Neuropsychology Review

, Volume 25, Issue 3, pp 272–287 | Cite as

Appraising the Role of Iron in Brain Aging and Cognition: Promises and Limitations of MRI Methods

  • Ana M. Daugherty
  • Naftali RazEmail author


Age-related increase in frailty is accompanied by a fundamental shift in cellular iron homeostasis. By promoting oxidative stress, the intracellular accumulation of non-heme iron outside of binding complexes contributes to chronic inflammation and interferes with normal brain metabolism. In the absence of direct non-invasive biomarkers of brain oxidative stress, iron accumulation estimated in vivo may serve as its proxy indicator. Hence, developing reliable in vivo measurements of brain iron content via magnetic resonance imaging (MRI) is of significant interest in human neuroscience. To date, by estimating brain iron content through various MRI methods, significant age differences and age-related increases in iron content of the basal ganglia have been revealed across multiple samples. Less consistent are the findings that pertain to the relationship between elevated brain iron content and systemic indices of vascular and metabolic dysfunction. Only a handful of cross-sectional investigations have linked high iron content in various brain regions and poor performance on assorted cognitive tests. The even fewer longitudinal studies indicate that iron accumulation may precede shrinkage of the basal ganglia and thus predict poor maintenance of cognitive functions. This rapidly developing field will benefit from introduction of higher-field MRI scanners, improvement in iron-sensitive and -specific acquisition sequences and post-processing analytic and computational methods, as well as accumulation of data from long-term longitudinal investigations. This review describes the potential advantages and promises of MRI-based assessment of brain iron, summarizes recent findings and highlights the limitations of the current methodology.


Susceptibility-weighted imaging Relaxometry Caudate Putamen Basal ganglia Striatum Vascular risk factors Neurodegenerative disorders Iron 


  1. Acosta-Cabronero, J., Williams, G. B., Cardenas-Blanco, A., Arnold, R. J., Lupson, V., & Nestor, P. J. (2013). In vivo quantitative susceptibility mapping (QSM) in Alzheimer’s disease. PloS One, 8(11), e81093. doi: 10.1371/journal.pone.0081093.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Adamo, D. E., Daugherty, A. M., & Raz, N. (2014). Brain iron content and grasp force-matching ability in older women. Brain Imaging and Behavior, 8(4), 579–587. doi: 10.1007/s11682-013-9284-6.PubMedCrossRefGoogle Scholar
  3. Anderson, C. M., Kaufman, M. J., Lowen, S. B., Rohan, M., Renshaw, P. F., & Teicher, M. H. (2005). Brain T2 relaxation times correlate with regional cerebral blood volume. MGMA, 181, 3–6.CrossRefGoogle Scholar
  4. Antonini, A., Leenders, K. L., Meier, D., Oertel, M. D., Boesiger, P., & Anliker, M. (1993). T2 relaxation time in patients with Parkinson’s disease. Neurology, 43, 697–700.PubMedCrossRefGoogle Scholar
  5. Aquino, D., Bizzi, A., Grisoli, M., Garavaglia, B., Bruzzone, M. G., Nardocci, N., Savoiardo, M., & Chiapparini, L. (2009). Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology, 252(1), 165–172. doi: 10.1148/radiol.2522081399.PubMedCrossRefGoogle Scholar
  6. Atasoy, H. T., Nuyan, O., Tunc, T., Yorubulut, M., Unal, A. E., & Inan, L. E. (2004). T2-weighted MRI in Parkinson’s disease; substantia nigra pars compacta hypointensity correlates with the clinical scores. Neurology India, 52(3), 332–337.PubMedGoogle Scholar
  7. Bäckman, L., Nyberg, L., Lindenberger, U., Li, S.-C., & Larde, L. (2006). The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neuroscience and Biobehavioral Review, 30(6), 791–807. doi: 10.1016/j.neubiorev.2006.06.005.CrossRefGoogle Scholar
  8. Baker, J. F., & Ghio, A. J. (2009). Iron homeostasis in rheumatic disease. Rheumatology, 48, 1339–1344. doi: 10.1093/rheumatology/kep221.PubMedCrossRefGoogle Scholar
  9. Barbosa, J. H. O., Santos, A. C., Tumas, V., Liu, M., Zheng, W., Haacke, E. M., & Salmon, C. E. G. (2015). Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 and R2*. Magnetic Resonance Imaging. doi: 10.1016/j.mri.2015.02.021.PubMedGoogle Scholar
  10. Bartzokis, G. (2011). Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiology of Aging, 32(8), 1341–1371.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bartzokis, G., Aravagiri, M., Oldendorf, W. H., Mintz, J., & Marder, S. R. (1993). Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores. Magnetic Resonance in Medicine, 29(4), 459–464.PubMedCrossRefGoogle Scholar
  12. Bartzokis, G., Mintz, J., Sultzer, D., Marx, P., Herzberg, J. S., Phelan, C. K., & Marder, S. R. (1994). In vivo MR evaluation of age-related increases in brain iron. American Journal of Neuroradiology, 15(6), 1129–1138.PubMedGoogle Scholar
  13. Bartzokis, G., Cummings, J. L., Markham, C. H., Marmarelis, P. Z., Treciokas, L. J., Tishler, T. A., Marder, S. R., & Mintz, J. (1999). MRI evaluation of brain iron in earlier- and later-onset Parkinson’s disease and normal subjects. Magnetic Resonance Imaging, 17(2), 213–222.PubMedCrossRefGoogle Scholar
  14. Bartzokis, G., Sultzer, D., Cummings, J., Holt, L. E., Hance, D. B., Henderson, V. W., & Mintz, J. (2000). In vivo evaluation of brin iron in Alzheimer disease using magnetic resonance imaging. Archives of General Psychiatry, 57(1), 47–53.PubMedCrossRefGoogle Scholar
  15. Bartzokis, G., Tishler, T. A., Shin, I. S., Lu, P. H., & Cummings, J. L. (2004). Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. The Annals of the New York Academy of Sciences, 1012, 224–236.PubMedCrossRefGoogle Scholar
  16. Bartzokis, G., Lu, P. H., Tishler, T., Peters, D., et al. (2010). Prevalent iron metabolism gene variants associated with increased brain ferritin iron in healthy older men. Journal of Alzheimer’s Disease, 20, 333–341.PubMedCentralPubMedGoogle Scholar
