogle Scholar
  44. *Edwards, J. D., Wadley, V. G., Myers, R. S., Roeenker, D. L., Cissell, G. M., & Ball, K. K. (2002). Transfer of a speed of processing intervention to near and far cognitive functions. Gerontology, 48(5), 329–340.PubMedCrossRefGoogle Scholar
  45. *Edwards, J. D., Wadley, V. G., Vance, D. E., Wood, K., Roenker, D. L., & Ball, K. K. (2005). The impact of speed of processing training on cognitive and everyday performance. Aging & Mental Health, 9(3), 262–271. doi: 10.1080/13607860412331336788.CrossRefGoogle Scholar
  46. Egger, M., Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315(7109), 629–634.PubMedPubMedCentralCrossRefGoogle Scholar
  47. von Elm, E., Poglia, G., Walder, B., & Tramer, M. R. (2004). Different patterns of duplicate publication: An analysis of articles used in systematic reviews. JAMA, 291(8), 974–980.CrossRefGoogle Scholar
  48. *Fabre, C., Charmari, K., Mucci, P., Masse-Biron, J., & Prefaut, C. (2002). Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. International Journal of Sports Medicine, 23(06), 415–421.PubMedCrossRefGoogle Scholar
  49. Fairchild, J. K., Friedman, L., Rosen, A. C., & Yesavage, J. A. (2013). Which older adults maintain benefit from cognitive training? Use of signal detection methods to identify long-term treatment gains. International Psychogeriatrics, 25(4), 607–616. doi: 10.1017/S1041610212002049.PubMedCrossRefGoogle Scholar
  50. Fillit, H. M., Butler, R. N., O’Connell, A. W., Albert, M. S., Birren, J. E., Cotman, C. W., et al. (2002). Achieving and maintaining cognitive vitality with aging. Mayo Clinic Proceedings, 77(7), 681–696. doi: 10.4065/77.7.681.PubMedCrossRefGoogle Scholar
  51. *Finn, M., & McDonald, S. (2011). Computerised cognitive training for older persons with mild cognitive impairment: A pilot study using a randomized controlled trial design. Brain Impairment, 12(3), 187–199.CrossRefGoogle Scholar
  52. *Finn, M., & McDonald, S. (2015). Repetition-lag training to improve recollection memory in older people with amnestic mild cognitive impairment: A randomized controlled trial. Aging, Neuropsychology, and Cognition, 22(2), 244–258. doi: 10.1080/13825585.2014.915918.CrossRefGoogle Scholar
  53. Fleiss, J. L., Levin, B., & Park, D. A. (2003). Statistical methods for rates and proportions (3rd ed.). Hoboken, New Jersey: Wiley-Interscience, John Wiley & Sons, Inc..CrossRefGoogle Scholar
  54. *Fortman, J. (2012). Computer-based cognitive training for age-related cognitive decline and mild cognitive impairment (unpublished doctoral dissertation). Santa Barbara, California: Antioch University – Santa Barbara.Google Scholar
  55. *Gajewski, P. D., & Falkenstein, M. (2012). Training-induced improvement of response selection and error detection in aging assessed by task switching: Effects of cognitive, physical, and relaxation training. Frontiers in Human Neuroscience, 6(130). doi: 10.3389/fnhum.2012.00130.
  56. *Gao, Y., Peng, H., & Wen, J. (2014). The training effect of working memory based on a central executive system intervention in older adults: A randomized controlled study. Journal of Adult Development, 21(2), 80–88. doi: 10.1007/s10804-013-9181-7.CrossRefGoogle Scholar
  57. *Garcia-Campuzano, M. T., Virues-Ortega, J., Smith, S., & Moussavi, Z. (2013). Effects of cognitive training targeting associative memory in the elderly: A small randomized trial and a longitudinal evaluation. [Letter to the editor]. Journal of the American Geriatrics Society, 61(12), 2252–2254. doi: 10.1111/jgs.12574.PubMedCrossRefGoogle Scholar
  58. Gates, N., & Valenzuela, M. (2010). Cognitive exercise and its role in cognitive function in older adults. Current Psychiatry Reports, 12(1), 20–27. doi: 10.1007/s11920-009-0085-y.PubMedCrossRefGoogle Scholar
  59. Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., & Winblad, B. (2006). Mild cognitive impairment. Lancet, 367(9518), 1262-1270.Google Scholar
  60. *Giuli, C., Papa, R., Lattanzio, F., & Postacchini, D. (2016). The effects of cognitive training for elderly: Results from the my mind project. Rejuvenation Research. doi: 10.1089/rej.2015.1791.
  61. Gleser, L. J., & Olkin, I. (1994). Stochastically dependent effect sizes. In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis (pp. 339–355). New York: NY: SAGE Publications.Google Scholar
  62. Glisky, E. L. (2007). Changes in cognitive function in human aging. In D. Riddle (Ed.), Brain aging: Models, methods, and mechanisms (pp. 3–20). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  63. Gluud, L. L. (2006). Bias in clinical intervention research. American Journal of Epidemiology, 163(6), 493–501. doi: 10.1093/aje/kwj069.PubMedCrossRefGoogle Scholar
  64. Goh, J. O. (2011). Functional dedifferentiation and altered connectivity in older adults: Neural accounts of cognitive aging. Aging Dis., 2(1), 30–48.PubMedPubMedCentralGoogle Scholar
  65. Goh, J. O., & Park, D. C. (2009). Neuroplasticity and cognitive aging: The scaffolding theory of aging and cognition. Restorative Neurology and Neuroscience, 27(5), 391–403. doi: 10.3233/RNN-2009-0493.PubMedPubMedCentralGoogle Scholar
  66. *Gooding, A. L., Choi, J., Fiszdon, J. M., Wilkins, K., & Kirwin, P.D. van Dyck, C.H., …, & Mindt, M.R. (2015). Comparing three methods of computerized cognitive training for older adults with subclinical cognitive decline. Neuropsychological Rehabilitation. doi: 10.1080/09602011.2015.1118389.
