Advertisement

Neuropsychology Review

, Volume 25, Issue 1, pp 63–96 | Cite as

Genetics and Brain Morphology

  • Lachlan T. StrikeEmail author
  • Baptiste Couvy-Duchesne
  • Narelle K. Hansell
  • Gabriel Cuellar-Partida
  • Sarah E. Medland
  • Margaret J. Wright
Review

Abstract

A wealth of empirical evidence is accumulating on the genetic mediation of brain structure phenotypes. This comes from twin studies that assess heritability and genetic covariance between traits, candidate gene associations, and genome-wide association studies (GWAS) that can identify specific genetic variants. Here we review the major findings from each of these approaches and consider how they inform on the genetic architecture of brain structure. The findings from twin studies show there is a strong genetic influence (heritability) on brain structure, and overlap of genetic effects (pleiotropy) between structures, and between structure and cognition. However, there is also evidence for genetic specificity, with distinct genetic effects across some brain regions. Candidate gene associations show little convergence; most have been under powered to detect effect sizes of the magnitude now expected. GWAS have identified 19 genetic variants for brain structure, though no replicated associations account for more than 1 % of the variance. Together these studies are revealing new insights into the genetic architecture of brain morphology. As the scope of inquiry broadens, including measures that capture the complexity of the brain, along with larger samples and new analyses, such as genome-wide common trait analysis (GCTA) and polygenic scores, which combine variant effects for a phenotype, as well as whole-genome sequencing, more genetic variants for brain structure will be identified. Increasingly, large-scale multi-site studies will facilitate this next wave of studies, and promise to enhance our understanding of the etiology of variation in brain morphology, as well as brain disorders.

Keywords

Magnetic resonance imaging Brain Genes Twins 

Notes

Acknowledgments

We acknowledge funding support from National Institute of Child Health and Human Development (R01 HD050735), and the National Health and Medical Research Council (NHMRC 486682, 1009064), Australia. Baptiste Couvy-Duchesne is supported by a UQ International Scholarship (UQI). Special thanks to Gabriëlla Blokland for personal communications and Seyed Amir Hossein Batouli for providing unpublished results.

Glossary

Bonferroni correction

simplest method of correcting for multiple testing (\( \alpha /{N}_{tests} \)). In GWAS, the number of independent tests has been estimated to 106, leading to a genome wide significance threshold of 5 × 10−8.

Causal variant

a variant that has a direct or indirect functional effect on disease risk. Because of the LD structure of the genome, identifying the causal variant among highly correlated signals is not straightforward. A lower p-value, expression data or a biological understanding of the causal mechanism are only suggestive evidence.

Endophenotypes

endophenotypes are heritable phenotypes; genetically correlated with the disease/complex trait (John and Lewis 1966; Gottesman and Gould 2003).

Epigenetic

molecular process that causes gene expression to change in time through environmental changes in the DNA methylation sites or RNA sequence.

eQTL

(expression Quantitative Trait Loci): Loci that regulate the expression of a gene by regulating the number of micro RNA copies.

(Genetic) Variant

used to refer to observed/tagged SNPs but also to SNPs or any structural variants imputed from the reference panel.

Haplotype

set of SNPs, within one chromosome, that show non random association (linkage disequilibrium). Within one haplotype, SNPs can be highly correlated, which reduces the number of independent testing but creates collinearity issues when simultaneously testing the effect of several SNPs (e.g. gene based tests).

Imputation

the statistical method consisting in inferring a missing value. In genetics, it uses the LD structure of a fully sequenced reference panel to predict the unobserved SNPs (up to 3 millions) based on the set of tagged SNPs (usually 500,000 from a SNP chip).

Linkage Disequilibrium (LD)

non-random association of alleles across a population genome. The LD structure of a genome, defines blocks of strongly correlated alleles called haplotypes.

Intergenic region

DNA region located between genes. Intergenic regions are non-coding and tend to regulate nearby gene expression.

Intronic region

DNA region located inside a gene.

Minor Allele Frequency (MAF)

the frequency of the least frequent nucleotide version at one SNP. MAF can be different across ethnic groups.

Meta-analysis

statistical method that allows merging results from different centres without having to share the (raw) individual data. Only summary statistics of the associations (size effect, number of individuals, p-values) are shared and combined. Studies where the raw data is shared are usually called mega-analyses.

Mode of inheritance

The manner in which a particular genetic trait or disorder is passed from one generation to the next.

(DNA) Methylation

epigenetic process that sees a methyl group binding to the DNA molecule with consequences on gene expression. In the human adult, methylation only happens on sites where a cytosine is directly followed by a guanine in the DNA sequence (CpG site). However, highly conserved non-CpG methylation has been shown to accumulate in neurons from fetal to early adult age, to compose the main form of methylation in the neuronal genome (Lister et al. 2013).

Missing Heritability

discrepancy between heritability estimated from twin or family studies and heritability calculated from genome-wide significant SNPs identified through GWAS.

Pleiotropy

One gene influences multiple traits

Polygenic Score

Also known as a genomic profile score. Individual scores are calculated from participant’s genotype data by summing the number of effect (risk) alleles weighted by the variant effect size as determined in an independent Discovery sample. The SNP list is limited to variants with a p-value less than a defined threshold (or several thresholds may be considered, e.g. <.00001, .001, .001, .01, .1, etc. (Wray et al. 2014)).

SNP

Single Nucleotide Polymorphism, a variant in the genome where the nucleotide can differ between individuals.

Statistical Power

Probability of detecting a significant association, in presence of true association i.e. 1- probability of false negative. In GWAS, the power is specific to a SNP and depends on the level of statistical significance (α), the SNP effect size and MAF, the sample size.

Supplementary material

11065_2015_9281_MOESM1_ESM.docx (257 kb)
Online Resource 1 (DOCX 256 kb)
11065_2015_9281_MOESM2_ESM.docx (79 kb)
Online Resource 2 (DOCX 78 kb)
11065_2015_9281_MOESM3_ESM.docx (88 kb)
Online Resource 3 (DOCX 88 kb)
11065_2015_9281_MOESM4_ESM.docx (20 kb)
Online Resource 4 (DOCX 19.7 kb)