  17. Bartzokis, G., Lu, P., Tingus, K., Peters, D. G., Amar, C. P., Tishler, T. A., Finn, J. P., Willablanca, P., Altshuler, L. L., Mintz, J., Neely, E., & Connor, J. R. (2011). Gender and iron genes may modify associations between brain iron and memory in healthy aging. Neuropsychopharmacology, 36, 1375–1384.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Beard, J. L., Wiesinger, J. A., Li, N., & Connor, J. R. (2005). Brain iron uptake in hypotransferrinemic mice: influence of systemic iron status. Journal of Neuroscience Research, 79(1–2), 254–261.PubMedCrossRefGoogle Scholar
  19. Becerril-Ortega, J., Bordji, K., Fréret, T., Rush, T., & Buisson, A. (2014). Iron overload accelerates neuronal amyloid-β production and cognitive impairment in transgenic mice model of Alzheimer’s disease. Neurobiology of Aging, 35(10), 2288–2301. doi: 10.1016/j.neurobiolaging.2014.04.019.PubMedCrossRefGoogle Scholar
  20. Bender, A. R., & Raz, N. (2015). Normal-appearing cerebral white matter in healthy adults: mean change over 2 years and individual differences in change. Neurobiology of Aging. doi: 10.1016/j.neurobiolaging.2015.02.001.PubMedGoogle Scholar
  21. Berg, D., Kruger, R., RieB, R., & Riederer, P. (2007). Parkinson’s disease. In M. Youdim, P. Riederer, S. Mandel, & L. Battistin (Eds.), Handbook of Neurochemistry and Molecular Neurobiology: Degenerative Diseases of the Nervous System (3rd ed., pp. 1–20). New York: Springer.CrossRefGoogle Scholar
  22. Berry, C., Brosnan, M. J., Fennel, J., Hamilton, C. A., & Dominiczak, A. F. (2001). Oxidative stress and vascular damage in hypertension. Current Opinion in Nephrology and Hypertension, 10(2), 247–255.PubMedCrossRefGoogle Scholar
  23. Bilgic, B., Pfefferbuam, A., Rohlfing, T., Sullivan, E., & Adalsteinsson, E. (2012). MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. NeuroImage, 59(3), 2625–2635. doi: 10.1016/j.neuroimage.2011.08.077.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Bizzi, A., Brooks, R. A., Brunetti, A., et al. (1990). Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths. Radiology, 177, 59–65.PubMedCrossRefGoogle Scholar
  25. Blasco, G., Puig, J., Daunis-I-Estadella, J., Molina, X. L., Xifra, G., Fernández-Aranda, F., Pedraza, S., Ricart, W., Portero-Otín, M., & Fernández-Real, J. (2014). Brain iron overload, insulin resistance and cognitive performance in obese subjects: a preliminary MRI case–control study. Diabetes Care, 37(11), 3076–3083. doi: 10.2337/dc14-0664.PubMedCrossRefGoogle Scholar
  26. Boumezbeur, F., Mason, G. F., de Graaf, R. A., Behar, K. L., Cline, G. W., Shulman, G. I., et al. (2010). Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. Journal of Cerebral Blood Flow & Metabolism, 30, 211–221. doi: 10.1038/jcbfm.2009.197.
  27. Brass, S. D., Chen, N., Mulkern, R., & Baksni, R. (2006). Magnetic resonance imaging of iron deposition in neurological disorders. Topics in Magnetic Resonance Imaging, 17(1), 31–40.PubMedCrossRefGoogle Scholar
  28. Burdo, J. R., & Connor, J. R. (2003). Brain iron uptake and homeostatic mechanisms: an overview. Biometals, 16, 63–75.PubMedCrossRefGoogle Scholar
  29. Callaghan, M. F., Freund, P., Draganski, B., Anderson, E., Cappelletti, M., Chowdhury, R., Diedrichsen, J., Fitzgerald, T. H., Smittenaar, P., Helms, G., Lutti, A., & Weiskopf, N. (2014). Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiology of Aging, 35, 1862–1872. doi: 10.1016/j.neurobiolaging.2014.02.008.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Ceccarelli, A., Flippi, M., Neema, M., Arora, A., Valsasina, P., Rocca, M. A., Healy, B. C., & Bakshi, R. (2009). T2 hypintensity in the deep gray matter of patients with benign multiple sclerosis. Multiple Sclerosis, 15, 678–686. doi: 10.1177/1352458509103611.PubMedCrossRefGoogle Scholar
  31. Cherubini, A., Péran, P., Caltagirone, C., Sabatini, U., & Spalletta, G. (2009). Aging of subcortical nuclei: microstructural, mineralization and atrophy modifications measured in vivo using MRI. NeuroImage, 48, 29–36.PubMedCrossRefGoogle Scholar
  32. Cohen, C. R., Duchesneau, P. M., & Weinstein, M. A. (1980). Calcification of the basal ganglia as visualized by computed tomography. Radiology, 134, 97–99.PubMedCrossRefGoogle Scholar
  33. Connor, J. R., Menzies, S. L., St Martin, S. M., & Mufson, E. J. (1990). Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. Journal of Neuroscience Research, 27, 595–611.PubMedCrossRefGoogle Scholar
  34. Cook, C. I., & Yu, B. P. (1998). Iron accumulation in aging: modulation by dietary restriction. Mechanisms of Ageing and Development, 102(1), 1–13.PubMedCrossRefGoogle Scholar
  35. Daugherty, A. M. (2014). Accumulation of subcortical iron as a modifier of volumetric and cognitive decline in healthy aging: Two longitudinal studies (Doctoral dissertation). Retrieved from ETD Collection AAI3640105.Google Scholar
  36. Daugherty, A., & Raz, N. (2013). Age-related differences in iron content of subcortical nuclei observed in vivo: a meta-analysis. NeuroImage, 70, 113–121. doi: 10.1016/j.neuroimage.2012.12.040.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Daugherty, A. M. & Raz, N. (2015). Iron accumulation over 7 years in the striatum predicts its shrinkage in healthy adults. Conference abstract, Society for Neuroscience Annual Meeting.Google Scholar
  38. Daugherty, A. M., Haacke, E. M., & Raz, N. (2015). Striatal iron content predicts its shrinkage and changes in working memory after two years in healthy adults. The Journal of Neuroscience, 35(17), 6731–6743. doi: 10.1523/JNEUROSCI.4717-14.2015.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Deane, R., Zheng, W., & Zlokovic, B. V. (2004). Brain capillary endothelium and choroid plexus epithelium regulate transport of transferrin-bound and free iron into the rat brain. Journal of Neurochemistry, 88, 813–820.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Deistung, A., Schäfer, A., Schweser, F., Biedermann, U., Turner, R., & Reichenbach, J. R. (2013). Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase- and R2*-imaging at ulta-high magnetic field strength. NeuroImage, 65, 299–314. doi: 10.1016/j.neuroimage.2012.09.055.PubMedCrossRefGoogle Scholar