  67. *Greenaway, M. C., Duncan, N. L., & Smith, G. E. (2013). The memory support system for mild cognitive impairment: Randomized trial of a cognitive rehabilitation intervention. International Journal of Geriatric Psychiatry, 28(4), 402–409. doi: 10.1002/gps.3838.PubMedCrossRefGoogle Scholar
  68. Gross, A. L., Parisi, J. M., Spira, A. P., Kueider, A. M., Ko, J. Y., Saczynski, J. S., et al. (2012). Memory training interventions for older adults: A meta-analysis. Aging & Mental Health, 16(6), 722–734. doi: 10.1080/13607863.2012.667783.CrossRefGoogle Scholar
  69. *Hampstead, B. M., Sathian, K., Phillips, P. A., Amaraneni, A., Deluane, W. R., & Stringer, A. Y. (2012). Mnemonic strategy training improves memory for object location associations both in healthy elderly and patients with amnestic mild cognitive impairment: A randomized, single-blind study. Neuropsychology, 26(3), 385–399. doi: 10.1037/a0027545.PubMedPubMedCentralCrossRefGoogle Scholar
  70. *Hayslip, B. (1989). Alternative mechanisms for improvement in fluid ability performance among older adults. Psychology and Aging, 4(1), 122–124.PubMedCrossRefGoogle Scholar
  71. Hedges, L. (1981). Distribution theory for Glass’s estimator of effect size and related estimators. Journal of Educational Statistics, 6, 107–178.CrossRefGoogle Scholar
  72. Hedges, L., & Olkin, I. (1985). Statistical methods for meta-analysis. San Diego: Academic Press.Google Scholar
  73. Hedges, L. V., & Pigott, T. D. (2004). The power of statistical tests for moderators in meta-analysis. Psychological Methods, 9(4), 426–445. doi: 10.1037/1082-989X.9.4.426.PubMedCrossRefGoogle Scholar
  74. *Heinzel, S., Schulte, S., Onken, J., Duong, Q. L., Riemer, T. G., Heinz, A., et al. (2014). Working memory training improvements and gains in non-trained cognitive tasks in younger and older adults. Aging, Neuropsychology, and Cognition, 21(2), 146–173. doi: 10.1080/13825585.2013.790338.CrossRefGoogle Scholar
  75. *Herrera, C., Chambon, C., Michel, B. F., Paban, V., & Alescio-Lautier, B. (2012). Positive effects of computer-based cognitive training in adults with mild cognitive impairment. Neuropsychologia, 50(8), 1871–1881. doi: 10.1016/j.neuropsychologia.2012.04.012.PubMedCrossRefGoogle Scholar
  76. Higgins J.P.T, Green S. (Eds). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.handbook.cochrane.org.
  77. Higgins, J., Thompson, S., Deeks, J., & Altman, D. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327(7414), 557–560.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hill, R. D., Yesavage, J. A., Sheikh, J., & Friedman, L. (1989). Mental status as a predictor of response to memory training in older adults. Educational Gerontology, 15(6), 633–639.CrossRefGoogle Scholar
  79. *Hill, R.D., Storandt, M., & Simeone, C. (1990). The effects of memory skills training and incentives on free recall in older learners. Journal of Gerontology, 45(6), P277-P232.Google Scholar
  80. *Hill, R. D., Allen, C., & McWhorter, P. (1991). Stories as a mnemonic aid for older learners. Psychology and Aging, 6(3), 484–486.Google Scholar
  81. Hoyer, W. J., & Verhaeghen, P. (2006). Memory aging. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (209–232) (6th ed.). Amsterdam: Academic Press.Google Scholar
  82. *Hoyer, W. J., Labouvie, G. V., & Baltes, P. B. (1973). Modification of response speed deficits and intellectual performance in the elderly. Human Development, 16(3), 233–242.Google Scholar
  83. *Hudak, E. M. (2012). The effects of cognitive stimulation and computerized memory training among older adults residing in independent-living facilities (unpublished doctoral dissertation). Tampa, Florida: University of South Florida.Google Scholar
  84. Huedo-Medina, T., Sanchez-Meca, J., Marin-Martinez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis: Q statistics or I2 index? CHIP documents. Paper 19. http://digitalcommons.uconn.edu/chip_docs/19.
  85. *Hynes, S. M. (2015). Internet, home-based cognitive and strategy training with older adults: A study to assess gains to daily life. Aging Clinical and Experimental Research. doi: 10.1007/s40520-015-0496-z.