References

  1. Aas M., Haukvik U. K., Djurovic S., Bergmann O., Athanasiu L., Tesli M. S., et al. (2013). BDNF val66met modulates the association between childhood trauma, cognitive and brain abnormalities in psychoses. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 46, 181–188. doi: 10.1016/j.pnpbp.2013.07.008.Google Scholar
  2. Adachi N., Numakawa T., Richards M., Nakajima S., & Kunugi H. (2014). New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brain-related diseases. World Journal of Biological Chemistry, 5(4), 409–428. doi: 10.4331/wjbc.v5.i4.409.PubMedCentralPubMedGoogle Scholar
  3. Addington A. M., & Rapoport J. L. (2012). Annual research review: impact of advances in genetics in understanding developmental psychopathology. Journal of Child Psychology and Psychiatry, 53(5), 510–518. doi: 10.1111/j.1469-7610.2011.02478.x.PubMedGoogle Scholar
  4. Adib-Samii P., Devan W., Traylor M., Lanfranconi S., Zhang C. R., Cloonan L., et al. (2015). Genetic architecture of white matter hyperintensities differs in hypertensive and nonhypertensive ischemic stroke. Stroke, 46(2), 348–353. doi: 10.1161/strokeaha.114.006849.PubMedCentralPubMedGoogle Scholar
  5. Allen S. J., Watson J. J., Shoemark D. K., Barua N. U., & Patel N. K. (2013). GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacology & Therapeutics, 138(2), 155–175. doi: 10.1016/j.pharmthera.2013.01.004.Google Scholar
  6. Anderson C. A., Pettersson F. H., Clarke G. M., Cardon L. R., Morris A. P., & Zondervan K. T. (2010). Data quality control in genetic case–control association studies. Nature Protocols, 5(9), 1564–1573. doi: 10.1038/nprot.2010.116.PubMedCentralPubMedGoogle Scholar
  7. Antypa N., Drago A., & Serretti A. (2013). The role of COMT gene variants in depression: bridging neuropsychological, behavioral and clinical phenotypes. Neuroscience and Biobehavioral Reviews, 37(8), 1597–1610. doi: 10.1016/j.neubiorev.2013.06.006.PubMedGoogle Scholar
  8. Atwood L. D., Wolf P. A., Heard-Costa N. L., Massaro J. M., Beiser A., D’Agostino R. B., et al. (2004). Genetic variation in white matter hyperintensity volume in the Framingham Study. Stroke, 35(7), 1609–1613. doi: 10.1161/01.str.0000129643.77045.10.PubMedGoogle Scholar
  9. Baare W. F., Hulshoff Pol H. E., Boomsma D. I., Posthuma D., de Geus E. J., Schnack H. G., et al. (2001). Quantitative genetic modeling of variation in human brain morphology. Cerebral Cortex, 11(9), 816–824.PubMedGoogle Scholar
  10. Bakken T. E., Bloss C. S., Roddey J. C., Joyner A. H., Rimol L. M., Djurovic S., et al. (2011). Association of genetic variants on 15q12 with cortical thickness and cognition in schizophrenia. Archives of General Psychiatry, 68(8), 781–790. doi: 10.1001/archgenpsychiatry.2011.81.PubMedCentralPubMedGoogle Scholar
  11. Bakken T. E., Roddey J. C., Djurovic S., Akshoomoff N., Amaral D. G., Bloss C. S., et al. (2012). Association of common genetic variants in GPCPD1 with scaling of visual cortical surface area in humans. Proceedings of the National Academy of Sciences of the United States of America, 109(10), 3985–3990. doi: 10.1073/pnas.1105829109.PubMedCentralPubMedGoogle Scholar
  12. Bansal, V., Libiger, O., Torkamani, A., & Schork, N. J. (2010). Statistical analysis strategies for association studies involving rare variants. Nature Reviews. Genetics, 11(11), 773–785, doi: 10.1038/nrg2867.
  13. Baranzini S. E., Wang J., Gibson R. A., Galwey N., Naegelin Y., Barkhof F., et al. (2009). Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Human Molecular Genetics, 18(4), 767–778. doi: 10.1093/hmg/ddn388.PubMedCentralPubMedGoogle Scholar
  14. Baranzini S. E., Srinivasan R., Khankhanian P., Okuda D. T., Nelson S. J., Matthews P. M., et al. (2010). Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis. Brain, 133(9), 2603–2611. doi: 10.1093/brain/awq192.PubMedCentralPubMedGoogle Scholar
  15. Barnes A., Isohanni M., Barnett J. H., Pietilainen O., Veijola J., Miettunen J., et al. (2012). No association of COMT (Val158Met) genotype with brain structure differences between men and women. PloS One, 7(3), e33964. doi: 10.1371/journal.pone.0033964.PubMedCentralPubMedGoogle Scholar
  16. Bartley A. J., Jones D. W., & Weinberger D. R. (1997). Genetic variability of human brain size and cortical gyral patterns. Brain, 120(Pt 2), 257–269.PubMedGoogle Scholar
  17. Bates T. C., Lewis G. J., & Weiss A. (2013). Childhood socioeconomic status amplifies genetic effects on adult intelligence. Psychological Science, 24(10), 2111–2116. doi: 10.1177/0956797613488394.PubMedGoogle Scholar
  18. Batouli, S. A., Sachdev, P. S., Wen, W., Wright, M. J., Ames, D., & Trollor, J. N. (2014). Heritability of brain volumes in older adults: the Older Australian Twins Study. Neurobiol Aging, 35(4), 937.e935-918, doi: 10.1016/j.neurobiolaging.2013.10.079.
  19. Begum F., Ghosh D., Tseng G. C., & Feingold E. (2012). Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucleic Acids Research, 40(9), 3777–3784. doi: 10.1093/nar/gkr1255.PubMedCentralPubMedGoogle Scholar
  20. Bentham J., & Vyse T. J. (2013). The development of genome-wide association studies and their application to complex diseases, including lupus. Lupus, 22(12), 1205–1213. doi: 10.1177/0961203313492870.PubMedGoogle Scholar
  21. Benyamin B., Visscher P. M., & McRae A. F. (2009). Family-based genome-wide association studies. Pharmacogenomics, 10(2), 181–190. doi: 10.2217/14622416.10.2.181.PubMedGoogle Scholar
  22. Betjemann R. S., Johnson E. P., Barnard H., Boada R., Filley C. M., Filipek P. A., et al. (2010). Genetic covariation between brain volumes and IQ, reading performance, and processing speed. Behavior Genetics, 40(2), 135–145. doi: 10.1007/s10519-009-9328-2.PubMedCentralPubMedGoogle Scholar
  23. Bigos K. L., & Hariri A. R. (2007). Neuroimaging: technologies at the interface of genes, brain, and behavior. Neuroimaging Clinics of North America, 17(4), 459–viii467. doi: 10.1016/j.nic.2007.09.005.PubMedCentralPubMedGoogle Scholar
  24. Bigos K. L., & Weinberger D. R. (2010). Imaging genetics-days of future past. NeuroImage, 53(3), 804–809. doi: 10.1016/j.neuroimage.2010.01.035.PubMedGoogle Scholar
  25. Bis J. C., DeCarli C., Smith A. V., van der Lijn F., Crivello F., Fornage M., et al. (2012). Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nature Genetics, 44(5), 545–551. doi: 10.1038/ng.2237.PubMedCentralPubMedGoogle Scholar
  26. Blokland G. A., McMahon K. L., Thompson P. M., Martin N. G., de Zubicaray G. I., & Wright M. J. (2011). Heritability of working memory brain activation. The Journal of Neuroscience, 31(30), 10882–10890. doi: 10.1523/jneurosci.5334-10.2011.PubMedCentralPubMedGoogle Scholar
  27. Blokland G. A., de Zubicaray G. I., McMahon K. L., & Wright M. J. (2012). Genetic and environmental influences on neuroimaging phenotypes: a meta-analytical perspective on twin imaging studies. Twin Research and Human Genetics, 15(3), 351–371. doi: 10.1017/thg.2012.11.PubMedCentralPubMedGoogle Scholar
  28. Blokland G. A., McMahon K. L., Thompson P. M., Hickie I. B., Martin N. G., de Zubicaray G. I., et al. (2014). Genetic effects on the cerebellar role in working memory: same brain, different genes? NeuroImage, 86, 392–403. doi: 10.1016/j.neuroimage.2013.10.006.PubMedCentralPubMedGoogle Scholar