  41. Dexter, D. T., Jenner, P., Schapira, A. H. V., & Marsden, C. D. (1992). Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. Annals of Neurology, 32, S94–S100.PubMedCrossRefGoogle Scholar
  42. Dhenain, M., Duyckaerts, C., Michot, J.-L., Volk, A., Picq, J.-L., & Boller, F. (1998). Cerebral T2-weighted signal decrease during aging in the mouse lemur primate reflects iron accumulation. Neurobiology of Aging, 19(1), 65–69.PubMedCrossRefGoogle Scholar
  43. Ding, B., Chen, K.-M., Ling, J.-W., Sun, F., et al. (2009). Correlation of iron in the hippocampus with MMSE in patients with Alzheimer’s disease. Journal of Magnetic Resonance Imaging, 29, 793–798.PubMedCrossRefGoogle Scholar
  44. Dröge, W., & Schipper, H. M. (2007). Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell, 6, 361–370.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Duyn, J. H., van Gelderen, P., Li, T. Q., de Zwart, J. A., Koretsky, A. P., & Fukunaga, M. (2007). High-field MRI of brain cortical substructure based on signal phase. Proceedings of the National Academy of Sciences of the United States of America, 104, 11796–11801.PubMedCentralPubMedCrossRefGoogle Scholar
  46. El Tannir El Tayara, N., Delatour, B., Le Cudennec, C., Guegan, M., Volk, A., & Dhenain, M. (2006). Age-related evolution of amyloid burden, iron load, and MR relaxation times in a transgenic mouse model of Alzheimer’s disease. Neurobiology of Disease, 22, 199–208.CrossRefGoogle Scholar
  47. Erikson, K. M., Pinero, D. J., Connor, J. R., & Beard, J. L. (1997). Regional brain iron, ferritin and transferrin concentrations during iron deficiency and iron repletion in developing rats. The Journal of Nutrition, 127(10), 2030–2038.PubMedGoogle Scholar
  48. Feng, W., Neelavalli, J., & Haacke, E. M. (2013). Catalytic multiecho phase unwrapping scheme (CAMPUS) in multiecho gradient echo imaging: removing phase wraps on a voxel-by-voxel basis. Magnetic Resonance in Medicine, 70(1), 117–126. doi: 10.1002/mrm.24457.PubMedCrossRefGoogle Scholar
  49. Finch, C. E., & Crimmins, E. M. (2004). Inflammatory exposure and historical changes in human life-spans. Science, 305, 1736–1739.PubMedCrossRefGoogle Scholar
  50. Finch, C. E., & Morgan, T. E. (2007). Systemic inflammation, infection, ApoE alleles, and Alzheimer disease: a position paper. Current Alzheimer Research, 4(2), 185–189.PubMedCrossRefGoogle Scholar
  51. Finch, C. E., Foster, J. R., & Mirsky, A. E. (1969). Ageing and the regulation of cell activities during exposure to cold. Journal of General Physiology, 54, 690–712.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Alzheimer’s Disease Neuroimaging Initiative. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117, 20–40. doi: 10.1016/j.pneurobio.2014.02.004.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Franklin, S. S., Gustin, W., 4th, Wong, N. D., Larson, M. G., Weber, M. A., Kannel, W. B., & Levy, D. (1997). Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study. Circulation, 96(1), 308–315.PubMedCrossRefGoogle Scholar
  54. Fukunaga, M., Li, T. Q., van Gelderen, P., de Zwart, J. A., Shmueli, K., Yao, B., Lee, J., Maric, D., Aronova, M. A., Zhang, G., Leapman, R. D., Schenck, J. F., Merkle, H., & Duyn, J. H. (2010). Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proceedings of the National Academy of Sciences of the United States of America, 107, 3834–3839.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Ghadery, C., Pirpamer, L., Hofer, E., Langkammer, C., Petrovic, K., Loitfelder, M., Schwingenschuh, P., Seiler, S., Duering, M., Jouvent, E., Schmidt, H., Fazekas, F., Mangin, J. F., Chabriat, H., Dichgans, M., Ropele, S., & Schmidt, R. (2015). R2* mapping for brain iron: associations with cognition in normal aging. Neurobiology of Aging, 36, 925–932. doi: 10.1016/j.neurobiolaging.2014.09.013.PubMedCrossRefGoogle Scholar
  56. Glasser, M. F., & Van Essen, D. C. (2011). Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. The Journal of Neuroscience, 31(32), 11597–11616. doi: 10.1523/JNEUROSCI.2180-11.2011.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Gomori, J., & Grossman, R. (1993). The relation between regional brain iron and T2 shortening. American Journal of Neuroradiology, 14, 1049–1050.PubMedGoogle Scholar
  58. Gorell, J. M., Ordidge, R. J., Brown, G. G., Deniau, J.-C., Muderer, N. M., & Helpern, J. A. (1995). Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology, 45(6), 1138–1143.PubMedCrossRefGoogle Scholar
  59. Grammas, P. (2011). Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. Journal of Neuroinflammation, 8, 26. doi: 10.1186/1742-2094-8-26.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Granold, M., Moosmann, B., Staib-Lasarzik, I., Arendt, T., del Rey, A., Engelhard, K., Behl, C., & Hajieva, P. (2015). High membrane protein oxidation in the human cerebral cortex. Redox Biology, 4, 200–207.PubMedCrossRefGoogle Scholar
  61. Gregory, A., & Hayflick, S. (2014). Neurodegeneration with brain iron accumulation disorders overview. In R. A. Pagon, M. P. Adam, H. H. Ardinger, S. E. Wallace, A. Amemiya, L. J. H. Bean, T. D. Bird, C. R. Dolan, C. T. Fong, R. J. H. Smith, & K. Stephens (Eds.), GeneReviews (pp. 1–22). Seattle: University of Washington, Seattle.Google Scholar
  62. Grundy, S. M., Cleeman, J. I., Daniels, S. R., Donato, K. A., Eckel, R. H., Franklin, B. A., Gordon, D. J., Krauss, R. M., Savage, P. J., Smith, S. C., Jr., Spertus, J. A., & Costa, F. (2005). Diagnosis and management of the metabolic syndrome: an American heart association/national heart, lung, and blood institute scientific statement. Circulation, 112, 2735–2752.PubMedCrossRefGoogle Scholar
  63. Haacke, E. M., Cheng, N. Y. C., House, M. J., Liu, Q., Neelaavalli, J., Ogg, R. J., Khan, A., Ayaz, M., Kirsch, W., & Obenaus, A. (2005). Imaging iron stores in the brain using magnetic resonance imaging. Magnetic Resonance Imaging, 23(1), 1–25.PubMedCrossRefGoogle Scholar
