Neuropsychology Review

, Volume 27, Issue 3, pp 245–257 | Cite as

Non-Pharmacologic Interventions for Older Adults with Subjective Cognitive Decline: Systematic Review, Meta-Analysis, and Preliminary Recommendations

  • Colette M. SmartEmail author
  • Justin E. Karr
  • Corson N. Areshenkoff
  • Laura A. Rabin
  • Carol Hudon
  • Nicola Gates
  • Jordan I. Ali
  • Eider M. Arenaza-Urquijo
  • Rachel F. Buckley
  • Gael Chetelat
  • Harald Hampel
  • Frank Jessen
  • Natalie L. Marchant
  • Sietske A. M. Sikkes
  • Andrea Tales
  • Wiesje M. van der Flier
  • Linda Wesselman
  • and the Subjective Cognitive Decline Initiative (SCD-I) Working Group


In subjective cognitive decline (SCD), older adults present with concerns about self-perceived cognitive decline but are found to have clinically normal function. However, a significant proportion of those adults are subsequently found to develop mild cognitive impairment, Alzheimer’s dementia or other neurocognitive disorder. In other cases, SCD may be associated with mood, personality, and physical health concerns. Regardless of etiology, adults with SCD may benefit from interventions that could enhance current function or slow incipient cognitive decline. The objective of this systematic review and meta-analysis, conducted in accordance with the PRISMA guidelines, is to examine the benefits of non-pharmacologic intervention (NPI) in persons with SCD. Inclusion criteria were studies of adults aged 55 + with SCD defined using published criteria, receiving NPI or any control condition, with cognitive, behavioural, or psychological outcomes in controlled trails. Published empirical studies were obtained through a standardized search of CINAHL Complete, Cochrane Central Register of Controlled Trials, MEDLINE with Full Text, PsycINFO, and PsycARTICLES, supplemented by a manual retrieval of relevant articles. Study quality and bias was determined using PEDro. Nine studies were included in the review and meta-analysis. A wide range of study quality was observed. Overall, a small effect size was found on cognitive outcomes, greater for cognitive versus other intervention types. The available evidence suggests that NPI may benefit current cognitive function in persons with SCD. Recommendations are provided to improve future trials of NPI in SCD.


Mild cognitive impairment Alzheimer’s disease Complementary therapies Cognitive interventions Treatment outcome 



CMS was supported by the Alzheimer Society of Canada (Young Investigator Award #1216). CH was supported by a Salary Award (Chercheur-boursier, Senior) from the Fonds de Recherche du Québec–Santé. AT was supported by BRACE-Alzheimer’s Research (Registered Charity 297965). HH is supported by the AXA Research Fund, the Fondation Université Pierre et Marie Curie and the “Fondation pour la Recherche sur Alzheimer”, Paris, France. The research leading to these results has received funding from the program“Investissements d’avenir” ANR-10-IAIHU-06. The authors are grateful to Dr. Simone Lista for research assistance with completion of this study.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The referenced article Smart et al. (2016) was performed by the first author, and all procedures performed were in accordance with the ethical standards of the institution and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Beyond this referenced article, the current article does not contain any studies with human participants performed by any of the authors.

Informed Consent

In the referenced article Smart et al. (2016), conducted by the first author, informed consent was obtained from all individual participants included in the study.

Supplementary material

11065_2017_9342_MOESM1_ESM.docx (37 kb)
ESM 1 (DOCX 37.4 kb)


Note: citations marked with an asterisk (*) were those included in the meta-analysis