  29. Bochud, M. (2012). Estimating Heritability from Nuclear Family and Pedigree Data. In R. C. Elston, J. M. Satagopan, & S. Sun (Eds.), Statistical Human Genetics (Vol. 850, pp. 171–186, Methods in Molecular Biology). Humana Press.Google Scholar
  30. Bohlken M. M., Brouwer R. M., Mandl R. C., van Haren N. E., Brans R. G., van Baal G. C., et al. (2014). Genes contributing to subcortical volumes and intellectual ability implicate the thalamus. Human Brain Mapping, 35(6), 2632–2642. doi: 10.1002/hbm.22356.PubMedGoogle Scholar
  31. Bookheimer S. Y., Strojwas M. H., Cohen M. S., Saunders A. M., Pericak-Vance M. A., Mazziotta J. C., et al. (2000). Patterns of brain activation in people at risk for Alzheimer’s disease. The New England Journal of Medicine, 343(7), 450–456. doi: 10.1056/NEJM200008173430701.PubMedCentralPubMedGoogle Scholar
  32. Bosker F. J., Hartman C. A., Nolte I. M., Prins B. P., Terpstra P., Posthuma D., et al. (2011). Poor replication of candidate genes for major depressive disorder using genome-wide association data. Molecular Psychiatry, 16(5), 516–532. doi: 10.1038/mp.2010.38.PubMedGoogle Scholar
  33. Brans R. G., Kahn R. S., Schnack H. G., van Baal G. C., Posthuma D., van Haren N. E., et al. (2010). Brain plasticity and intellectual ability are influenced by shared genes. The Journal of Neuroscience, 30(16), 5519–5524. doi: 10.1523/jneurosci.5841-09.2010.PubMedGoogle Scholar
  34. Broer L., Lill C. M., Schuur M., Amin N., Roehr J. T., Bertram L., et al. (2013). Distinguishing true from false positives in genomic studies: p values. European Journal of Epidemiology, 28(2), 131–138. doi: 10.1007/s10654-012-9755-x.PubMedGoogle Scholar
  35. Brooks S. J., Nilsson E. K., Jacobsson J. A., Stein D. J., Fredriksson R., Lind L., et al. (2014). BDNF polymorphisms are linked to poorer working memory performance, reduced cerebellar and hippocampal volumes and differences in prefrontal cortex in a Swedish elderly population. PloS One, 9(1), e82707. doi: 10.1371/journal.pone.0082707.PubMedCentralPubMedGoogle Scholar
  36. Brouwer R. M., Hedman A. M., van Haren N. E., Schnack H. G., Brans R. G., Smit D. J., et al. (2014a). Heritability of brain volume change and its relation to intelligence. NeuroImage. doi: 10.1016/j.neuroimage.2014.04.072.Google Scholar
  37. Brouwer R. M., van Soelen I. L., Swagerman S. C., Schnack H. G., Ehli E. A., Kahn R. S., et al. (2014b). Genetic associations between intelligence and cortical thickness emerge at the start of puberty. Human Brain Mapping, 35(8), 3760–3773. doi: 10.1002/hbm.22435.PubMedGoogle Scholar
  38. Brouwer, R. M., Glahn, D. C., Hibar, D. P., Hua, X., Jahanshad, N., Franz, C. E., et al. (2015). Genetic influences on longitudinal changes in subcortical volumes: Results of the ENIGMA Plasticity Working Group. Paper presented at the Organization for Human Brain Mapping 2015,Google Scholar
  39. Brown A. A., Jensen J., Nikolova Y. S., Djurovic S., Agartz I., Server A., et al. (2012). Genetic variants affecting the neural processing of human facial expressions: evidence using a genome-wide functional imaging approach. Translational Psychiatry, 2, e143. doi: 10.1038/tp.2012.67.PubMedCentralPubMedGoogle Scholar
  40. Brown B. M., Bourgeat P., Peiffer J. J., Burnham S., Laws S. M., Rainey-Smith S. R., et al. (2014). Influence of BDNF Val66Met on the relationship between physical activity and brain volume. Neurology, 83(15), 1345–1352. doi: 10.1212/WNL.0000000000000867.PubMedGoogle Scholar
  41. Bryant, C., Giovanello, K. S., Ibrahim, J. G., Chang, J., Shen, D., Peterson, B. S., et al. (2013). Mapping the Genetic Variation of Regional Brain Volumes as Explained by All Common SNPs from the ADNI Study. PloS One, 8(8), e71723, doi: 10.1371/journal.pone.0071723.
  42. Campbell C. D., Ogburn E. L., Lunetta K. L., Lyon H. N., Freedman M. L., Groop L. C., et al. (2005). Demonstrating stratification in a European American population. Nature Genetics, 37(8), 868–872. doi: 10.1038/ng1607.PubMedGoogle Scholar
  43. Carmelli D., DeCarli C., Swan G. E., Jack L. M., Reed T., Wolf P. A., et al. (1998). Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke, 29(6), 1177–1181.PubMedGoogle Scholar
  44. Carmelli D., Reed T., & DeCarli C. (2002a). A bivariate genetic analysis of cerebral white matter hyperintensities and cognitive performance in elderly male twins. Neurobiology of Aging, 23(3), 413–420.PubMedGoogle Scholar
  45. Carmelli D., Swan G. E., DeCarli C., & Reed T. (2002b). Quantitative genetic modeling of regional brain volumes and cognitive performance in older male twins. Biological Psychology, 61(1–2), 139–155.PubMedGoogle Scholar
  46. Chen W. M., & Abecasis G. R. (2007). Family-based association tests for genomewide association scans. American Journal of Human Genetics, 81(5), 913–926. doi: 10.1086/521580.PubMedCentralPubMedGoogle Scholar
  47. Chen C. H., Panizzon M. S., Eyler L. T., Jernigan T. L., Thompson W., Fennema-Notestine C., et al. (2011). Genetic influences on cortical regionalization in the human brain. Neuron, 72(4), 537–544. doi: 10.1016/j.neuron.2011.08.021.PubMedCentralPubMedGoogle Scholar
  48. Chen C. H., Gutierrez E. D., Thompson W., Panizzon M. S., Jernigan T. L., Eyler L. T., et al. (2012). Hierarchical genetic organization of human cortical surface area. Science, 335(6076), 1634–1636. doi: 10.1126/science.1215330.PubMedCentralPubMedGoogle Scholar
  49. Chen C. H., Fiecas M., Gutierrez E. D., Panizzon M. S., Eyler L. T., Vuoksimaa E., et al. (2013). Genetic topography of brain morphology. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 17089–17094. doi: 10.1073/pnas.1308091110.PubMedCentralPubMedGoogle Scholar
  50. Cherbuin N., Leach L. S., Christensen H., & Anstey K. J. (2007). Neuroimaging and APOE genotype: a systematic qualitative review. Dementia and Geriatric Cognitive Disorders, 24(5), 348–362. doi: 10.1159/000109150.PubMedGoogle Scholar
  51. Chetelat G., & Fouquet M. (2013). Neuroimaging biomarkers for Alzheimer’s disease in asymptomatic APOE4 carriers. Revue Neurologique (Paris), 169(10), 729–736. doi: 10.1016/j.neurol.2013.07.025.Google Scholar
  52. Chiang M. C., Barysheva M., Shattuck D. W., Lee A. D., Madsen S. K., Avedissian C., et al. (2009). Genetics of brain fiber architecture and intellectual performance. The Journal of Neuroscience, 29(7), 2212–2224. doi: 10.1523/jneurosci.4184-08.2009.PubMedCentralPubMedGoogle Scholar
  53. Chiang M. C., McMahon K. L., de Zubicaray G. I., Martin N. G., Hickie I., Toga A. W., et al. (2011). Genetics of white matter development: a DTI study of 705 twins and their siblings aged 12 to 29. NeuroImage, 54(3), 2308–2317. doi: 10.1016/j.neuroimage.2010.10.015.PubMedCentralPubMedGoogle Scholar
  54. Chiang M. C., Barysheva M., McMahon K. L., de Zubicaray G. I., Johnson K., Montgomery G. W., et al. (2012). Gene network effects on brain microstructure and intellectual performance identified in 472 twins. The Journal of Neuroscience, 32(25), 8732–8745. doi: 10.1523/jneurosci.5993-11.2012.PubMedCentralPubMedGoogle Scholar