  64. Haacke, E. M., Ayaz, M., Khan, A., Manova, E. S., Krishnamurthy, B., Gollapalli, L., Ciulla, C., Kim, I., Petersen, F., & Kirsch, W. (2007). Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. Journal of Magnetic Resonance Imaging, 26(2), 256–264.PubMedCrossRefGoogle Scholar
  65. Haacke, E. M., Tang, J., Neelavalli, J., & Cheng, Y. C. N. (2010). Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. Journal of Magnetic Resonance Imaging, 32, 663–676.PubMedCentralPubMedCrossRefGoogle Scholar
  66. Haacke, E. M., Liu, S., Buch, S., Zheng, W., Wu, D., & Ye, Y. (2015). Quantitative susceptibility mapping: current status and future directions. Magnetic Resonance Imaging, 33, 1–25. doi: 10.1016/j.mri.2014.09.004.PubMedCrossRefGoogle Scholar
  67. Haider, L., Simeonidou, C., Steinberger, G., Hametner, S., Grigoriadis, N., Deretzi, G., Kovacs, G. G., Kutzeinigg, A., Lassmann, H., & Frischer, J. M. (2014). Multiple sclerosis deep gray matter: the relation between demyelination, neurodegeneration, inflammation and iron. Journal of Neurology, Neurosurgery, and Psychiatry, 85(12), 1386–1395. doi: 10.1136/jnnp-2014-307712.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Hallervorden, J., & Spatz, H. (1922). Eigenartige Erkrankung im extrapyramidalen System mit besonderer Beteiligung des Globus pallidus und der Substantia nigra.: Ein Beitrag zu den Beziehungen zwischen diesen beiden Zentren. [Peculiar disease in extrapyramidal system with specific involvement of the globus pallidus and the substantia nigra]. Zeitschrift für die gesamte Neurologie und Psychiatrie, 79, 254–302.Google Scholar
  69. Hallgren, B., & Sourander, P. (1958). The effect of age on the non-haemin iron in the human brain. Journal of Neurochemistry, 3, 41–51.PubMedCrossRefGoogle Scholar
  70. Halliwell, B. (1992). Iron and damage to biomolecules. In Lauffer (Ed.), Iron and Human Disease (pp. 209–236). Roca Baton: CRC Press.Google Scholar
  71. Hare, D., Ayton, S., Bush, A., & Lei, P. (2013). A delicate balance: iron metabolism and diseases of the brain. Frontiers in Aging Neuroscience, 5, 34.PubMedCentralPubMedCrossRefGoogle Scholar
  72. Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology, 11(3), 298–300.PubMedCrossRefGoogle Scholar
  73. Hirai, W., Korogi, Y., Sakamoto, Y., Hamatake, S., Ikushima, I., & Takahashi, M. (1996). T2 shortening in the motor cortex: effect of aging and cerebrovascular diseases. Radiology, 199, 799–803.PubMedCrossRefGoogle Scholar
  74. Hossein Sadrzadeh, S. M., & Saffari, Y. (2004). Iron and brain disorders. American Journal of Clinical Pathology, 121(Suppl 1), S64–S70. doi: 10.1309/EW0121LG9N3N1YL4.Google Scholar
  75. House, E., Collingwood, J., Khan, A., Korchazkina, O., Berthon, G., & Exley, C. (2004). Aluminum, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Abeta42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. Journal of Alzheimer’s Disease, 6(3), 291–301.PubMedGoogle Scholar
  76. House, M. J., St Pierre, T. G., Foster, J. K., Martins, R. N., & Clarnette, R. (2006). Quantitative MR imaging R2 relaxometry in elderly participants reporting memory loss. AJNR, 27, 430–439.PubMedGoogle Scholar
  77. Jahanshad, N., Rajagopalan, P., & Thompson, P. M. (2013). Neuroimaging, nutrition, and iron-related genes. Cellular and Molecular Life Sciences, 70, 4449–4461. doi: 10.1007/s00018-013-1369-2.PubMedCentralPubMedCrossRefGoogle Scholar
  78. Janaway, B. M., Simpson, J. E., Hoggard, N., Highley, J. R., Forster, G., Drew, D., Gebril, O. H., Matthews, F. E., Bryane, C., Wharton, S. B., Ince, P. G., & MRC Cognitive Function and Ageing Neuropathology Study. (2014). Brain haemosiderin in older people: pathological evidence for an ischemic origin of magnetic resonance imaging (MRI) microbleeds. Neuropathology and Applied Neurobiology, 40(3), 258–269. doi: 10.111/nan.12062.PubMedCentralPubMedCrossRefGoogle Scholar
  79. Joseph, J. C., Shukitt-Hale, B., Denisova, N. A., Bielinski, D., Martin, A., McEwen, J. J., & Bickford, P. C. (1999). Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. The Journal of Neuroscience, 19(18), 8114–8121.PubMedGoogle Scholar
  80. Joseph, J. A., Shukitt-Hale, B., Casadesus, G., & Fisher, D. (2005). Oxidative stress and inflammation in brain aging: nutritional considerations. Neurochemical Research, 30(6/7), 927–935.PubMedCrossRefGoogle Scholar
  81. Kemper, T. L. (1994). Neuroanatomical and neuropathological changes during aging and in dementia. In: Clinical neurology of aging, 2nd ed. (Albert ML, Knoepfel EJE, eds, pp. 3–67). New York: Oxford University Press.Google Scholar
  82. Khabipova, D., Wiaux, Y., Gruetter, R., & Marques, J. P. (2015). A modulated closed form solution for quantitative susceptibility mapping—a thorough evaluation and comparison to iterative methods based on edge prior knowledge. NeuroImage, 107, 163–174. doi: 10.1016/j.nueorimage.2014.11.038.PubMedCrossRefGoogle Scholar
  83. Khalil, M., Langkammer, C., Pichler, A., Pinter, D., Gattringer, T., Bachmaier, G., Ropele, S., Fuchs, S., Enzinger, C., & Fazekas, F. (2015). Dynamics of brain iron levels in multiple sclerosis: a longitudinal 3 T MRI study. Neurology, 84(24), 1–7. doi: 10.1212/WNL.0000000000001679.CrossRefGoogle Scholar
  84. Kienzel, E., Pychinger, L., Jellinger, K., Linert, W., Stachelberger, H., & Jameson, R. (1995). The role of transition metals in the pathogenesis of Parkinson’s disease. Journal of the Neurological Sciences, 134(Suppl), 69–78.CrossRefGoogle Scholar
  85. Kirkwood, T. B., Feder, M., Finch, C. E., Franceschi, C., Globerson, A., Klingenberg, C. P., LaMarco, K., Omholt, S., & Westendorp, R. G. (2005). What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment? Mechanisms if Ageing and Development, 126, 439–443.CrossRefGoogle Scholar
  86. Kosta, P., Argyropoulou, M. I., Markoula, S., & Konitsiotis, S. (2006). MRI evaluation of the basal ganglia size and iron content in patients with Parkinson’s disease. Journal of Neurology, 253, 26–32.PubMedCrossRefGoogle Scholar