  1. Alzheimer’s Association. (2016a). What is Alzheimer’s? Retrieved from
  2. Alzheimer’s Association. (2016b). Prevalence. Retrieved from
  3. Alzheimer’s Disease International. (2015). World Alzheimer Report 2015: The Global Impact of Dementia. Retrieved from
  4. Amariglio, R. E., Becker, J. A., Carmasin, J., Wadsworth, L. P., Lorius, N., Sullivan, C., et al. (2012). Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia, 50, 2880–2886.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Andrewes, D. G., Kinsella, G., & Murphy, M. (1996). Using a memory handbook to improve everyday memory in community-dwelling older adults with memory complaints. Experimental Aging Research, 22, 305–322.CrossRefPubMedGoogle Scholar
  6. Bahar-Fuchs, A., Clare, L., & Woods, B. (2013). Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer’s disease and vascular dementia (review). Cochrane Database of Systematic Reviews, 6(2013), CD003260.Google Scholar
  7. *Barnes, D. E., Santos-Modesitt, W., Poelke, G., Kramer, A. F., Castro, C., Middleton, L. E., & Yaffe, K. (2013). The mental activity and EXercise (MAX) trial: A randomized controlled trial to enhance cognitive function in older adults. JAMA Internal Medicine, 173, 797–804.CrossRefPubMedGoogle Scholar
  8. Bond, M., Rogers, G., Peters, J., Anderson, R., Hoyle, M., Miners, A., et al. (2012). The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of technology appraisal no. 111): A systematic review and economic model. Health Technology Assessment, 16, 1–470.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boone, K. B. (2009). Fixed belief in cognitive dysfunction despite normal neuropsychological scores: Neurocognitive hypochondriasis? The Clinical Neuropsychologist, 23, 1016–1036.CrossRefPubMedGoogle Scholar
  10. Campanella, S. (2013). Why it is time to develop the use of cognitive event-related potentials in the treatment of psychiatric diseases. Neuropsychiatric Disease and Treatment, 9, 1835–1845.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Canevelli, M., Adali, N., Tainturier, C., Bruno, G., Cesari, M., & Vellas, B. (2013). Cognitive interventions targeting subjective cognitive complaints. American Journal of Alzheimer's Disease and Other Dementias, 28, 560–567.CrossRefPubMedGoogle Scholar
  12. Cargin, J. W., Collie, A., Masters, C., & Maruff, P. (2008). The nature of cognitive complaints in healthy older adults with and without objective memory decline. Journal of Clinical and Experimental Neuropsychology, 30, 245–257.CrossRefGoogle Scholar
  13. Chambless, D., & Hollon, S. D. (1998). Defining empirically supported therapies. Journal of Consulting and Clinical Psychology, 66, 7–18.CrossRefPubMedGoogle Scholar
  14. Chambless, D. L., Baker, M. J., Baucom, D. H., Beutler, L. E., Calhoun, K. S., Crits-Christoph, P., et al. (1998). Update on empirically validated therapies, II. The Clinical Psychologist, 51, 3–16.Google Scholar
  15. Clare, L., & Woods, R. T. (2004). Cognitive training and cognitive rehabilitation for people with early-stage Alzheimer’s disease: A review. Neuropsychological Rehabilitation, 14, 385–401.CrossRefGoogle Scholar
  16. Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.CrossRefPubMedGoogle Scholar
  17. *Cohen-Mansfield, J., Cohen, R., Buettner, L., Eyal, N., Jakobovits, H., Rebok, G., Rotenberg-Shpigelman, S., & Sternberg, S. (2015). Interventions for older persons reporting memory difficulties: A randomized controlled pilot study. International Journal of Geriatric Psychiatry, 30, 478–486.Google Scholar
  18. Comijs, H. C., Deeg, D. J. H., Dik, M. G., Twisk, J. W., & Jonker, C. (2002). Memory complaints: The association with psychoaffective and health problems and the role of personality characteristics: A 6-year follow-up study. Journal of Affective Disorders, 72, 157–164.CrossRefPubMedGoogle Scholar