  55. Craddock, R. C., LaConte, S., Castellanos, F. X., Zuo, X. N., Thompson, P. M., de Zubicaray, G. I., et al. (2011) Genetics influence inter-subject brain state prediction. In Organization for human brain mapping, Quebec City, June 2011.Google Scholar
  56. de Bakker P. I., Ferreira M. A., Jia X., Neale B. M., Raychaudhuri S., & Voight B. F. (2008). Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Human Molecular Genetics, 17(R2), R122–R128. doi: 10.1093/hmg/ddn288.PubMedCentralPubMedGoogle Scholar
  57. de Geus E. J. (2010). From genotype to EEG endophenotype: a route for post-genomic understanding of complex psychiatric disease? Genome Medicine, 2(9), 63. doi: 10.1186/gm184.PubMedCentralPubMedGoogle Scholar
  58. de Groot J. C., de Leeuw F. E., Oudkerk M., van Gijn J., Hofman A., Jolles J., et al. (2000). Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Annals of Neurology, 47(2), 145–151.PubMedGoogle Scholar
  59. de Zubicaray G. I., Chiang M. C., McMahon K. L., Shattuck D. W., Toga A. W., Martin N. G., et al. (2008). Meeting the challenges of neuroimaging genetics. Brain Imaging and Behavior, 2(4), 258–263.PubMedCentralPubMedGoogle Scholar
  60. Dean 3rd D. C., Jerskey B. A., Chen K., Protas H., Thiyyagura P., Roontiva A., et al. (2014). Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. JAMA Neurology, 71(1), 11–22. doi: 10.1001/jamaneurol.2013.4544.PubMedCentralPubMedGoogle Scholar
  61. Deary I. J., Penke L., & Johnson W. (2010). The neuroscience of human intelligence differences. Nature Reviews. Neuroscience, 11(3), 201–211. doi: 10.1038/nrn2793.PubMedGoogle Scholar
  62. Debette S., Bis J. C., Fornage M., Schmidt H., Ikram M. A., Sigurdsson S., et al. (2010). Genome-wide association studies of MRI-defined brain infarcts: meta-analysis from the CHARGE consortium. Stroke, 41(2), 210–217. doi: 10.1161/STROKEAHA.109.569194.PubMedCentralPubMedGoogle Scholar
  63. den Braber, A., Bohlken, M. M., Brouwer, R. M., van’t Ent D., Kanai, R., Kahn, R. S., et al. (2013). Heritability of subcortical brain measures: a perspective for future genome-wide association studies. NeuroImage, 83, 98–102, doi: 10.1016/j.neuroimage.2013.06.027.
  64. Dennison M., Whittle S., Yucel M., Vijayakumar N., Kline A., Simmons J., et al. (2013). Mapping subcortical brain maturation during adolescence: evidence of hemisphere- and sex-specific longitudinal changes. Developmental Science, 16(5), 772–791. doi: 10.1111/desc.12057.PubMedGoogle Scholar
  65. DeStefano A. L., Seshadri S., Beiser A., Atwood L. D., Massaro J. M., Au R., et al. (2009). Bivariate heritability of total and regional brain volumes: the Framingham Study. Alzheimer disease and Associated Disorders, 23(3), 218–223. doi: 10.1097/WAD.0b013e31819cadd8.PubMedCentralPubMedGoogle Scholar
  66. Devlin B., & Roeder K. (1999). Genomic control for association studies. Biometrics, 55(4), 997–1004.PubMedGoogle Scholar
  67. Dudbridge F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS Genetics, 9(3), e1003348. doi: 10.1371/journal.pgen.1003348.PubMedCentralPubMedGoogle Scholar
  68. Dudbridge F., & Gusnanto A. (2008). Estimation of significance thresholds for genomewide association scans. Genetic Epidemiology, 32(3), 227–234. doi: 10.1002/gepi.20297.PubMedCentralPubMedGoogle Scholar
  69. Duff, B. J., Macritchie, K. A., Moorhead, T. W., Lawrie, S. M., & Blackwood, D. H. (2013). Human brain imaging studies of DISC1 in schizophrenia, bipolar disorder and depression: a systematic review. Schizophrenia Research, 147(1), 1–13, doi: 10.1016/j.schres.2013.03.015.
  70. Durston S. (2010). Imaging genetics in ADHD. NeuroImage, 53(3), 832–838. doi: 10.1016/j.neuroimage.2010.02.071.PubMedGoogle Scholar
  71. Edwards S. L., Beesley J., French J. D., & Dunning A. M. (2013). Beyond GWASs: illuminating the dark road from association to function. American Journal of Human Genetics, 93(5), 779–797. doi: 10.1016/j.ajhg.2013.10.012.PubMedCentralPubMedGoogle Scholar
  72. Erhardt A., & Spoormaker V. I. (2013). Translational approaches to anxiety: focus on genetics, fear extinction and brain imaging. Current Psychiatry Reports, 15(12), 417. doi: 10.1007/s11920-013-0417-9.PubMedGoogle Scholar
  73. Evangelou E., & Ioannidis J. P. (2013). Meta-analysis methods for genome-wide association studies and beyond. Nature Reviews. Genetics, 14(6), 379–389. doi: 10.1038/nrg3472.PubMedGoogle Scholar
  74. Evans D. M., Gillespie N. A., & Martin N. G. (2002). Biometrical genetics. Biological Psychology, 61(1–2), 33–51.PubMedGoogle Scholar
  75. Eyler L. T., Prom-Wormley E., Fennema-Notestine C., Panizzon M. S., Neale M. C., Jernigan T. L., et al. (2011). Genetic patterns of correlation among subcortical volumes in humans: results from a magnetic resonance imaging twin study. Human Brain Mapping, 32(4), 641–653. doi: 10.1002/hbm.21054.PubMedCentralPubMedGoogle Scholar
  76. Flint J., & Munafo M. R. (2013). Candidate and non-candidate genes in behavior genetics. Current Opinion in Neurobiology, 23(1), 57–61. doi: 10.1016/j.conb.2012.07.005.PubMedCentralPubMedGoogle Scholar
  77. Fornage M., Debette S., Bis J. C., Schmidt H., Ikram M. A., Dufouil C., et al. (2011). Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Annals of Neurology, 69(6), 928–939. doi: 10.1002/ana.22403.PubMedCentralPubMedGoogle Scholar
  78. Frangou, S. (2014). Developing individualized diagnostic and therapeutic tools with images: The IMAGEMEND network. In Biol Psychiatry, 2014 (Vol. 75, pp. 142S-142S, Vol. 9). ELSEVIER SCIENCE INC 360 PARK AVE SOUTH, NEW YORK, NY 10010–1710 USA.Google Scholar
  79. Furney S. J., Simmons A., Breen G., Pedroso I., Lunnon K., Proitsi P., et al. (2011). Genome-wide association with MRI atrophy measures as a quantitative trait locus for Alzheimer’s disease. Molecular Psychiatry, 16(11), 1130–1138. doi: 10.1038/mp.2010.123.PubMedGoogle Scholar
  80. Gagliano S. A., Barnes M. R., Weale M. E., & Knight J. (2014). A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization. PloS One, 9(5), e98122. doi: 10.1371/journal.pone.0098122.PubMedCentralPubMedGoogle Scholar
  81. Galesloot T. E., van Steen K., Kiemeney L. A., Janss L. L., & Vermeulen S. H. (2014). A comparison of multivariate genome-wide association methods. PloS One, 9(4), e95923. doi: 10.1371/journal.pone.0095923.PubMedCentralPubMedGoogle Scholar
  82. Gatt J. M., Korgaonkar M. S., Schofield P. R., Harris A., Clark C. R., Oakley K. L., et al. (2012). The TWIN-E project in emotional wellbeing: study protocol and preliminary heritability results across four MRI and DTI measures. Twin Research and Human Genetics, 15(3), 419–441. doi: 10.1017/thg.2012.12.PubMedGoogle Scholar
  83. Gauderman W. J., Zhang P., Morrison J. L., & Lewinger J. P. (2013). Finding novel genes by testing G x E interactions in a genome-wide association study. Genetic Epidemiology, 37(6), 603–613. doi: 10.1002/gepi.21748.PubMedCentralPubMedGoogle Scholar
  84. Ge T., Feng J., Hibar D. P., Thompson P. M., & Nichols T. E. (2012). Increasing power for voxel-wise genome-wide association studies: the random field theory, least square kernel machines and fast permutation procedures. NeuroImage, 63(2), 858–873. doi: 10.1016/j.neuroimage.2012.07.012.PubMedCentralPubMedGoogle Scholar