  87. Langkammer, C., Krebs, N., Goessler, W., Scheurer, E., Yen, K., Fazekas, F., & Ropele, S. (2012a). Susceptibility induced gray-white matter MRI contrast in the human brain. NeuroImage, 59, 1413–1419.PubMedCentralPubMedCrossRefGoogle Scholar
  88. Langkammer, C., Schweser, F., Krebs, N., Deistung, A., Goessler, W., Scheurer, E., Sommer, K., Reishofer, G., Yen, K., Fazekas, F., Ropele, S., & Reichenbach, J. R. (2012b). Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage, 62, 1593–1599. doi: 10.1016/j.neuroimage.2012.05.049.PubMedCentralPubMedCrossRefGoogle Scholar
  89. Langkammer, C., Ropele, S., Pirpamer, L., Faezekas, F., & Schmidt, R. (2014). MRI for iron mapping in Alzheimer’s disease. Neurodegenerative Diseases, 13(2–3), 189–191. doi: 10.1159/000353756.PubMedCrossRefGoogle Scholar
  90. Langkammer, C., Bredies, K., Poser, B. A., Barth, M., Reishofer, G., Fan, A. P., Bilgic, B., Fazekas, F., Mainero, C., & Ropele, S. (2015). Fast quantitative susceptibility mapping using 3D EPI and total generalizaed variation. NeuroImage, 111, 622–630.PubMedCrossRefGoogle Scholar
  91. Lauffer, R. (Ed.). (1992). Introduction. Iron, aging, and human disease: Historical background and new hypotheses. In: Iron and Human Disease (pp. 1–22). Boca Raton, FL: CRC Press.Google Scholar
  92. Lee, J., Shmueli, K., Fukunaga, M., van Gelderen, P., Merkle, H., Silva, A. C., & Duyn, J. H. (2010). Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure. Proceedings of the National Academy of Sciences of the United States of America, 107, 5130–5135.PubMedCentralPubMedCrossRefGoogle Scholar
  93. Lehmann, D. J., Worwood, M., Ellis, R., Wimhurst, V. L. J., Merryweather-Clarke, A. T., Warden, D. R., Smith, A. D., & Robson, K. J. H. (2006). Iron genes, iron load and risk of Alzheimer’s disease. Journal of Medical Genetics, 43, e52. doi: 10.1136/jmg.2006.040519.PubMedCentralPubMedCrossRefGoogle Scholar
  94. Li, W., Wu, B., & Liu, C. (2011). Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. NeuroImage, 55, 1645–1656. doi: 10.1016/j.neuroimage.2010.11.088.PubMedCentralPubMedCrossRefGoogle Scholar
  95. Li, W., Wu, B., Batrachenko, A., Bancroft-Wu, V., Morey, R. A., Shashi, V., Langkammer, C., De Bellis, M. D., Ropele, S., Song, A. W., & Liu, C. (2014). Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan. Human Brain Mapping, 35, 2698–2713. doi: 10.1002/hbm.22360.PubMedCentralPubMedCrossRefGoogle Scholar
  96. Li, W., Wang, N., Yu, F., Han, H., Cao, W., Romero, R., Tantiwongkosi, B., Duong, T. Q., & Liu, C. (2015). A method for estimating and removing streaking artifacts in quantitative susceptibility mapping. NeuroImage, 108, 111–122. doi: 10.1016/j.neuroimage.2014.12.043.PubMedCentralPubMedCrossRefGoogle Scholar
  97. Lim, I. A., Li, X., Jones, C. K., Farrell, J. A. D., Vikram, D. S., & van Zijl, P. C. M. (2014). Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR. NeuroImage, 86, 265–279. doi: 10.1016/j.neuroimage.2013.09.072.PubMedCentralPubMedCrossRefGoogle Scholar
  98. Lindenberger, U., von Oertzen, T., Ghisletta, P., & Hertzog, C. (2011). Cross-sectional age variance extraction: what’s change got to do with it? Psychology and Aging, 26(1), 34–47. doi: 10.1037/a0020525.PubMedCrossRefGoogle Scholar
  99. Liu, C., Li, W., Johnson, A., & Wu, B. (2011). High-field (9.4 T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility. NeuroImage, 56, 930–938. doi: 10.1016/j.neuroimage.2011.02.024.PubMedCentralPubMedCrossRefGoogle Scholar
  100. Liu, J.-Y., Ding, J., Dong, L., He, Y.-F., Dai, Z., Chen, C.-Z., Cheng, W.-Z., Wang, H., Zhou, J., & Wang, X. (2013). T2* MRI of minimal hepatic encephalopathy and cognitive correlates in vivo. Journal of Magnetic Resonance Imaging, 37, 179–186. doi: 10.1002/jmri.23811.PubMedCrossRefGoogle Scholar
  101. Lodygensky, G. A., Marques, J. P., Maddage, R., Perroud, E., Sizonenko, S. V., Hüppi, P. S., & Gruetter, R. (2012). In vivo assessment of myelination by phase imaging at high magnetic field. NeuroImage, 59, 1979–1987.PubMedCrossRefGoogle Scholar
  102. Loitfelder, M., Seiler, S., Schwingenschuh, P., & Schmidt, R. (2012). Cerebral microbleeds: a review. Panimerva Medica, 54(3), 149–160.Google Scholar
  103. Lorio, S., Lutti, A., Kherif, F., Ruef, A., Dukart, J., Chowdhury, R., Frackowiak, R. S., Ashburner, J., Helms, G., Weiskopf, N., & Draganski, B. (2014). Disentangling in vivo the effects of iron content and atrophy on the ageing human brain. NeuroImage, 103, 280–289.PubMedCentralPubMedCrossRefGoogle Scholar
  104. Luo, Z., Zhuang, X., Kumar, D., Wu, X., Yue, C., Han, C., & Lv, J. (2013). The correlation of hippocampal T2-mapping with neuropsychology test in patients with Alzheimer’s disease. PLOS One, 8(9), e76203. doi: 10.1371/journal.pone.0076203.PubMedCentralPubMedCrossRefGoogle Scholar
  105. Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12(1), 23–44.PubMedCrossRefGoogle Scholar
  106. Mills, E., Dong, X., Wang, F., & Xu, H. (2010). Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Medicinal Chemistry, 2(1), 51–72.PubMedCentralPubMedCrossRefGoogle Scholar
  107. Moos, T., & Morgan, E. H. (2004). The metabolism of neuronal iron and its pathogenic role in neurologic disease: review. Annals of the New York Academy of Sciences, 1012, 14–26.PubMedCrossRefGoogle Scholar
  108. Morita, R., Yoshii, M., Nakajima, K., Kohsaka, T., Miki, M., & Torizuka, K. (1981). Clinical evaluation of serum ferritin to iron ratio in malignant diseases. European Journal of Nuclear Medicine, 6(7), 331–336.PubMedCrossRefGoogle Scholar
  109. Morris, C. M., Candy, J. M., Keith, A. B., Oakley, A. E., Taylor, G. A., Pullen, R. G., Bloxham, C. A., Gocht, A., & Edwardson, J. A. (1992). Brain iron homeostasis. Journal of Inorganic Biochemistry, 47, 257–265.PubMedCrossRefGoogle Scholar
  110. Nandar, W., & Connor, J. R. (2011). HFE gene variants affect iron in the brain. Journal of Nutrition, 141, 729S–739S. doi: 10.3945/jn.110.130351.PubMedCrossRefGoogle Scholar
  111. Nandigam, R. N. K., Viswanathan, A., Delgado, P., Skehan, M. E., Smith, E. E., Rosand, J., Greenberg, S. M., & Dickerson, B. C. (2009). MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR, 30(2), 338–343. doi: 10.3174/ajnr.A1355.PubMedCentralPubMedCrossRefGoogle Scholar