  86. Kalish, L. A., & Begg, G. B. (1985). Treatment allocation methods in clinical trials: A review. Statistics in Medicine, 4, 129–144.PubMedCrossRefGoogle Scholar
  87. Karbach, J., & Verhaeghen, P. (2014). Making working memory work: A meta-analysis of executive-control and working memory training in older adults. Psychological Science, 25(11), 2027–2037. doi: 10.1177/0956797614548725.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Karp, A., Kareholt, I., Qiu, C., Bellander, T., Winblad, B., & Fratiglioni, L. (2004). Relation of education and occupation-based socioeconomic status to incident Alzheimer’s disease. American Journal of Epidemiology, 159(2), 175–183. doi: 10.1093/aje/kwh018.PubMedCrossRefGoogle Scholar
  89. Kelly, M. E., Loughrey, D., Lawlor, B. A., Robertson, I. H., Walsh, C., & Brennan, S. (2014). The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: A systematic review and meta-analysis. Ageing Research Reviews, 15(1), 28–43. doi: 10.1016/j.arr.2014.02.004.PubMedCrossRefGoogle Scholar
  90. *Kim, G. H., Jeon, S., Im, K., Kwon, H., Lee, B. H., Kim, G. Y., et al. (2015). Structural brain changes after traditional and robot-assisted multi-domain cognitive training in community-dwelling healthy elderly. PloS One, 10(4), e0123251. doi: 10.1371/journal.pone.0123251.PubMedPubMedCentralCrossRefGoogle Scholar
  91. *Kinsella, G. J., Mullaly, E., Rand, E., Ong, B., Burton, C., Price, S., et al. (2009). Early intervention for mild cognitive impairment: A randomised controlled trial. Journal of Neurology, Neurosurgery, and Psychiatry, 80(7), 730–736. doi: 10.1136/jnnp.2008.148346.PubMedCrossRefGoogle Scholar
  92. Kraft, E. (2012). Cognitive function, physical activity, and aging: Possible biological links and implications for multimodal interventions. Aging, Neuropsychology, and Cognition, 19(1), 248–263. doi: 10.1080/13825585.2011.645010.CrossRefGoogle Scholar
  93. *Kwok, T., Wong, A., Chan, G., Shiu, Y. Y., Lam, K., Young, D., et al. (2013a). Effectiveness of cognitive training for Chinese elderly in Hong Kong. Clinical Interventions in Aging, 8, 213–219. doi: 10.2147/CIA.S38070.PubMedPubMedCentralCrossRefGoogle Scholar
  94. *Kwok, T. C. Y., Bai, X., Li, J. C. Y., Ho, F. K. Y., & Lee, T. M. C. (2013b). Effectiveness of cognitive training in Chinese older people with subjective cognitive complaints: A randomized placebo-controlled trial. International Journal of Geriatric Psychiatry, 28(2), 208–215. doi: 10.1002/gps.3812.PubMedCrossRefGoogle Scholar
  95. Lachin, J. M., Matis, J. P., & Weis, L. J. (1988). Randomization in clinical trials: Conclusions and recommendations. Controlled Clinical Trials, 9(4), 365–374.PubMedCrossRefGoogle Scholar
  96. *Lampit, A., Hallock, H., Moss, R., Kwok, S., Rosser, M., Lukjanenko, M., et al. (2014a). The timecourse of global cognitive gains from supervised computer-assisted cognitive training: A randomised, active-controlled trial in elderly with multiple dementia risk factors. The Journal of Prevention of Alzheimer’s Disease, 1(1), 33–39. doi: 10.14283/jpad.2014.18.
  97. Lampit, A., Hallock, H., & Valenzuela, M. (2014b). Computerized cognitive training in cognitively healthy older adults: A systematic review and meta-analysis of effect modifiers. PLoS Medicine, 11(11), e1001756. doi: 10.1371/journal.pmed.1001756.
  98. *Lange, S., & Süß, H. M. (2015). Experimental evaluation of near- and far-transfer effects of an adaptive multicomponent working memory training. Applied Cognitive Psychology, 29(4), 502–514. doi: 10.1002/acp.3126.CrossRefGoogle Scholar
  99. *Latorre Postigo, J. M., Hernandez-Viadel, J. V., & Trives, J. J. R. (2010). Efficacy of a group memory training method for older adults based on visualization and association techniques: A randomized, controlled trial with a placebo group. Applied Cognitive Psychology, 24(7), 956–968. doi: 10.1002/acp.1596.CrossRefGoogle Scholar
  100. *Lee, T., Goh, S. J. A., Quek, S. Y., Phillips, R., Guan, C., Cheung, Y. B., et al. (2013). A brain-computer interface based cognitive training system for healthy elderly: A randomized control pilot study for usability and preliminary efficacy. PloS One, 8(11), e79419. doi: 10.1371/journal.pone.0079419.PubMedPubMedCentralCrossRefGoogle Scholar
  101. *Legault, C., Jennings, J. M., Katula, J. A., Dagenbach, D., Gaussoin, S. A., Sink, K. M., et al. (2011). Designing clinical trials for assessing the effects of cognitive training and physical activity interventions on cognitive outcomes: The seniors health and activity research program pilot (SHARP-P) study, a randomized controlled trial. BMC Geriatrics, 11(27). doi: 10.1186/1471-2318-11-27.
  102. *Leung, N. T. Y., Tam, H. M. K., Chu, L. W., Kwok, T. C. Y., Chan, F., Lam, L. C. W., et al. (2015). Neural plastic effects of cognitive training on aging brain. Neural Plasticity, 2015. doi: 10.1155/2015/535618.