  85. Genomes Project, C., Abecasis, G. R., Altshuler, D., Auton, A., Brooks, L. D., Durbin, R. M., et al. (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061–1073, doi: 10.1038/nature09534.
  86. Giedd J. N., Schmitt J. E., & Neale M. C. (2007). Structural brain magnetic resonance imaging of pediatric twins. Human Brain Mapping, 28(6), 474–481. doi: 10.1002/hbm.20403.PubMedGoogle Scholar
  87. Gilmore J. H., Schmitt J. E., Knickmeyer R. C., Smith J. K., Lin W., Styner M., et al. (2010). Genetic and environmental contributions to neonatal brain structure: a twin study. Human Brain Mapping, 31(8), 1174–1182. doi: 10.1002/hbm.20926.PubMedCentralPubMedGoogle Scholar
  88. Glahn D. C., Thompson P. M., & Blangero J. (2007). Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Human Brain Mapping, 28(6), 488–501. doi: 10.1002/hbm.20401.PubMedGoogle Scholar
  89. Glahn D. C., Kent Jr. J. W., Sprooten E., Diego V. P., Winkler A. M., Curran J. E., et al. (2013). Genetic basis of neurocognitive decline and reduced white-matter integrity in normal human brain aging. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 19006–19011. doi: 10.1073/pnas.1313735110.PubMedCentralPubMedGoogle Scholar
  90. Glahn, D. C., Winkler, A. M., Kochunov, P., Almasy, L., Duggirala, R., Carless, M. A., et al. (2010). Genetic control over the resting brain. Proc Natl Acad Sci U S A, 107(3), 1223–1228. doi: 10.1073/pnas.0909969107.
  91. Gondro C., Lee S. H., Lee H. K., & Porto-Neto L. R. (2013). Quality control for genome-wide association studies. Methods in Molecular Biology, 1019, 129–147. doi: 10.1007/978-1-62703-447-0_5.PubMedGoogle Scholar
  92. Gottesman I. I., & Gould T. D. (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. The American Journal of Psychiatry, 160(4), 636–645.PubMedGoogle Scholar
  93. Gottesman I. I., & Shields J. (1967). A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 58(1), 199–205.PubMedCentralPubMedGoogle Scholar
  94. Gronenschild, E. H. B. M. , Habets, P., Jacobs, H. I. L., Mengelers, R., Rozendaal, N., van Os, J., et al. (2012). The Effects of FreeSurfer version, workstation type, and macintosh operating system VERSION on anatomical volume and cortical thickness measurements. PloS One, 7(6), e38234.Google Scholar
  95. Han X., Jovicich J., Salat D., van der Kouwe A., Quinn B., Czanner S., et al. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32(1), 180–194. doi: 10.1016/j.neuroimage.2006.02.051.PubMedGoogle Scholar
  96. Harrisberger F., Spalek K., Smieskova R., Schmidt A., Coynel D., Milnik A., et al. (2014). The association of the BDNF Val66Met polymorphism and the hippocampal volumes in healthy humans: a joint meta-analysis of published and new data. Neuroscience and Biobehavioral Reviews, 42, 267–278. doi: 10.1016/j.neubiorev.2014.03.011.PubMedGoogle Scholar
  97. Hart A. B., de Wit H., & Palmer A. A. (2013). Candidate gene studies of a promising intermediate phenotype: failure to replicate. Neuropsychopharmacology, 38(5), 802–816. doi: 10.1038/npp.2012.245.PubMedCentralPubMedGoogle Scholar
  98. Hasler G., & Northoff G. (2011). Discovering imaging endophenotypes for major depression. Molecular Psychiatry, 16(6), 604–619. doi: 10.1038/mp.2011.23.PubMedGoogle Scholar
  99. Hass J., Walton E., Kirsten H., Liu J., Priebe L., Wolf C., et al. (2013). A genome-wide association study suggests novel loci associated with a schizophrenia-related brain-based phenotype. PloS One, 8(6), e64872. doi: 10.1371/journal.pone.0064872.PubMedCentralPubMedGoogle Scholar
  100. Hemani G., Knott S., & Haley C. (2013). An evolutionary perspective on epistasis and the missing heritability. PLoS Genetics, 9(2), e1003295. doi: 10.1371/journal.pgen.1003295.PubMedCentralPubMedGoogle Scholar
  101. Hewitt, J. K. (2012). Editorial policy on candidate gene association and candidate gene-by-environment interaction studies of complex traits. Behavior Genetics, 42(1), 1–2, doi: 10.1007/s10519-011-9504-z.
  102. Hibar D. P., Kohannim O., Stein J. L., Chiang M. C., & Thompson P. M. (2011a). Multilocus genetic analysis of brain images. Frontiers in Genetics, 2, 73. doi: 10.3389/fgene.2011.00073.PubMedCentralPubMedGoogle Scholar
  103. Hibar D. P., Stein J. L., Kohannim O., Jahanshad N., Saykin A. J., Shen L., et al. (2011b). Voxelwise gene-wide association study (vGeneWAS): multivariate gene-based association testing in 731 elderly subjects. NeuroImage, 56(4), 1875–1891. doi: 10.1016/j.neuroimage.2011.03.077.PubMedCentralPubMedGoogle Scholar
  104. Hibar D. P., Medland S. E., Stein J. L., Kim S., Shen L., Saykin A. J., et al. (2013a). Genetic clustering on the hippocampal surface for genome-wide association studies. Medical Image Computing and Computer-Assisted Intervention, 16(Pt 2), 690–697.PubMedCentralPubMedGoogle Scholar
  105. Hibar D. P., Stein J. L., Ryles A. B., Kohannim O., Jahanshad N., Medland S. E., et al. (2013b). Genome-wide association identifies genetic variants associated with lentiform nucleus volume in N = 1345 young and elderly subjects. Brain Imaging and Behavior, 7(2), 102–115. doi: 10.1007/s11682-012-9199-7.PubMedCentralPubMedGoogle Scholar
  106. Hibar D. P., Stein J. L., Renteria M. E., Arias-Vasquez A., Desrivieres S., Jahanshad N., et al. (2015). Common genetic variants influence human subcortical brain structures. Nature. doi: 10.1038/nature14101.PubMedGoogle Scholar
  107. Hindorff, L. A., MacArthur, J., Morales, J., Junkins, H. A., Hall, P. N., Klemm, A. K., et al. (2013). A Catalog of published genome-wide association studies. http://www.genome.gov/gwastudies. Accessed 20 Jan 2015.
  108. Hirschhorn J. N., & Daly M. J. (2005). Genome-wide association studies for common diseases and complex traits. Nature Reviews. Genetics, 6(2), 95–108. doi: 10.1038/nrg1521.PubMedGoogle Scholar
  109. Hohman T. J., Koran M. E., Thornton-Wells T. A., & Alzheimer’s Disease Neuroimaging I. (2014). Genetic modification of the relationship between phosphorylated tau and neurodegeneration. Alzheimers Dement. doi: 10.1016/j.jalz.2013.12.022.PubMedGoogle Scholar
  110. Hostage C. A., Choudhury K. R., Murali Doraiswamy P., Petrella J. R., & Alzheimer’s Disease Neuroimaging I. (2014). Mapping the effect of the apolipoprotein E genotype on 4-year atrophy rates in an Alzheimer disease-related brain network. Radiology, 271(1), 211–219. doi: 10.1148/radiol.13131041.PubMedCentralPubMedGoogle Scholar
  111. Hulshoff Pol H. E., Schnack H. G., Posthuma D., Mandl R. C., Baare W. F., van Oel C., et al. (2006). Genetic contributions to human brain morphology and intelligence. The Journal of Neuroscience, 26(40), 10235–10242. doi: 10.1523/jneurosci.1312-06.2006.PubMedGoogle Scholar
  112. Iacono W. G., Vaidyanathan U., Vrieze S. I., & Malone S. M. (2014). Knowns and unknowns for psychophysiological endophenotypes: integration and response to commentaries. Psychophysiology, 51(12), 1339–1347. doi: 10.1111/psyp.12358.PubMedGoogle Scholar
  113. Ignacio Z. M., Reus G. Z., Abelaira H. M., & Quevedo J. (2014). Epigenetic and epistatic interactions between serotonin transporter and brain-derived neurotrophic factor genetic polymorphism: Insights in depression. Neuroscience, 275C, 455–468. doi: 10.1016/j.neuroscience.2014.06.036.Google Scholar