  19. DaSilva, J., Gonçalves-Pereira, M., Xavier, M., & Mukaetova-Ladinska, E. B. (2013). Affective disorders and risk of developing dementia: Systematic review. British Journal of Psychiatry, 202, 177–186.CrossRefGoogle Scholar
  20. Davis, J. C., Bryan, S., Marra, C. A., Hsiung, G.-Y. R., & Liu-Ambrose, T. (2015). Challenges with cost-utility analyses of behavioral interventions among older adults at risk for dementia. British Journal of Sports Medicine, 49, 1343–1347.CrossRefPubMedGoogle Scholar
  21. Diniz, B. S., Butters, M. A., Albert, S. M., Dew, M. A., & Reynolds, C. F. (2013). Late-life depression and risk of vascular dementia and Alzheimer’s disease: Systematic review and meta-analysis of community-based cohort studies. British Journal of Psychiatry, 202, 329–335.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Duberstein, P. R., Chapman, B. P., Tindle, H. A., Sink, K. M., Bamonti, P., Jerant, A. F., & Franks, P. (2011). Personality and risk for Alzheimer's disease in adults 72 years of age and older: A six-year follow-up. Psychology and Aging, 26, 351–362.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Duff, K. (2012). Evidence-based indicators of neuropsychological change in the individual patient: Relevant concepts and methods. Archives of Clinical Neuropsychology, 27, 248–261.CrossRefPubMedPubMedCentralGoogle Scholar
  24. *Fabre, C., Massé-Biron, J., Chamari, K., Varray, A., Mucci, P., & Préfaut, C. (1999). Evaluation of quality of life in elderly healthy subjects after aerobic and/or mental training. Archives of Gerontology and Geriatrics, 28, 9–22.CrossRefPubMedGoogle Scholar
  25. *Fairchild, J. K., & Scogin, F. R. (2010). Training to enhance adult memory (TEAM): An investigation of the effectiveness of a memory training program with older adults. Aging & Mental Health, 14, 364–373.CrossRefGoogle Scholar
  26. Fitzpatrick-Lewis, D., Warren, R., Ali, M. U., Sherifali, D., & Raina, P. (2015). Treatment for mild cognitive impairment: A systematic review and meta-analysis. CMAJ Open, 3, E419–E427.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Floyd, M., & Scogin, F. (1997). Effects of memory training on the subjective memory function and mental health of older adults: A meta-analysis. Psychology and Aging, 12, 150–161.CrossRefPubMedGoogle Scholar
  28. Frerichs, R. J., & Tuokko, H. A. (2005). A comparison of methods for measuring cognitive change in older adults. Archives of Clinical Neuropsychology, 20, 321–333.CrossRefPubMedGoogle Scholar
  29. Gates, N. J., & March, E. G. (2016). A Neuropsychologist’s guide to undertaking a systematic review for publication: Making the most of PRISMA guidelines. Neuropsychology Review, 26, 109–120. doi: 10.1007/s11065-016-9318-0.CrossRefPubMedGoogle Scholar
  30. Greenwood, P. M., & Parasuraman, R. (2010). Neuronal and cognitive plasticity: A neurocognitive framework for ameliorating cognitive aging. Frontiers in Aging Neuroscience, 2, 150.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gross, A. L., Parisi, J. M., Spira, A. P., Kueider, A. M., Ko, J. Y., Saczynski, J. S., Samus, Q. M., & Rebok, G. W. (2012). Memory training interventions for older adults: A meta-analysis. Aging & Mental Health, 16, 722–734.CrossRefGoogle Scholar
  32. Hampstead, B. M., Gillis, M. M., & Stringer, A. Y. (2013). Cognitive rehabilitation of memory for mild cognitive impairment: A methodological review and model for future research. Journal of the International Neuropsychological Society, 20, 1–17.Google Scholar
  33. Hart, T., Tsaousides, T., Zanca, J. M., Whyte, J., Packel, A., Ferraro, M., & Dijkers, M. P. (2014). Toward a theory-driven classification of rehabilitation treatments. Archives of Physical Medicine and Rehabilitation, 95(Suppl 1), S33–S44.CrossRefPubMedGoogle Scholar