  112. Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Science, 87, 9868–9872.CrossRefGoogle Scholar
  113. Ogg, R. J., Langston, J. W., Haacke, E. M., Steen, R. G., & Taylor, J. S. (1999). The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magnetic Resonance Imaging, 17(8), 1141–1148.PubMedCrossRefGoogle Scholar
  114. Ordidge, R. J., Gorell, J. M., Deniau, J. C., Knight, R. A., & Helpern, J. A. (1994). Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 tesla. Magnetic Resonance in Medicine, 32, 335–341.PubMedCrossRefGoogle Scholar
  115. Pauling, L., & Coryell, C. D. (1936). The magnetic properties and structure of the hemochromogens and related substances. Proceedings of the National Academy of Sciences of the United States of America, 22(3), 159–163.PubMedCentralPubMedCrossRefGoogle Scholar
  116. Penke, L., Hernandéz, M. C. V., Maniega, S. M., Gow, A. J., Murray, C., Starr, J. M., Bastin, M. E., Deary, I. J., & Wardlaw, J. M. (2012). Brain iron deposits are associated with general cognitive ability and cognitive aging. Neurobiology of Aging, 33, 510–517. doi: 10.1016/j.neurobiolaging.2010.04.032.PubMedCrossRefGoogle Scholar
  117. Péran, P., Cherubini, A., Luccichenti, G., Hagberg, G., Démonet, J. F., Rascol, O., Celsis, P., Caltagirone, C., Spalletta, G., & Sabatini, U. (2009). Volume and iron content in the basal ganglia and thalamus. Human Brain Mapping, 30, 2667–2675.PubMedCrossRefGoogle Scholar
  118. Pfefferbaum, A., Adalsteinsson, E., Rohfling, T., & Sullivan, E. V. (2009). MRI estimates of brain iron concentration in normal aging: comparison of field-dependent (FDRI) and phase (SWI) methods. NeuroImage, 47(2), 493–500. doi: 10.1016/j.neuroimage.2009.05.006.PubMedCentralPubMedCrossRefGoogle Scholar
  119. Pfefferbaum, A., Adalsteinsson, E., Rohlfing, T., & Sullivan, E. V. (2010). Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiology of Aging, 31(3), 482–500. doi: 10.1016/j.neurobiolaging.2008.04.013.PubMedCentralPubMedCrossRefGoogle Scholar
  120. Pfefferbaum, A., Rogosa, D. A., Rosenbloom, M. J., Chu, W., Sassoon, S. A., Kemper, C. A., Deresinski, S., Rohlfing, T., Zahr, N. M., & Sullivan, E. V. (2014). Accelerated aging of selective brain structures in human immunodeficiency virus infection: a controlled, longitudinal magnetic resonance imaging study. Neurobiology of Aging, 35(7), 1755–1768. doi: 10.1016/j.neurobiolaging.2014.01.008.PubMedCentralPubMedCrossRefGoogle Scholar
  121. Pinter, D., Khali, M., Pichler, A., Langkammer, C., Ropele, S., Marschik, P. B., Fuchs, S., Fazekas, F., & Enzinger, C. (2015). Predictive value of different conventional and non-conventional MRI-parameters for specific domains of cognitive function in multiple sclerosis. Neuroimage: Clinical, 7, 715–720. doi: 10.1016/j.nicl.2015.02.023.CrossRefGoogle Scholar
  122. Poynton, C. B., Jenkinson, M., Adalsteinsson, E., Sullivan, E. V., Pfefferbaum, A., & Wells, W., III. (2015). Quantitative susceptibility mapping by inversion of a perturbation field model: correlation with brain iron in normal aging. IEEE Transactions on Medical Imaging, 34(1), 339–353. doi: 10.1109/TMI.2014.2358552.PubMedCentralPubMedCrossRefGoogle Scholar
  123. Pujol, J., Junque, C., Vendrell, P., Grau, J. M., Marti-Vilalta, J. L., Olivé, C., & Gili, J. (1992). Biological significance of iron-related magnetic resonance imaging changes in the brain. Archives of Neurology, 49(7), 711–717.PubMedCrossRefGoogle Scholar
  124. Qin, Y., Zhu, W., Zhan, C., Zhao, L., Wang, J., Tian, Q., & Wang, W. (2011). Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2’ mapping. Journal of Huazhong University of Science and Technology [Medical Sciences], 31(4), 578–585.CrossRefGoogle Scholar
  125. Quintana, C., Bellefqih, S., Laval, J. Y., Guerquin-Kern, J. L., Wu, T. D., Avila, J., Ferrer, I., Aranz, R., & Patiño, C. (2006). Study of the localization of iron, ferritin, and hemosedrin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. Journal of Structural Biology, 153, 42–54.PubMedCrossRefGoogle Scholar
  126. Raven, E. P., Lu, P. H., Tishler, T. A., Heydari, P., & Bartzokis, G. (2013). Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. Journal of Alzheimer’s Disease, 37(1), 127–136. doi: 10.3233/JAD-130209.PubMedGoogle Scholar
  127. Raz, N. & Kennedy, K. M. (2009). A systems approach to age-related change: Neuroanatomic changes, their modifiers, and cognitive correlates. In: W. Jagust, & M. D’Esposito. Imaging the Aging Brain. (Eds.) (pp. 43-70.) New York, NY: Oxford University Press.Google Scholar
  128. Raz, N., & Lindenberger, U. (2011). News of cognitive cure for age-related brain shrinkage is premature: a comment on Burgmans et al., (2009). Neuropsychology, 24(2), 255–257.CrossRefGoogle Scholar
  129. Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., Dhale, C., Gerstorf, D., & Acker, J. D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences, and modifiers. Cerebral Cortex, 15, 1676–1689.PubMedCrossRefGoogle Scholar
  130. Raz, N., Rodrigue, K. M., & Haacke, E. M. (2007). Brain aging and its modifiers: Insights from in vivo neuromophometry and susceptibility weighted imaging. Annals of the New York Academy of Sciences, 1097, 84–93.PubMedCentralPubMedCrossRefGoogle Scholar
  131. Raz, N., Ghisletta, P., Rodrigue, K., Kennedy, K., & Lindenberger, U. (2010). Trajectories of brain aging in middle-age and older adults: regional and individual differences. NeuroImage, 51(2), 501–511.PubMedCentralPubMedCrossRefGoogle Scholar
  132. Recalcati, S., Minotti, G., & Cairo, G. (2010). Iron regulatory proteins: from molecular mechanisms to drug development. Antioxidants and Redox Signaling, 13(10), 1593–1616. doi: 10.1089/ars.2009.2983.PubMedCrossRefGoogle Scholar
  133. Reeve, A., Simcox, E., & Turnbull, D. (2014). Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Research Reviews, 14, 19–30. doi: 10.1016/j.arr.2014.01.004.PubMedCentralPubMedCrossRefGoogle Scholar