  103. Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P., et al. (2009). The PRISMA statement for report systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Annals of Internal Medicine, 151(4), 65–94.Google Scholar
  104. *Lima-Silva, T. B., Ordonez, T. N., dos Santos, G. D., Fabricio, A. T., Aramaki, F. O., de Almeida, E. B., et al. (2010). Effects of cognitive training based on metamemory and mental images. Dement. Neuropsychol., 4(2), 114–119.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lindbergh, C. A., Dishman, R. K., & Miller, L. S. (2016). Functional disability in mild cognitive impairment: A systematic review and meta-analysis. Neuropsychology Review, 26(2), 129–159. doi: 10.1007/s11065-016-9321-5.PubMedCrossRefGoogle Scholar
  106. *Linde, K., & Alfermann, D. (2014). Single versus combined cognitive and physical activity effects on fluid cognitive abilities of healthy older adults: A 4-month randomized controlled trial with follow-up. Journal of Aging and Physical Activity, 22(3), 302–313. doi: 10.1123/JAPA.2012-0149.PubMedCrossRefGoogle Scholar
  107. Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks: CA. SAGE Publications, Inc.Google Scholar
  108. Litvan, I., Goldman, J.G., Tröster, A.I., Schmand, B.A., Weintraub, D., Petersen, R.C., … & Emre, M. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Movement Disorders, 27(3), 349-356. doi: 10.1002/mds.24893.
  109. Madden, D. J. (1992). Four to ten milliseconds per year: Age-related slowing of visual word identification. Journal of Gerontology: Psychological Sciences, 47(2), P59–P68. doi: 10.1093/geronj/47.2.P59.
  110. *Mahncke, H. W., Connor, B. B., Appelman, J., Ahsanuddin, O. N., Hardy, J. L., Wood, R. A., et al. (2006). Memory enhancement in healthy older adults using a brain plasticity-based training program: A randomized, controlled study. PNAS, 103(33), 12523–12528. doi: 10.1073/pnas.0605194103.PubMedPubMedCentralCrossRefGoogle Scholar
  111. *Margrett, J. A., & Willis, S. L. (2006). In-home cognitive training with older married couples: Individual versus collaborative learning. Aging, Neuropsychology, and Cognition, 13(2), 173–195. doi: 10.1080/138255890969285.CrossRefGoogle Scholar
  112. Martin, M., Clare, L., Altgassen, A. M., Cameron, M. H., & Zehnder, F. (2011). Cognition-based interventions for healthy older people and people with mild cognitive impairment. Cochrane Database of Systematic Reviews. doi: 10.1002/14651858.CD006220.pub2.
  113. Mayeda, E. R., Karter, A. J., Huang, E. S., Moffet, H. H., Haan, M. N., & Whitmer, R. A. (2014). Racial/ethnic differences in dementia risk among older type 2 diabetic patients: The diabetes and aging study. Diabetes Care, 37(4), 1009–1015. doi: 10.2337/dc13-0215/-/DC1.PubMedPubMedCentralCrossRefGoogle Scholar
  114. *McAvinue, L. P., Golemme, M., Castorina, M., Tatti, E., Pigni, F. M., Salomone, S., et al. (2013). An evaluation of a working memory training scheme in older adults. Frontiers in Aging Neuroscience, 5(20). doi: 10.3389/fnagi.2013.00020.
  115. *McDougall, G. J., Becker, H., Pituch, K., Acee, T. W., Vaughan, P. W., & Delville, C. L. (2010). The SeniorWISE study: Improving everyday memory in older adults. Archives of Psychiatric Nursing, 24(5), 291–306. doi: 10.1016/j.apnu.2009.11.001.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Meijer, W. A., van Boxtel, M. P., Van Gerven, P. W., van Hooren, S. A., & Jolles, J. (2009). Interaction effects of education and health status on cognitive change: A 6-year follow-up of the Maastricht aging study. Aging & Mental Health, 13(4), 521–529. doi: 10.1080/13607860902860821.CrossRefGoogle Scholar
  117. Melby-Lervag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–281. doi: 10.1037/a0028228.PubMedCrossRefGoogle Scholar
  118. Miller, L. S., Brown, C., Mitchell, M., & Williamson, G. (2013a). Activities of daily living are associated with older adult cognitive status: Caregiver versus self reports. Journal of Applied Gerontology, 32(1), 3–30. doi: 10.1177/0733464811405495.
  119. *Miller, K. J., Dye, R. V., Kim, J., Jennings, J. L., O’Toole, E., Wong, J., & Siddarth, P. (2013b). Effect of a computerized brain exercise program on cognitive performance in older adults. Journal of Geriatric Psychiatry, 21(7), 655–663. doi: 10.1016/j.jagp.2013.01.077.