  34. *Hoogenhout, E. M., De Groot, R. H. M., van der Elst, W., & Jolles, J. (2012). Effects of a comprehensive educational group intervention in older women with cognitive complaints: A randomized controlled trial. Aging & Mental Health, 16, 135–144.CrossRefGoogle Scholar
  35. van Hooren, S. A., Valentijn, S. A., Bosma, H., Ponds, R. W., Van Boxtel, M. P., Levine, B., Robertson, I., & Jolles, J. (2007). Effect of a structured course involving goal management training in older adults: A randomised controlled trial. Patient Education and Counseling, 65, 205–213.CrossRefPubMedGoogle Scholar
  36. Imtiaz, B., Tolppanen, A.-M., Kivipelto, M., & Soininen, H. (2014). Future directions in Alzheimer’s disease from risk factors to prevention. Biochemical Pharmacology, 88, 661–670.CrossRefPubMedGoogle Scholar
  37. Jellinger, K. A., & Attems, J. (2013). Neuropathological approaches to cerebral aging and neuroplasticity. Dialogues in Clinical Neuroscience, 15, 29–43.PubMedPubMedCentralGoogle Scholar
  38. Jessen, F., Amariglio, R. E., van Boxtel, M., Breteler, M., Ceccaldi, M., Chételat, G., et al., the Subjective Cognitive Decline Initiative (SCD-I) Working Group. (2014). A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimer's & Dementia, 10, 844–852.Google Scholar
  39. Jonker, C., Geerlings, M. I., & Schmand, B. (2000). Are memory complaints predictive for dementia? A review of clinical and population-based studies. International Journal of Geriatric Psychiatry, 15, 983–991.CrossRefPubMedGoogle Scholar
  40. Kliegel, M., & Zimprich, D. (2005). Predictors of cognitive complaints in older adults: A mixture regression approach. European Journal of Ageing, 2, 13–23.CrossRefPubMedPubMedCentralGoogle Scholar
  41. *Kwok, T., Wong, A., Chan, G., Shiu, Y. Y., Lam, K. C., Young, D., Ho, D. W., & Ho, F. (2013). Effectiveness of cognitive training for Chinese elderly in Hong Kong. Clinical Interventions in Aging, 8, 213–219.PubMedPubMedCentralGoogle Scholar
  42. *Lautenschlager, N. T., Cox, K. L., Flicker, L., Foster, J. K., Van Bockxmeer, F. M., Xiao, J., Greenop, K. R., & Almeida, O. P. (2008). Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: A randomized trial. JAMA, 300, 1027–1037.CrossRefPubMedGoogle Scholar
  43. Low, L. F., Harrison, F., & Lackersteen, S. M. (2013). Does personality affect risk for dementia? A systematic review and meta-analysis. American Journal of Geriatric Psychiatry, 21, 713–728.CrossRefPubMedGoogle Scholar
  44. Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M., & Elkins, M. (2003). Reliability of the PEDro scale for rating quality of randomized controlled trials. Physical Therapy, 83, 713–721.PubMedGoogle Scholar
  45. Meiberth, D., Scheef, L., Wolfsgruber, S., Boecker, H., Block, W., Träber, F., et al. (2015). Cortical thinning in individuals with subjective memory impairment. Journal of Alzheimer's Disease, 45, 139–146.PubMedGoogle Scholar
  46. Metternich, B., Kosch, D., Kriston, L., Härter, M., & Hüll, M. (2010). The effects of nonpharmacological interventions on subjective memory complaints: A systematic review and meta-analysis. Psychotherapy and Psychosomatics, 79, 6–19.CrossRefPubMedGoogle Scholar
  47. Moher, D., Liberati, A., Tetzlaff, J., Altman, D., & the PRISMA Group. (2009). Preferred reporting items for systematic reviews and metaanalyses: The PRISMA statement. Annals of Internal Medicine, 151, 264–269. doi: 10.7326/0003-4819-151-4-200908180-00135.CrossRefPubMedGoogle Scholar
  48. Molinuevo, J. L., Rabin, L. A., Amariglio, R., Buckley, R., Dubois, B., Ellis, K. A., R., … and the Subjective Cognitive Decline Initiative (SCD-I) Working Group. (2016). Implementation of subjective cognitive decline criteria in research studies. Alzheimer’s & Dementia.  10.1016/j.jalz.2016.09.012.