  134. Rival, T., Page, R. M., Chandraratna, D. S., Sendall, T. J., Ryder, E., Liu, B., Lewis, H., Rosahl, T., Hider, R., Camargo, L. M., Shearman, M. S., Crowther, D. C., & Lomas, D. A. (2009). Fenton chemistry and oxidative stress mediate the toxicity of the B-amyloid peptide in a Drosophila model of Alzheimer’s disease. European Journal of Neuroscience, 29, 1335–1347.PubMedCentralPubMedCrossRefGoogle Scholar
  135. Rockwood, K., Mogilner, A., & Mitnitski, A. (2004). Changes with age in the distribution of a frailty index. Mechanisms of Ageing and Development, 125, 517–519.PubMedCrossRefGoogle Scholar
  136. Rodrigue, K. M., Haacke, E. M., & Raz, N. (2011). Differential effects of age and history of hypertension of regional brain volumes and iron. NeuroImage, 54, 750–759. doi: 10.1016/j.neuroimage.2010.09.068.PubMedCentralPubMedCrossRefGoogle Scholar
  137. Rodrigue, K. M., Daugherty, A. M., Haacke, E. M., & Raz, N. (2012). The role of hippocampal iron content and hippocampal volume in age-related differences in memory. Cerebral Cortex, 23(7), 1533–1541. doi: 10.1093/cercor/bhs139.PubMedCentralPubMedCrossRefGoogle Scholar
  138. Rudko, D. A., Solovey, I., Gati, J. S., Kremenchutzky, M., & Menon, R. S. (2014). Multiple sclerosis: improved identification ofdisease-relevant changes in gray and white matter by using susceptibility-based MR imaging. Radiology, 272(3), 851–864. doi: 10.1148/radiol.14132475.PubMedCrossRefGoogle Scholar
  139. Salgado, J. C., Olivera-Nappa, A., Gerdtzen, Z. P., Tapia, V., Theil, E. C., Conca, C., & Nuñez, M. T. (2010). Mathematical modeling of the dynamic storage of iron in ferritin. BMC Systems Biology, 4, 147.PubMedCentralPubMedCrossRefGoogle Scholar
  140. Schafer, A., Wharton, S., Gowland, P., & Bowtell, R. (2009). Using magnetic field simulation to study susceptibility-related phase contrast in gradient echo MRI. NeuroImage, 48, 126–137.PubMedCrossRefGoogle Scholar
  141. Schenck, J. (1995). Imaging of brain iron by magnetic resonance: T2 relaxation at different field strengths. Journal of the Neurological Sciences, 134(Suppl), 10–18.PubMedCrossRefGoogle Scholar
  142. Schenck, J. F., & Zimmerman, E. A. (2004). High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR in Biomedicine, 17, 433–445. doi: 10.1002/nbm.922.PubMedCrossRefGoogle Scholar
  143. Schenker, C., Meier, D., Wichmann, W., Boesiger, P., & Valavanis, A. (1993). Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen. Neuroradiology, 35, 119–124.PubMedCrossRefGoogle Scholar
  144. Schipper, H. M. (2012). Neurodegeneration with brain iron accumulation - clinical syndromes and neuroimaging. Biochimica et Biophysica Acta, 1822, 350–360. doi: 10.1016/j.bbadis.2011.06.016.PubMedCrossRefGoogle Scholar
  145. Schrag, M., Mueller, C., Oyoyo, U., & Kirsch, W. M. (2011). Iron, zinc, and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Progress in Neurobiology, 94(3), 296–306. doi: 10.1016/j.pneurobio.2011.05.001.PubMedCentralPubMedCrossRefGoogle Scholar
  146. Schwesser, F., Deistung, A., Lehr, B. W., & Reichenbach, J. R. (2011). Quantiative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? NeuroImage, 54, 2789–2807. doi: 10.1016/j.neuroimage.2010.10.070.CrossRefGoogle Scholar
  147. Schwesser, F., Sommer, K., Deistung, A., & Reichenbach, J. R. (2012). Quantitative susceptibility mapping for investigating subtle susceptibility variation in the human brain. NeuroImage, 62, 2083–2100. doi: 10.1016/j.neuroimage.2012.05.067.CrossRefGoogle Scholar
  148. Siemonsen, S., Finsterbusch, J., Matschke, J., Loernzen, A., Ding, X.-Q., & Fiehler, J. (2008). Age-dependent normal values of T2and T2’ in brain parenchyma. American Journal of Neuroradiology, 29, 950–955.PubMedCrossRefGoogle Scholar
  149. Singh, A., Isaac, A. O., Luo, X., Mohan, M. L., Cohen, M. L., Chen, F., Kong, Q., Bartz, J., & Singh, N. (2009). Abnormal brain iron homeostasis in human and animal prion disorders. PLoS Pathogens, 5, e1000336.PubMedCentralPubMedCrossRefGoogle Scholar
  150. Smith, M. A., & Perry, G. (1995). Free radical damage, iron, and Alzheimer’s disease. Journal of the Neurological Sciences, 134(Suppl), 92–94.PubMedCrossRefGoogle Scholar
  151. Sohal, R. S., & Orr, W. C. (2012). The redox stress hypothesis of aging. Free Radical Biology and Medicine, 52(3), 539–555. doi: 10.1016/j.freeradbiomed.2011.10.455.PubMedCentralPubMedCrossRefGoogle Scholar
  152. Stankiewicz, J., Panter, S. S., Neema, M., Arora, A., Batt, C., & Bakshi, R. (2007). Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics, 4, 371–386.PubMedCentralPubMedCrossRefGoogle Scholar
  153. Stiles, J., & Jernigan, T. L. (2010). The Basics of brain development. Neuropsychological Review, 20, 327–348. doi: 10.1007/s11065-010-9148-4.CrossRefGoogle Scholar
  154. Sullivan, E. V., Adalsteinsson, E., Rohlfing, T., & Pfefferbaum, A. (2009). Relevance of iron deposition in deep gray matter brain structures of cognitive and motor performance in healthy elderly men and women: exploratory findings. Brain Imaging and Behavior, 3, 167–175. doi: 10.1007/s11682-008-9059-7.PubMedCentralPubMedCrossRefGoogle Scholar
  155. Sun, H., Walsh, A. J., Lebel, R. M., Belvins, G., Catz, I., Lu, J.-Q., Johnson, E. S., Emery, D. J., Warren, K. G., & Wilman, A. H. (2015). Validation of quantitative susceptibility mapping with Perls’ iron staining for subcortical gray matter. Neuroimage, 105, 486–492. doi: 10.1016/j.neuroimage.2014.11.010.PubMedCrossRefGoogle Scholar
  156. Thomas, L. O., Boyko, O. B., Anthony, D. C., & Burger, P. C. (1993). MR detection of brain iron. American Journal of Neuroradiology, 14(5), 1043–1048.PubMedGoogle Scholar
  157. Todorich, B., Pasquini, J. M., Garcia, C. I., Paez, P. M., & Connor, J. R. (2009). Oligodendrocytes and myelination: the role of iron. Glia, 57, 467–478. doi: 10.1002/glia.20784.PubMedCrossRefGoogle Scholar
  158. Ulla, M., Bonny, J. M., Ouchchane, L., Rieu, I., Claise, B., & Durif, F. (2013). Is R2* a new MRI biomarker for the progression of Parkinson’s disease? A longitudinal follow-up. PloS One, 8(3), e57904. doi: 10.1371/journal.pone.0057904.PubMedCentralPubMedCrossRefGoogle Scholar