  114. Ikram M. A., Fornage M., Smith A. V., Seshadri S., Schmidt R., Debette S., et al. (2012). Common variants at 6q22 and 17q21 are associated with intracranial volume. Nature Genetics, 44(5), 539–544. doi: 10.1038/ng.2245.PubMedCentralPubMedGoogle Scholar
  115. Inoue K., & Lupski J. R. (2003). Genetics and genomics of behavioral and psychiatric disorders. Current Opinion in Genetics & Development, 13(3), 303–309.Google Scholar
  116. International HapMap, C (2005). A haplotype map of the human genome. Nature, 437(7063), 1299–1320. doi: 10.1038/nature04226.Google Scholar
  117. Ioannidis J. P., Ntzani E. E., Trikalinos T. A., & Contopoulos-Ioannidis D. G. (2001). Replication validity of genetic association studies. Nature Genetics, 29(3), 306–309. doi: 10.1038/ng749.PubMedGoogle Scholar
  118. Ioannidis J. P., Boffetta P., Little J., O’Brien T. R., Uitterlinden A. G., Vineis P., et al. (2008). Assessment of cumulative evidence on genetic associations: interim guidelines. International Journal of Epidemiology, 37(1), 120–132. doi: 10.1093/ije/dym159.PubMedGoogle Scholar
  119. Iofrida C., Palumbo S., & Pellegrini S. (2014). Molecular genetics and antisocial behavior: where do we stand? Experimental Biology and Medicine (Maywood, N.J.), 239(11), 1514–1523. doi: 10.1177/1535370214529508.Google Scholar
  120. Ira E., Zanoni M., Ruggeri M., Dazzan P., & Tosato S. (2013). COMT, neuropsychological function and brain structure in schizophrenia: a systematic review and neurobiological interpretation. Journal of Psychiatry & Neuroscience, 38(6), 366–380. doi: 10.1503/jpn.120178.Google Scholar
  121. Jack Jr. C. R., Barkhof F., Bernstein M. A., Cantillon M., Cole P. E., Decarli C., et al. (2011). Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer’s disease. Alzheimers Dement, 7(4), 474–e474485. doi: 10.1016/j.jalz.2011.04.007.PubMedCentralPubMedGoogle Scholar
  122. Jahanshad, N., Bhatt, P., Hibar, D., Villalon, J., Nir, T., Toga, A., et al. (2013a). Bivariate genome-wide association study of genetically correlated neuroimaging phenotypes from DTI and MRI through a seemingly unrelated regression model. In L. Shen, T. Liu, P.-T. Yap, H. Huang, D. Shen, & C.-F. Westin (Eds.), Multimodal Brain Image Analysis (Vol. 8159, pp. 189–201, Lecture Notes in Computer Science). Springer International Publishing.Google Scholar
  123. Jahanshad N., Rajagopalan P., Hua X., Hibar D. P., Nir T. M., Toga A. W., et al. (2013b). Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity. Proceedings of the National Academy of Sciences of the United States of America, 110(12), 4768–4773. doi: 10.1073/pnas.1216206110.PubMedCentralPubMedGoogle Scholar
  124. John B., & Lewis K. R. (1966). Chromosome variability and geographic distribution in insects. Science, 152(3723), 711–721. doi: 10.1126/science.152.3723.711.PubMedGoogle Scholar
  125. Jovicich J., Czanner S., Han X., Salat D., van der Kouwe A., Quinn B., et al. (2009). MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. NeuroImage, 46(1), 177–192. doi: 10.1016/j.neuroimage.2009.02.010.PubMedCentralPubMedGoogle Scholar
  126. Karlsgodt K. H., Kochunov P., Winkler A. M., Laird A. R., Almasy L., Duggirala R., et al. (2010). A multimodal assessment of the genetic control over working memory. The Journal of Neuroscience, 30(24), 8197–8202. doi: 10.1523/jneurosci.0359-10.2010.PubMedCentralPubMedGoogle Scholar
  127. Khan W., Giampietro V., Ginestet C., Dell’Acqua F., Bouls D., Newhouse S., et al. (2014). No differences in hippocampal volume between carriers and non-carriers of the ApoE epsilon4 and epsilon2 alleles in young healthy adolescents. Journal of Alzheimer’s disease, 40(1), 37–43. doi: 10.3233/JAD-131841.PubMedGoogle Scholar
  128. Kidd K. K., Speed W. C., Pakstis A. J., Furtado M. R., Fang R., Madbouly A., et al. (2014). Progress toward an efficient panel of SNPs for ancestry inference. Forensic Science International. Genetics, 10, 23–32. doi: 10.1016/j.fsigen.2014.01.002.PubMedGoogle Scholar
  129. Kindt A. S., Navarro P., Semple C. A., & Haley C. S. (2013). The genomic signature of trait-associated variants. BMC Genomics, 14, 108. doi: 10.1186/1471-2164-14-108.PubMedCentralPubMedGoogle Scholar
  130. Klein R. J., Zeiss C., Chew E. Y., Tsai J. Y., Sackler R. S., Haynes C., et al. (2005). Complement factor H polymorphism in age-related macular degeneration. Science, 308(5720), 385–389. doi: 10.1126/science.1109557.PubMedCentralPubMedGoogle Scholar
  131. Knickmeyer R. C., Wang J., Zhu H., Geng X., Woolson S., Hamer R. M., et al. (2014). Common variants in psychiatric risk genes predict brain structure at birth. Cerebral Cortex, 24(5), 1230–1246. doi: 10.1093/cercor/bhs401.PubMedGoogle Scholar
  132. Kochunov P., Glahn D., Winkler A., Duggirala R., Olvera R. L., Cole S., et al. (2009). Analysis of genetic variability and whole genome linkage of whole-brain, subcortical, and ependymal hyperintense white matter volume. Stroke, 40(12), 3685–3690. doi: 10.1161/strokeaha.109.565390.PubMedCentralPubMedGoogle Scholar
  133. Kochunov P., Glahn D. C., Lancaster J. L., Winkler A. M., Smith S., Thompson P. M., et al. (2010). Genetics of microstructure of cerebral white matter using diffusion tensor imaging. NeuroImage, 53(3), 1109–1116. doi: 10.1016/j.neuroimage.2010.01.078.PubMedCentralPubMedGoogle Scholar
  134. Kochunov P., Glahn D. C., Nichols T. E., Winkler A. M., Hong E. L., Holcomb H. H., et al. (2011). Genetic analysis of cortical thickness and fractional anisotropy of water diffusion in the brain. Frontiers in Neuroscience, 5, 120. doi: 10.3389/fnins.2011.00120.PubMedCentralPubMedGoogle Scholar
  135. Kochunov P., Jahanshad N., Sprooten E., Nichols T. E., Mandl R. C., Almasy L., et al. (2014). Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: Comparing meta and megaanalytical approaches for data pooling. NeuroImage, 95, 136–150. doi: 10.1016/j.neuroimage.2014.03.033.PubMedGoogle Scholar
  136. Kohannim, O., Hibar, D. P., Jahanshad, N., Stein, J. L., Hua, X., Toga, A. W., et al. (2012a) Predicting temporal lobe volume on MRI from genotypes using L 1-L 2 regularized regression. In Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on, 2012a (pp. 1160–1163). IEEE.Google Scholar
  137. Kohannim O., Hibar D. P., Stein J. L., Jahanshad N., Hua X., Rajagopalan P., et al. (2012b). Discovery and replication of gene influences on brain structure using LASSO regression. Frontiers in Neuroscience, 6, 115. doi: 10.3389/fnins.2012.00115.PubMedCentralPubMedGoogle Scholar
  138. Koolschijn P. C., & Crone E. A. (2013). Sex differences and structural brain maturation from childhood to early adulthood. Developmental Cognitive Neuroscience, 5, 106–118. doi: 10.1016/j.dcn.2013.02.003.PubMedGoogle Scholar
  139. Koten Jr. J. W., Wood G., Hagoort P., Goebel R., Propping P., Willmes K., et al. (2009). Genetic contribution to variation in cognitive function: an FMRI study in twins. Science, 323(5922), 1737–1740. doi: 10.1126/science.1167371.PubMedGoogle Scholar