  49. Nesselroade, J. R. (1991). Interindividual differences in intraindividual change. In L. M. Collins & J. L. Horn (Eds.), Best methods for the analysis of change (pp. 92–105). Washington, DC: American Psychological Association.Google Scholar
  50. Ngandu, T., Lehtisalo, J., Solomon, A., Levälahti, E., Ahtiluoto, S., Antikainen, R., et al. (2015). A two-year multi-domain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomized controlled trial. The Lancet, 385, 2255–2263.CrossRefGoogle Scholar
  51. van Oijen, M., de Jong, F. J., Hofman, A., Koudstaal, P. J., & Breteler, M. M. (2007). Subjective memory complaints, education, and risk of Alzheimer's disease. Alzheimers Dement, 3, 92–97.CrossRefPubMedGoogle Scholar
  52. Perrotin, A., Mormino, E. C., Madison, C. M., Hayenga, A. O., & Jagust, W. J. (2012). Subjective cognition and amyloid deposition imaging: A Pittsburgh compound B positron emission tomography study in normal elderly individuals. Archives of Neurology, 69, 223–229.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Perrotin, A., de Flores, R., Lamberton, F., Poisnel, G., La Joie, R., de la Sayette, V., et al. (2015). Hippocampal subfield volumetry and 3D surface mapping in subjective cognitive decline. Journal of Alzheimer's Disease, 48(Suppl. 1), S141–S150.CrossRefPubMedGoogle Scholar
  54. Peter, J., Scheef, L., Abdulkadir, A., Boecker, H., Heneka, M., Wagner, M., et al., the Alzheimer’s Disease Neuroimaging Initiative. (2014). Gray matter atrophy pattern in elderly with subjective memory impairment. Alzheimer's & Dementia, 10, 99–108.Google Scholar
  55. Pouryamout, L., Dams, J., Wasem, J., Dodel, R., & Neumann, A. (2012). Economic evaluation of treatment options in patients with Alzheimer’s disease: A systematic review of cost-effectiveness analyses. Drugs, 72, 789–802.CrossRefPubMedGoogle Scholar
  56. Rabin, L. A., Smart, C. M., Crane, P. K., Amariglio, R. E., Berman, R. F., Buckley, R. F., et al., the Subjective Cognitive Decline Initiative (SCD-I) Working Group. (2015). Subjective cognitive decline in older adults: An overview of self-report measures used across 19 international research studies. Journal of Alzheimer's Disease, 48(suppl. 1), S63–S86.Google Scholar
  57. Rast, P., MacDonald, S. W. S., & Hofer, S. M. (2012). Intensive measurement designs for research on aging. GeroPsych (Bern), 25, 45–55.CrossRefGoogle Scholar
  58. Rebok, G. W., Ball, K., Guey, L. T., Jones, R. N., Kim, H.-Y., King, J. W., et al., for the ACTIVE Study Group. (2014). Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. Journal of the American Geriatrics Society, 62, 16–24. doi: 10.1111/jgs.12607.
  59. Saykin, A. J., Wishart, H. A., Rabin, L. A., Santulli, R. B., Flashman, L. A., West, J. D., McHugh, T. L., & Mamourian, A. C. (2006). Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology, 67, 834–842.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Silliman, N. P. (1997). Hierarchical selection models with applications in meta-analysis. Journal of the American Statistical Association, 92, 926–936.CrossRefGoogle Scholar
  61. Sliwinski, M. (2008). Measurement burst designs for social health research. Social and Personality Psychology Compass, 2, 245–261.CrossRefGoogle Scholar
  62. *Smart, C. M., Segalowitz, S. J., Mulligan, B. P., Koudys, J., & Gawryluk, J. (2016). Mindfulness training for older adults with subjective cognitive decline: Results from a pilot randomized controlled trial. Journal of Alzheimer's Disease, 52, 757–774.CrossRefPubMedGoogle Scholar
  63. Snitz, B. E., Lopez, O. L., McDade, E., Becker, J. T., Cohen, A. D., Price, J. C., Mathis, C. A., & Klunk, W. E. (2015). Amyloid-beta imaging in older adults presenting to a memory clinic with subjective cognitive decline: A pilot study. Journal of Alzheimer's Disease, 48(Suppl. 1), S151–S159.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sohlberg, M. M., & Mateer, C. A. (2001). Cognitive rehabilitation: An integrative neuropsychological approach. New York: Guilford.Google Scholar