  120. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269. doi: 10.7326/0003-4819-151-4-200908180-00135.PubMedCrossRefGoogle Scholar
  121. *Mohs, R. C., Ashman, T. A., Jantzen, K., Albert, M., Brandt, J., Gordon, B., et al. (1998). A study of the efficacy of a comprehensive memory enhancement program in healthy elderly programs. Psychiatry Research, 77(3), 183–195.PubMedCrossRefGoogle Scholar
  122. *Moro, V., Condoleo, M. T., Sala, F., Pernigo, S., Moretto, G., & Gambina, G. (2012). Cognitive stimulation in a-MCI: An experimental study. American Journal of Alzheimer's Disease and Other Dementias, 27(2), 121–130. doi: 10.1177/1533317512441386.PubMedCrossRefGoogle Scholar
  123. *Moro, V., Condoleo, M. T., Valbusa, V., Broggio, E., Moretto, G., & Gambina, G. (2015). Cognitive stimulation of executive functions in mild cognitive impairment: Specific efficacy and impact in memory. American Journal of Alzheimer's Disease and Other Dementias, 30(2), 153–164. doi: 10.1177/1533317514539542.PubMedCrossRefGoogle Scholar
  124. Morris, J. C. (1993). The clinical dementia Rating (CDR): Current version and scoring rules. Neurology, 43(11), 2412–2414.PubMedCrossRefGoogle Scholar
  125. *Mozolic, J. L., Long, A. B., Morgan, A. R., Rawley-Payne, M., & Laurienti, P. J. (2011). A cognitive training intervention improves modality-specific attention in a randomized controlled trial of healthy older adults. Neurobiology of Aging, 32(4), 655–668. doi: 10.1016/j.neurobiolaging.2009.04.013.PubMedCrossRefGoogle Scholar
  126. *van Muijden, J., Band, G. P. H., & Hommel, B. (2012). Online games training aging brains: Limited transfer to cognitive control functions. Frontiers in Human Neuroscience, 6(221). doi: 10.3389/fnhum.2012.00221.
  127. *Nouchi, R., Yaki, Y., Takeuchi, H., Hashizume, H., Akitsuki, Y., Shigemune, Y., et al. (2012). Brain training games improves executive functions and processing speed in the elderly: A randomized controlled trial. PloS One, 7(1), e29676. doi: 10.1371/journal.pone.0029676.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Nyberg L. (2005). Cognitive training in healthy aging: A cognitive neuroscience perspective. In Cabeza R. L. Nyberg, & D.C. Park (Eds.), Cognitive neuroscience of aging (309-321). New York: Oxford University Press.Google Scholar
  129. *Olchik, M. R., Farina, J., Steibel, N., Teixeira, A. R., & Yassuda, M. S. (2013). Memory training (MT) in mild cognitive impairment (MCI) generates changes in cognitive performance. Archives of Gerontology and Geriatrics, 56(3), 442–447. doi: 10.1016/j.archger.2012.11.007.PubMedCrossRefGoogle Scholar
  130. Owsley, C., Sloane, M., McGwin Jr., G., & Ball, K. (2002). Timed instrumental activities of daily living tasks: Relationship to cognitive function and everyday performance assessments in older adults. Gerontology, 48(4), 254–265.PubMedCrossRefGoogle Scholar
  131. Papp, K., Walsh, S., & Snyder, P. (2009). Immediate and delayed effects of cognitive interventions in healthy elderly: A review of current literature and future directions. Alzheimer's & Dementia, 5(1), 50–60. doi: 10.1016/j.jalz.2008.10.008.CrossRefGoogle Scholar
  132. Park, D. C., Gutchess, A. H., Meade, M. L., & Stine-Morrow, E. A. L. (2007). Improving cognitive function in older adults: Nontraditional approaches. Journals of Jerontology: Series B, 62B(Special issue 1), 45–52.CrossRefGoogle Scholar
  133. *Payne, B. R. (2014). The effects of verbal working memory training on language comprehension in older adulthood (unpublished doctoral dissertation). Urbana Illinois: University of Illinois at Urbana-Champaign.Google Scholar
  134. Petersen, R.C. (2002). Mild cognitive impairment: Transition from aging to Alzheimer's disease. In K. Iqbal, S.S. Sisodia, and B. Winblad (Eds.). Alzheimer's disease: Advanced in etiology, pathogenesis, and therapeutics (pp. 141-151). Chichester: John Wiley & Sons, Ltd. doi: 10.1002/0470846453.ch14.
  135. Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194.PubMedCrossRefGoogle Scholar
  136. Petersen, R.C. & Negash, S. (2008). Mild cognitive impairment: An overview. CNS Spectrums, 13(1), 45-53.Google Scholar
  137. Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, PV., … & Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985-1992.Google Scholar
  138. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.PubMedCrossRefGoogle Scholar
  139. Puente, A. N., Terry, D. P., Faraco, C. C., Brown, C. L., & Miller, L. S. (2014). Functional impairment in MCI evidence using performance-based measurement. Journal of Geriatric Psychiatry and Neurology, 27(4), 253–258. doi: 10.1177/0891988714532016.PubMedCrossRefGoogle Scholar
  140. R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing https://www.R-project.org/.Google Scholar
  141. Raz, N., & Lindenberger, U. (2013). Life-span plasticity of the brain and cognition: From questions to evidence and back. Neuroscience and Biobehavioral Reviews, 37, 2195–2200. doi: 10.1016/j.neubiorev.2013.10.003.PubMedCrossRefGoogle Scholar
  142. Rebok, G. (2008). Cognitive training: Influence on neuropsychological and brain function in later life. In State-of-Science review: SR:E22 UK. Government Foresight Mental Capital and Mental Wellbeing: Project. Government Office for Science.Google Scholar
  143. Rebok, G. W., Langbaum, J. B. S., Jones, R. N., Gross, A. L., Parisi, J. M., Spira, A. P., et al. (2012). Memory training in the ACTIVE study: How much is needed and who benefits? Journal of Aging and Health, 25(8S), 21S–42S. doi: 10.1177/0898264312461937.PubMedGoogle Scholar
  144. Reijnders, J., van Heugten, C., & van Boxtel, M. (2013). Cognitive interventions in healthy older adults and people with mild cognitive impairment. Ageing Research Reviews, 12(1), 263–275. doi: 10.1016/j.arr.2012.07.003.PubMedCrossRefGoogle Scholar
  145. *Richmond, L. L., Morrison, A. B., Chein, J. M., & Olson, I. R. (2011). Working memory training and transfer in older adults. Psychology and Aging, 26(4), 813–822. doi: 10.1037/a0023631.PubMedCrossRefGoogle Scholar
  146. *Rizkalla, M. N. (2015). Cognitive training in the elderly: A randomized trial to evaluate the efficacy of a self-administered cognitive training program. Aging & Mental Health. doi: 10.1080/13607863.2015.1118679.