  140. Kremen W. S., Prom-Wormley E., Panizzon M. S., Eyler L. T., Fischl B., Neale M. C., et al. (2010). Genetic and environmental influences on the size of specific brain regions in midlife: the VETSA MRI study. NeuroImage, 49(2), 1213–1223. doi: 10.1016/j.neuroimage.2009.09.043.PubMedCentralPubMedGoogle Scholar
  141. Kremen W. S., Franz C. E., & Lyons M. J. (2013). VETSA: the Vietnam Era twin study of aging. Twin Research and Human Genetics, 16(1), 399–402. doi: 10.1017/thg.2012.86.PubMedCentralPubMedGoogle Scholar
  142. Kuntsi J., Rogers H., Swinard G., Borger N., van der Meere J., Rijsdijk F., et al. (2006). Reaction time, inhibition, working memory and ‘delay aversion’ performance: genetic influences and their interpretation. Psychological Medicine, 36(11), 1613–1624. doi: 10.1017/s0033291706008580.PubMedCentralPubMedGoogle Scholar
  143. Laird N. M., & Lange C. (2006). Family-based designs in the age of large-scale gene-association studies. Nature Reviews Genetics, 7(5), 385–394. doi: 10.1038/nrg1839.PubMedGoogle Scholar
  144. Launer L. J. (2004). Epidemiology of white matter lesions. Topics in Magnetic Resonance Imaging, 15(6), 365–367. doi: 10.1097/01.rmr.0000168216.98338.8d.PubMedGoogle Scholar
  145. Lazzeroni L. C., Lu Y., & Belitskaya-Levy I. (2014). P-values in genomics: apparent precision masks high uncertainty. Molecular Psychiatry, 19(12), 1336–1340. doi: 10.1038/mp.2013.184.PubMedCentralPubMedGoogle Scholar
  146. Lenroot R. K., & Giedd J. N. (2008). The changing impact of genes and environment on brain development during childhood and adolescence: initial findings from a neuroimaging study of pediatric twins. Development and Psychopathology, 20(4), 1161–1175. doi: 10.1017/s0954579408000552.PubMedCentralPubMedGoogle Scholar
  147. Lenroot R. K., & Giedd J. N. (2010). Sex differences in the adolescent brain. Brain and Cognition, 72(1), 46–55. doi: 10.1016/j.bandc.2009.10.008.PubMedCentralPubMedGoogle Scholar
  148. Lenroot R. K., Schmitt J. E., Ordaz S. J., Wallace G. L., Neale M. C., Lerch J. P., et al. (2009). Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Human Brain Mapping, 30(1), 163–174. doi: 10.1002/hbm.20494.PubMedGoogle Scholar
  149. Lister R., Mukamel E. A., Nery J. R., Urich M., Puddifoot C. A., Johnson N. D., et al. (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 341(6146), 1237905. doi: 10.1126/science.1237905.PubMedCentralPubMedGoogle Scholar
  150. Little J., Higgins J. P., Ioannidis J. P., Moher D., Gagnon F., von Elm E., et al. (2009). Strengthening the reporting of genetic association studies (STREGA): an extension of the STROBE Statement. Human Genetics, 125(2), 131–151. doi: 10.1007/s00439-008-0592-7.PubMedGoogle Scholar
  151. Liu J., Pearlson G., Windemuth A., Ruano G., Perrone-Bizzozero N. I., & Calhoun V. (2009). Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Human Brain Mapping, 30(1), 241–255. doi: 10.1002/hbm.20508.PubMedCentralPubMedGoogle Scholar
  152. Liu X., Akula N., Skup M., Brotman M. A., Leibenluft E., & McMahon F. J. (2010). A genome-wide association study of amygdala activation in youths with and without bipolar disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 49(1), 33–41.PubMedCentralPubMedGoogle Scholar
  153. Liu X., Cannon D. M., Akula N., Moya P. R., Knudsen G. M., Arentzen T. E., et al. (2011). A non-synonymous polymorphism in galactose mutarotase (GALM) is associated with serotonin transporter binding potential in the human thalamus: results of a genome-wide association study. Molecular Psychiatry, 16(6), 584–585. doi: 10.1038/mp.2011.1.PubMedCentralPubMedGoogle Scholar
  154. Liu C. C., Kanekiyo T., Xu H., & Bu G. (2013). Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nature Reviews Neurology, 9(2), 106–118. doi: 10.1038/nrneurol.2012.263.PubMedCentralPubMedGoogle Scholar
  155. Liu Y., Yu J. T., Wang H. F., Han P. R., Tan C. C., Wang C., et al. (2015). APOE genotype and neuroimaging markers of Alzheimer’s disease: systematic review and meta-analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 86(2), 127–134. doi: 10.1136/jnnp-2014-307719.PubMedGoogle Scholar
  156. Lovestone S., Francis P., Kloszewska I., Mecocci P., Simmons A., Soininen H., et al. (2009). AddNeuroMed-the European collaboration for the discovery of novel biomarkers for Alzheimer’s disease. Annals of the New York Academy of Sciences, 1180, 36–46. doi: 10.1111/j.1749-6632.2009.05064.x.PubMedGoogle Scholar
  157. Luciano M., Wright M. J., Smith G. A., Geffen G. M., Geffen L. B., & Martin N. G. (2001). Genetic covariance among measures of information processing speed, working memory, and IQ. Behavior Genetics, 31(6), 581–592. doi: 10.1023/A:1013397428612.PubMedGoogle Scholar
  158. Maher B. (2008). Personal genomes: the case of the missing heritability. Nature, 456(7218), 18–21. doi: 10.1038/456018a.PubMedGoogle Scholar
  159. Mailman M. D., Feolo M., Jin Y., Kimura M., Tryka K., Bagoutdinov R., et al. (2007). The NCBI dbGaP database of genotypes and phenotypes. Nature Genetics, 39(10), 1181–1186. doi: 10.1038/ng1007-1181.PubMedCentralPubMedGoogle Scholar
  160. Malter Cohen M., Tottenham N., & Casey B. J. (2013). Translational developmental studies of stress on brain and behavior: implications for adolescent mental health and illness? Neuroscience, 249, 53–62. doi: 10.1016/j.neuroscience.2013.01.023.PubMedGoogle Scholar
  161. Marchini J., & Howie B. (2010). Genotype imputation for genome-wide association studies. Nature Reviews. Genetics, 11(7), 499–511. doi: 10.1038/nrg2796.PubMedGoogle Scholar
  162. Marchini J., Cardon L. R., Phillips M. S., & Donnelly P. (2004). The effects of human population structure on large genetic association studies. Nature Genetics, 36(5), 512–517. doi: 10.1038/ng1337.PubMedGoogle Scholar
  163. Martin N. G., Eaves L. J., Kearsey M. J., & Davies P. (1978). The power of the classical twin study. Heredity (Edinburgh), 40(1), 97–116.Google Scholar
  164. McCarthy M. I., Abecasis G. R., Cardon L. R., Goldstein D. B., Little J., Ioannidis J. P., et al. (2008). Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Reviews. Genetics, 9(5), 356–369. doi: 10.1038/nrg2344.PubMedGoogle Scholar
  165. McRae A. F., Powell J. E., Henders A. K., Bowdler L., Hemani G., Shah S., et al. (2014). Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biology, 15(5), R73. doi: 10.1186/gb-2014-15-5-r73.PubMedCentralPubMedGoogle Scholar
  166. Medland S. E., Jahanshad N., Neale B. M., & Thompson P. M. (2014). Whole-genome analyses of whole-brain data: working within an expanded search space. Nature Neuroscience, 17(6), 791–800. doi: 10.1038/nn.3718.PubMedGoogle Scholar
  167. Melville S. A., Buros J., Parrado A. R., Vardarajan B., Logue M. W., Shen L., et al. (2012). Multiple loci influencing hippocampal degeneration identified by genome scan. Annals of Neurology, 72(1), 65–75. doi: 10.1002/ana.23644.PubMedCentralPubMedGoogle Scholar
  168. Mersha, T. B., & Abebe, T. (2015). Self-reported race/ethnicity in the age of genomic research: its potential impact on understanding health disparities. Human Genomics, 9(1), 1, doi: 10.1186/PREACCEPT-2695828013752627.
  169. Meyer-Lindenberg A. (2010). Imaging genetics of schizophrenia. Dialogues in Clinical Neuroscience, 12(4), 449–456.PubMedCentralPubMedGoogle Scholar