  65. Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 2015–2028.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurology, 11, 1006–1012.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tan, C.-C., Yu, J.-T., Wang, H.-F., & Tan, L. (2014). Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. Journal of Alzheimer's Disease, 41, 615–631.PubMedGoogle Scholar
  68. *Tsai, A. Y., Yang, M. J., Lan, C. F., & Chen, C. S. (2008). Evaluation of effect of cognitive intervention programs for the community-dwelling elderly with subjective memory complaints. International Journal of Geriatric Psychiatry, 23, 1172–1174.CrossRefPubMedGoogle Scholar
  69. de Waal, H., Stam, C. J., Lansbergen, M. M., Wieggers, R. L., Kamphuis, P. J., Scheltens, P., Maestú, F., & van Straaten, E. C. (2014). The effect of souvenaid on functional brain network organization in patients with mild Alzheimer’s disease: A randomized controlled study. PloS One, 9(1), e86558. doi: 10.1371/journal.pone.0086558.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wilson, K. Y. (2005). The effectiveness of memory training programs in improving the subjective memory characteristics of healthy older adults with memory complaints: A meta-analysis. Unpublished doctoral dissertation.Google Scholar
  71. Winslow, B. T., Onysko, M. K., Stob, C. M., & Hazlewood, K. A. (2011). Treatment of Alzheimer disease. American Family Physician, 83, 1403–1412.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Colette M. Smart
    • 1
    • 2
    Email author
  • Justin E. Karr
    • 1
  • Corson N. Areshenkoff
    • 1
  • Laura A. Rabin
    • 3
  • Carol Hudon
    • 4
    • 5
  • Nicola Gates
    • 6
  • Jordan I. Ali
    • 1
  • Eider M. Arenaza-Urquijo
    • 7
    • 8
    • 9
    • 10
  • Rachel F. Buckley
    • 11
    • 12
    • 13
  • Gael Chetelat
    • 7
    • 8
    • 9
    • 10
  • Harald Hampel
    • 14
    • 15
  • Frank Jessen
    • 16
    • 17
  • Natalie L. Marchant
    • 18
  • Sietske A. M. Sikkes
    • 19
  • Andrea Tales
    • 20
  • Wiesje M. van der Flier
    • 19
  • Linda Wesselman
    • 19
  • and the Subjective Cognitive Decline Initiative (SCD-I) Working Group
  1. 1.Department of PsychologyUniversity of VictoriaVictoriaCanada
  2. 2.Institute on Aging and Lifelong HealthUniversity of VictoriaVictoriaCanada
  3. 3.Brooklyn College and The Graduate Center of The City University of New YorkNew YorkUSA
  4. 4.Universite LavalQuebec CityCanada
  5. 5.Centre de Recherche de l’Institut Universitaire en Santé Mentale de QuébecQuebec CityCanada
  6. 6.University of New South WalesSydneyAustralia
  7. 7.INSERM, U1077CaenFrance
  8. 8.Université de Caen Basse-Normandie UMR-S1077CaenFrance
  9. 9.Ecole Pratique des Hautes Etudes, UMR-S1077CaenFrance
  10. 10.CHU de Caen, U1077CaenFrance
  11. 11.Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneAustralia
  12. 12.Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
  13. 13.Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  14. 14.AXA Research Fund and UPMC Chair, Sorbonne UniversitiesPierre et Marie Curie UniversityParisFrance
  15. 15.Institute of Memory and Alzheimer’s Disease (IM2A) and Brain and Spine Institute (ICM) UMR S 1127, Department of NeurologyPitié-Salpêtrière University HospitalParisFrance
  16. 16.Department of Psychiatry, University of Cologne, Medical FacultyCologneGermany
  17. 17.German Center for Neurodegenerative Diseases (DZNE)Bonn/CologneGermany
  18. 18.Division of PsychiatryUniversity College LondonLondonUK
  19. 19.Alzheimer Center and Department of Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
  20. 20.Swansea UniversitySwanseaUK

Personalised recommendations