  147. *Rojas, G. J., Villar, V., Iturry, M., Harris, P., Serrano, C. M., Herrera, J. A., & Allegri, R. F. (2013). Efficacy of a cognitive intervention program in patients with mild cognitive impairment. International Psychogeriatrics, 25(5), 825–831. doi: 10.1017/S1041610213000045.PubMedCrossRefGoogle Scholar
  148. *Rosen, A. C., Sugiura, L., Kramer, J. H., Whitfield-Gabrieli, S., & Gabrieli, J. D. (2011). Cognitive training changes hippocampal function in mild cognitive impairment: A pilot study. Journal of Alzheimer's Disease, 26(s3), 349–357. doi: 10.3233/JAD-2011-0009.PubMedPubMedCentralGoogle Scholar
  149. Rosenberg, M. (2005). The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution, 59(2), 464–468.PubMedCrossRefGoogle Scholar
  150. Rosenthal, R. (1991). Meta-analytic procedures for social research. Newbury Park, CA: SAGE Publications.CrossRefGoogle Scholar
  151. Royall, D., Lauterbach, E., Kaufer, D., Malloy, P., Coburn, K., & Black, K. (2007). The cognitive correlates of functional status: A review from the committee on research of the American neuropsychiatric association. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(3), 249–265.PubMedCrossRefGoogle Scholar
  152. *Sandberg, P., Ronnlund, M., Nyberg, L., & Stigsdotter Neely, A. (2014). Executive process training in young and old adults. Aging, Neuropsychology, and Cognition, 21(5), 577–605. doi: 10.1080/13825585.2013.839777.CrossRefGoogle Scholar
  153. Sanz Simon, S., Yokomiza, J. E., & Bottino, C. M. C. (2012). Cognitive intervention in amnestic mild cognitive impairment: A systematic review. Neuroscience and Biobehavioral Reviews, 36(4), 1163–1178. doi: 10.1016/j.neubiorev.2012.01.007.CrossRefGoogle Scholar
  154. Schaie, K. W. (1996). Intellectual development in adulthood: The Seattle longitudinal study. New York: Cambridge University Press.Google Scholar
  155. Schaie, K. W., & Willis, S. L. (1986). Can decline in intellectual functioning be reversed? Developmental Psychology, 22, 223–232.CrossRefGoogle Scholar
  156. Schaie, K., Willis, S., & Caskie, G. (2004). The Seattle longitudinal study: Relationship between personality and cognition. Neuropsychology of Cognition, 11(2–3), 304–324.CrossRefGoogle Scholar
  157. *Scogin, F., & Prohaska, M. (1992). The efficacy of self-taught memory training for community-dwelling older adults. Educational Gerontology, 18(8), 751–766.CrossRefGoogle Scholar
  158. *Scogin, F., Storandt, M., & Lott, L. (1985). Memory-skills training, memory complaints, and depression in older adults. Journal of Gerontology, 40(5), 562–568.PubMedCrossRefGoogle Scholar
  159. Sharp, E. S., & Gatz, M. (2011). The relationship between education and dementia: An updated systematic review. Alzheimer Disease and Associated Disorders, 25(4), 289–304. doi: 10.1097/WAD.0b013e318211c83c.PubMedPubMedCentralCrossRefGoogle Scholar
  160. *Shatil, E. (2013). Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Frontiers in Aging Neuroscience, 5(8). doi: 10.3389/fnagi.2013.00008.
  161. *Shatil, E., Mikulecka, J., Bellotti, F., & Bures, V. (2014). Novel television-based cognitive training improves working memory and executive function. PloS One, 9(7), e101472. doi: 10.1371/journal.pone.0101472.PubMedPubMedCentralCrossRefGoogle Scholar
  162. *Smith, G. E., Housen, P., Yaffe, K., Ruff, R., Kennison, R. F., Mahncke, H. W., & Zelinski, E. M. (2009). A cognitive training program based on principles of brain plasticity: Results from the improvement in memory with plasticity-based adaptive cognitive training (IMPACT) study. Journal of the American Geriatrics Society, 57(4), 594–603. doi: 10.1111/j.1532-5415.2008.02167.x.PubMedPubMedCentralCrossRefGoogle Scholar
  163. *Stepankova, H., Lukkavsky, J., Buschkuehl, M., Kopevek, M., Rippova, D., & Jaeggi, S. M. (2014). The malleability of working memory and visuospatial skills: A randomized controlled study in older adults. Developmental Psychology, 50(4), 1049–1059. doi: 10.1037/a0034913.PubMedCrossRefGoogle Scholar
  164. Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448-460. doi: 10.1017/S1355617701020240.PubMedCrossRefGoogle Scholar
  165. *Stern, Y., Blumen, H. M., Rich, L. W., Richard, A., Herzberg, G., & Gopher, D. (2011). Space fortress game training and executive control in older adults: A pilot intervention. Aging, Neuropsychology, and Cognition, 18(6), 653–677. doi: 10.1080/13825585.2011.613450.