  159. Urrutia, P. J., Mena, N. P., & Núñez, M. T. (2014). The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Frontiers in Pharmacology, 5, 38. doi: 10.3389/fphar.2014.00038.PubMedCentralPubMedCrossRefGoogle Scholar
  160. van Rooden, S., Buijs, M., van Vilet, M. E., Versluis, M. J., Webb, A. G., Oleksik, A. M., van de Wiel, L., Middlekoop, H. A. M., Jan Baluw, G., Weverling-Rynsburger, A. W. E., Goos, J. D. C., van der Flier, W. M., Koene, T., Scheltens, P., Barkhof, F., van de Rest, O., Slagboom, P. E., van Buchem, M. A., & van der Grond, J. (2014). Cortical phase changes measured using 7-T MRI in subjects with subjective cognitive impairment, and their association with cognitive function. NMR in Biomedicine. doi: 10.1002/nbm.3248.PubMedGoogle Scholar
  161. Vymazal, J., Brooks, R. A., Patronas, N., Hajek, M., Bulte, J. W. M., & Di Chiro, G. (1995). Magnetic resonance imaging of brain iron in health and disease. Journal of the Neurological Sciences, 134(Suppl), 19–26.PubMedCrossRefGoogle Scholar
  162. Walsh, A. J., Belvins, G., Lebel, R. M., Seres, P., Emery, D. J., & Wilman, A. H. (2014). Longitudinal MR imaging of iron in multiple sclerosis: an imaging marker of disease. Radiology, 270(1), 186–196.PubMedCrossRefGoogle Scholar
  163. Wang, Y., & Liu, T. (2015). Qualitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magnetic Resonance in Medicine, 73, 82–101. doi: 10.1002/mrm.25358.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Wang, D., Li, Y. Y., Luo, J. H., & Li, Y. H. (2014). Age-related iron deposition in the basal ganglia of controls and Alzheimer disease patients quantified using susceptibility weighted imaging. Archives of Gerontology and Geriatrics, 59, 439–449. doi: 10.1016/j.archger.2014.04.002.PubMedCrossRefGoogle Scholar
  165. Ward, R. J., Zucca, F. A., Duyn, J. H., Crichton, R. R., & Zecca, L. (2014). The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurology, 13, 1045–1060.PubMedCrossRefGoogle Scholar
  166. Ward, R. J., Dexter, D. T., & Crichton, R. R. (2015). Neurodegenerative diseases and therapeutic strategies using iron chelators. Journal of Trace Elements in Medicine and Biology. doi: 10.1016/j.jtemb.2014.12.012.PubMedGoogle Scholar
  167. Wessling-Resnick, M. (2010). Iron homeostasis and the inflammatory response. Annual Review of Nutrition, 30, 105–122. doi: 10.1146/annurev.nutr.012809.104804.PubMedCentralPubMedCrossRefGoogle Scholar
  168. Williams, R., Buchheit, C. L., Berman, N. E., & LeVine, S. M. (2012). Pathogenic implications of iron accumulation in multiple sclerosis. Journal of Neurochemistry, 120, 7–25.PubMedCentralPubMedCrossRefGoogle Scholar
  169. Wisnieff, C., Ramanan, S., Olesik, J., Gauthier, S., Wang, Y., & Pitt, D. (2014). Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron. Magnetic Resonance in Medicine. doi: 10.1002/mrm.25420.PubMedGoogle Scholar
  170. Xia, S., Zheng, G., Shen, W., Liu, S., Zhang, L. J., Haacke, E. M., & Lu, G. M. (2015). Quantitative measurements of brain iron deposition in cirrhotic patients using susceptibility mapping. Acta Radiologica, 56(3), 339–346. doi: 10.1177/0284185114525374.PubMedCrossRefGoogle Scholar
  171. Xu, J., Jia, Z., Knutson, M. D., & Leeuwenburgh, C. (2012). Impaired iron status in aging research. International Journal of Molecular Sciences, 13, 2368–2386.PubMedCentralPubMedCrossRefGoogle Scholar
  172. Yablonskiy, D. A., & Sukstanskii, A. L. (2015). Generalized lorentzian tensor approach (GLTA) as a biophysical background for quantitative susceptibility mapping. Magnetic Resonance in Medicine, 73, 757–764. doi: 10.1002/mrm.25538.PubMedCrossRefGoogle Scholar
  173. Yamada, K., Gonzalez, R. G., ØStergaard, L., Komili, S., Weisskoff, R. M., Rosen, B. R., Koroshetz, W. J., Nishimura, T., & Sorensen, A. G. (2002). Iron-induced susceptibility effect at the globus pallidus causes underestimation of flow and volume on dynamic susceptibility contrast-enhanced MR perfusion images. American Journal of Neuroradiology, 23, 1022–1029.PubMedGoogle Scholar
  174. Yan, S. Q., Sun, J. Z., Yan, Y. Q., Wang, H., & Lou, M. (2012). Evaluation of brain iron content based on magnetic resonance imaging (MRI): comparison among phase value, R2* and magnitude signal intensity. PLoS ONE, 7, e31748.PubMedCentralPubMedCrossRefGoogle Scholar
  175. Yao, B., Li, T. Q., Gelderen, P., Shmueli, K., de Zwart, J. A., & Duyn, J. H. (2009). Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. NeuroImage, 44, 1259–1266. doi: 10.1016/j.neuroimage.2008.10.029.PubMedCentralPubMedCrossRefGoogle Scholar
  176. Yates, P. A., Desmond, P. M., Phal, P. M., Steward, C., Szoeke, C., Salvado, O., Ellis, K. A., Martins, R. N., Masters, C. L., Ames, D., Villemagne, V. L., & Rowe, C. C. (2014a). Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology, 82, 1266–1273. doi: 10.1212/WNL.0000000000000285.PubMedCentralPubMedCrossRefGoogle Scholar
  177. Yates, P. A., Villemagne, V. L., Ellis, K. A., Desmond, P. M., Masters, C. L., & Rowe, C. C. (2014b). Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Frontiers in Neuroscience, 4, 205. doi: 10.3389/fneuro.2013.00205.Google Scholar
  178. Youdim, M. B. H., & Yehuda, S. (2000). The neurochemical basis of cognitive deficits induced by brain iron deficiency: involvement of dopamine-opiate system. Cellular and Molecular Biology, 46(3), 491–500.PubMedGoogle Scholar
  179. Zecca, L., Youdim, M. B. H., Riederer, P., Connor, J. R., & Crichton, R. R. (2004). Iron, brain ageing and neurodegenerative disorders. Natature Reviews, 5, 863–873. doi: 10.1038/nrn1537.CrossRefGoogle Scholar
  180. Zhu, W. Z., Zhong, W. D., Wang, W., Zhan, C. J., Wang, C. Y., Qi, J. P., Wang, J. Z., & Lei, T. (2009). Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology, 253(2), 497–504. doi: 10.1148/radiol.2532082324.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of GerontologyWayne State UniversityDetroitUSA
  2. 2.Department of PsychologyWayne State UniversityDetroitUSA

Personalised recommendations