  166. Sterne, J., Gavaghan, D., & Egger, M. (2000). Publication and related bias in meta-analysis: Power of statistical tests and prevalence in the literature. Journal of Clinical Epidemiology, 53(11), 1119–1129.PubMedCrossRefGoogle Scholar
  167. Sterne, J., Sutton, A.J., Ioannidis, J.P.A., Terrin, N., Jones, D.R., Lau, J., ... & Higgins, J.P.T. (2011). Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BJM, 343. doi: 10.1136/bjm.d4002.
  168. *Stigsdotter, A., & Bäckman, L. (1989). Multifactorial memory training with older adults: How to foster maintenance of improved performance. Gerontology, 35, 260–267.PubMedCrossRefGoogle Scholar
  169. *Stigsdotter, N. A., & Bäckman, L. (1993). Maintenance of gains following multifactorial and unifactorial memory training in late adulthood. Educational Gerontology, 19(2), 105–117.CrossRefGoogle Scholar
  170. Stigsdotter Neely, A., & Bäckman, L. (1995). Effects of multifactorial memory training in old age: Generalizability across tasks and individuals. Journal of Gerontology: Psychological Sciences, 50B(3), P134–P140.CrossRefGoogle Scholar
  171. Stott, J., & Spector, A. (2011). A review of the effectiveness of memory interventions in mild cognitive impairment. International Psychogeriatrics, 23(4), 526–538. doi: 10.1017/S1041610210001973.PubMedCrossRefGoogle Scholar
  172. Suresh, K. P. (2011). An overview of randomization techniques: An unbiased assessment of outcome in clinical research. J. Hum. Reprod. Sci., 4(1), 8–11. doi: 10.4103/0974-1208.82352.PubMedPubMedCentralCrossRefGoogle Scholar
  173. *Sutter, C., Zollig, J., & Martin, M. (2013). Plasticity of verbal fluency in older adults: A 90-minute telephone-based intervention. Gerontology, 59(1), 53–63. doi: 10.1159/000342199.PubMedCrossRefGoogle Scholar
  174. Tardif, S., & Simard, M. (2011). Cognitive stimulation program in healthy elderly: A review. International Journal of Alzheimer's Disease, 2011. doi: 10.4061/2011/378934.
  175. Teixeira, C. L., Gobbi, L. B., Corazza, D. I., Stella, F., Costa, J. R., & Gobbi, S. (2012). Non-pharmacological interventions on cognitive functions in older people with mild cognitive impairment (MCI). Archives of Gerontology and Geriatrics, 54(1), 175–180. doi: 10.1016/j.archger.2011.02.014.PubMedCrossRefGoogle Scholar
  176. Tucker-Drob, E. M. (2011). Neurocognitive functions and everyday functions change together in old age. Neuropsychology, 25(3), 368–377. doi: 10.1037/a0022348.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Tucker-Drob, E. M., Johnson, K. E., & Jones, R. N. (2009). The cognitive reserve hypothesis: A longitudinal examination of age-associated declines in reasoning and processing speed. Developmental Psychology, 45(2), 431–446. doi: 10.1037/a0014012.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Tzuang, M., Owusu, J., Spira, A.P., Albert, M.S., & Rebok, G.W. (in press). Cognitive training for ethnic minority older adults in the U.S.: A review. The Gerontologist. Google Scholar
  179. *Vance, D., Dawson, J., Wadley, V., Edwards, J., Roenker, D., Rizzo, M., & Ball, K. (2007). The accelerate study: The longitudinal effect of speed of processing training on cognitive performance in older adults. Rehabilitation Psychology, 52(1), 89–96. doi: 10.1037/0090-5550.52.1.89.CrossRefGoogle Scholar
  180. Verhaeghen, P., Marcoen, A., & Goossens, L. (1992). Improving memory performance in the aged through mnemonic training: A meta-analytic study. Psychology and Aging, 7(2), 242–251.PubMedCrossRefGoogle Scholar
  181. *Vidovich, M. R., Lautenschlager, N. T., Flicker, L., Clare, L., McCaul, K., & Almeida, O. P. (2015). The PACE study: A randomized clinical trial of cognitive activity strategy training for older people with mild cognitive impairment. The American Journal of Geriatric Psychiatry, 23(4), 360–372. doi: 10.1016/j.jagp.2014.04.002.PubMedCrossRefGoogle Scholar
  182. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 26(3), 1–48.Google Scholar
  183. *Welch, D. C. (1998). The effects of object location training on spatial self-efficacy, location recall, and strategy usage (unpublished doctoral dissertation). Gainesville, Florida: University of Florida.Google Scholar
  184. West, R. L., & Tomer, A. (1989). Everyday memory problems of healthy older adults: Characteristics of a successful intervention. In G. C. Gilmore, P. J. Whitehouse, & M. L. Wykle (Eds.), Memory, aging, and dementia: Theory, assessment, and treatment (pp. 74–98). New York: Springer Publishing.Google Scholar
  185. Whalley, L. J., Dick, F. D., & McNeill, G. (2006). A life-course approach to the aetiology of late-onset dementias. Lancet Neurology, 5(1), 87–96.PubMedCrossRefGoogle Scholar
  186. *Wilkinson, A. J., & Yang, L. (2012). Plasticity of inhabitation in older adults: Retest practice and transfer effects. Psychology and Aging, 27(3), 606–615. doi: 10.1037/a0025926.PubMedCrossRefGoogle Scholar
  187. Williams, R. L. (2000). A note on robust variance estimation for cluster-correlated data. Biometrics, 56(2), 645–646.PubMedCrossRefGoogle Scholar
  188. Williams, K., & Kemper, S. (2010). Exploring interventions to reduce cognitive decline in aging. Journal of Psychosocial Nursing and Mental Health Services, 48(5), 42–51. doi: 10.3928/02793695-20100331-03.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Willis, S. L. (2001). Methodological issues in behavioural intervention research in the elderly. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (78–108) (5th ed.). San Diego, CA: Academic Press.Google Scholar
  190. Willis, S. L., & Caskie, G. I. L. (2013). Reasoning training in the ACTIVE study: How much is needed and who benefits? Journal of Aging and Health, 25(8S), 43S–64S. doi: 10.1177/0898264313503987.PubMedCrossRefGoogle Scholar
  191. Wilson, D.B. (2006). Meta-analysis macros for SAS, SPSS, and Stata. Retrieved from: http://mason.gmu.edu/~dwilsonb/ma.html.
  192. Wilson, K. E., & Dishman, R. K. (2015). Personality and physical activity: A systematic review and meta-analysis. Personality and Individual Differences, 72, 230–242. doi: 10.1016/j.paid.2014.08.023.CrossRefGoogle Scholar
  193. Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.-O., et al. (2004). Mild cognitive impairment—Beyond controversies, towards a consensus: Report of the International working group on mild cognitive impairment. Journal of Internal Medicine, 256(3), 240–246.PubMedCrossRefGoogle Scholar
  194. Yaffe, K., Falvey, C., Harris, T. B., Newman, A., Satterfield, S., Koster, A., et al. (2013). Effect of socioeconomic disparities on incidence of dementia among biracial older adults: Prospective study. BMJ, 347, f7051. doi: 10.1136/bmj.f7051.PubMedPubMedCentralCrossRefGoogle Scholar
  195. Yesavage, J. A. (1982). Degree of dementia and improvement with memory training. [clinical comments]. Clinical Gerontologist, 1(2), 77–80. doi: 10.1300/J018v01n02_08.Google Scholar
  196. Yesavage, J. A., Sheikh, J. I., Friedman, L., & Tanke, E. (1990). Learning mnemonics: Roles of aging and subtle cognitive impairment. Psychology and Aging, 5(1), 133–137.PubMedCrossRefGoogle Scholar
  197. Zehnder, F., Martin, M., Altgassen, M., & Clare, L. (2009). Memory training effects in old age as markers of plasticity: A meta-analysis. Restorative Neurology and Neuroscience, 27(5), 507–520. doi: 10.3233/RNN-2009-0491.PubMedGoogle Scholar
  198. Zelinski, E. M. (2009). Far transfer in cognitive training of older adults. Restorative Neurology and Neuroscience, 27(5), 455–471. doi: 10.3233/RNN-2009-0495.PubMedPubMedCentralGoogle Scholar
  199. Zelinski, E. M., & Reyes, R. (2009). Cognitive benefits of computer games for older adults. Geron, 8(4), 220–235. doi: 10.4017/gt.2009.08.04.004.00.Google Scholar
  200. *Zimmerman, N., Netto, T. M., Amodeo, M. T., Ska, B., & Fonseca, R. P. (2014a). Working memory training and poetry-based stimulation programs: Are there differences in cognitive outcome in healthy older adults? NeuroRehabilitation, 35(1), 159–170. doi: 10.3233/NRE-141104.Google Scholar
  201. *Zimmerman, R., Gschwandtner, U., Benz, N., Hatz, F., Schindler, C., Taub, E., & Fuhr, P. (2014b). Cognitive training in Parkinson disease: Cognition-specific vs. nonspecific computer training. Neurology, 82(14), 1219–1226.CrossRefGoogle Scholar
  202. *Zinke, K., Zeintl, M., Rose, N. S., Putzmann, J., Pydde, A., & Kliegel, M. (2014). Working memory training and transfer in older adults: Effects of age, baseline performance, and training gains. Developmental Psychology, 50(1), 304–315. doi: 10.1037/a0032982.PubMedCrossRefGoogle Scholar
  203. Zolyniak, N., Schulte-Gocking, H., & Kraft, E. (2014). Neuroplasticity in aging: Implications for behavioral and lifestyle combined interventions. Top. Geriatr. Rehabil., 30(1), 15–17. doi: 10.1097/TGR.0000000000000004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Catherine M. Mewborn
    • 1
    Email author
  • Cutter A. Lindbergh
    • 1
  • L. Stephen Miller
    • 1
    • 2
  1. 1.Department of PsychologyUniversity of GeorgiaAthensUSA
  2. 2.Bio-Imaging Research Center, Paul C. Coverdell CenterUniversity of GeorgiaAthensUSA

Personalised recommendations