  170. Michels, K. B., Binder, A. M., Dedeurwaerder, S., Epstein, C. B., Greally, J. M., Gut, I., et al. (2013). Recommendations for the design and analysis of epigenome-wide association studies. Nature Methods, 10(10), 949–955, doi: 10.1038/nmeth.2632.
  171. Moonesinghe R., Khoury M. J., Liu T., & Ioannidis J. P. (2008). Required sample size and nonreplicability thresholds for heterogeneous genetic associations. Proceedings of the National Academy of Sciences of the United States of America, 105(2), 617–622. doi: 10.1073/pnas.0705554105.PubMedCentralPubMedGoogle Scholar
  172. Morey R. A., Petty C. M., Xu Y., Hayes J. P., Wagner 2nd H. R., Lewis D. V., et al. (2009). A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. NeuroImage, 45(3), 855–866. doi: 10.1016/j.neuroimage.2008.12.033.PubMedCentralPubMedGoogle Scholar
  173. Morey R. A., Selgrade E. S., Wagner 2nd H. R., Huettel S. A., Wang L., & McCarthy G. (2010). Scan-rescan reliability of subcortical brain volumes derived from automated segmentation. Human Brain Mapping, 31(11), 1751–1762. doi: 10.1002/hbm.20973.PubMedCentralPubMedGoogle Scholar
  174. Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., et al. (2005). Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement, 1(1), 55–66, doi: 10.1016/j.jalz.2005.06.003.
  175. Munafo M. R., & Gage S. H. (2013). Improving the reliability and reporting of genetic association studies. Drug and Alcohol Dependence, 132(3), 411–413. doi: 10.1016/j.drugalcdep.2013.03.023.PubMedGoogle Scholar
  176. Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families (Vol. 67). Springer.Google Scholar
  177. Nichols T., & Hayasaka S. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research, 12(5), 419–446.PubMedGoogle Scholar
  178. Nugent A. C., Luckenbaugh D. A., Wood S. E., Bogers W., Zarate Jr. C. A., & Drevets W. C. (2013). Automated subcortical segmentation using FIRST: test-retest reliability, interscanner reliability, and comparison to manual segmentation. Human Brain Mapping, 34(9), 2313–2329. doi: 10.1002/hbm.22068.PubMedCentralPubMedGoogle Scholar
  179. Nuzzo R. (2014). Scientific method: statistical errors. Nature, 506(7487), 150–152. doi: 10.1038/506150a.PubMedGoogle Scholar
  180. Ousdal O. T., Anand Brown A., Jensen J., Nakstad P. H., Melle I., Agartz I., et al. (2012). Associations between variants near a monoaminergic pathways gene (PHOX2B) and amygdala reactivity: a genome-wide functional imaging study. Twin Research and Human Genetics, 15(3), 273–285. doi: 10.1017/thg.2012.5.PubMedGoogle Scholar
  181. Panagiotou O. A., Willer C. J., Hirschhorn J. N., & Ioannidis J. P. (2013). The power of meta-analysis in genome-wide association studies. Annual Review of Genomics and Human Genetics, 14, 441–465. doi: 10.1146/annurev-genom-091212-153520.PubMedCentralPubMedGoogle Scholar
  182. Panizzon M. S., Fennema-Notestine C., Eyler L. T., Jernigan T. L., Prom-Wormley E., Neale M., et al. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19(11), 2728–2735. doi: 10.1093/cercor/bhp026.PubMedCentralPubMedGoogle Scholar
  183. Panizzon M. S., Fennema-Notestine C., Kubarych T. S., Chen C. H., Eyler L. T., Fischl B., et al. (2012). Genetic and environmental influences of white and gray matter signal contrast: a new phenotype for imaging genetics? NeuroImage, 60(3), 1686–1695. doi: 10.1016/j.neuroimage.2012.01.122.PubMedCentralPubMedGoogle Scholar
  184. Panoutsopoulou K., Tachmazidou I., & Zeggini E. (2013). In search of low-frequency and rare variants affecting complex traits. Human Molecular Genetics, 22(R1), R16–R21. doi: 10.1093/hmg/ddt376.PubMedCentralPubMedGoogle Scholar
  185. Paternoster L., Chen W., & Sudlow C. L. (2009). Genetic determinants of white matter hyperintensities on brain scans: a systematic assessment of 19 candidate gene polymorphisms in 46 studies in 19,000 subjects. Stroke, 40(6), 2020–2026. doi: 10.1161/STROKEAHA.108.542050.PubMedGoogle Scholar
  186. Paus T., Bernard M., Chakravarty M. M., Davey Smith G., Gillis J., Lourdusamy A., et al. (2012). KCTD8 gene and brain growth in adverse intrauterine environment: a genome-wide association study. Cerebral Cortex, 22(11), 2634–2642. doi: 10.1093/cercor/bhr350.PubMedCentralPubMedGoogle Scholar
  187. Pe’er I., Yelensky R., Altshuler D., & Daly M. J. (2008). Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genetic Epidemiology, 32(4), 381–385. doi: 10.1002/gepi.20303.PubMedGoogle Scholar
  188. Pennington B. F., Filipek P. A., Lefly D., Chhabildas N., Kennedy D. N., Simon J. H., et al. (2000). A twin MRI study of size variations in human brain. Journal of Cognitive Neuroscience, 12(1), 223–232.PubMedGoogle Scholar
  189. Pereira T. V., Patsopoulos N. A., Salanti G., & Ioannidis J. P. (2009). Discovery properties of genome-wide association signals from cumulatively combined data sets. American Journal of Epidemiology, 170(10), 1197–1206. doi: 10.1093/aje/kwp262.PubMedCentralPubMedGoogle Scholar
  190. Pezawas L., Verchinski B. A., Mattay V. S., Callicott J. H., Kolachana B. S., Straub R. E., et al. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. The Journal of Neuroscience, 24(45), 10099–10102. doi: 10.1523/JNEUROSCI.2680-04.2004.PubMedGoogle Scholar
  191. Pfefferbaum A., Sullivan E. V., Swan G. E., & Carmelli D. (2000). Brain structure in men remains highly heritable in the seventh and eighth decades of life. Neurobiology of Aging, 21(1), 63–74.PubMedGoogle Scholar
  192. Phillips C., Parson W., Lundsberg B., Santos C., Freire-Aradas A., Torres M., et al. (2014). Building a forensic ancestry panel from the ground up: The EUROFORGEN Global AIM-SNP set. Forensic Science International. Genetics, 11, 13–25. doi: 10.1016/j.fsigen.2014.02.012.PubMedGoogle Scholar
  193. Pickrell J. K. (2014). Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. American Journal of Human Genetics, 94(4), 559–573. doi: 10.1016/j.ajhg.2014.03.004.PubMedCentralPubMedGoogle Scholar
  194. Plomin R., DeFries J. C., & Loehlin J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84(2), 309–322.PubMedGoogle Scholar
  195. Posthuma D., de Geus E. J., Neale M. C., Hulshoff Pol H. E., Baare W. E. C., Kahn R. S., et al. (2000). Multivariate genetic analysis of brain structure in an extended twin design. Behavior Genetics, 30(4), 311–319.PubMedGoogle Scholar
  196. Posthuma D., De Geus E. J., Baare W. F., Hulshoff Pol H. E., Kahn R. S., & Boomsma D. I. (2002). The association between brain volume and intelligence is of genetic origin. Nature Neuroscience, 5(2), 83–84. doi: 10.1038/nn0202-83.PubMedGoogle Scholar
  197. Posthuma D., Baare W. F., Hulshoff Pol H. E., Kahn R. S., Boomsma D. I., & De Geus E. J. (2003). Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed. Twin Research, 6(2), 131–139. doi: 10.1375/136905203321536254.PubMedGoogle Scholar
  198. Potkin S. G., Guffanti G., Lakatos A., Turner J. A., Kruggel F., Fallon J. H., et al. (2009a). Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. PloS One, 4(8), e6501. doi: 10.1371/journal.pone.0006501.PubMedCentralPubMedGoogle Scholar
  199. Potkin S. G., Turner J. A., Guffanti G., Lakatos A., Fallon J. H., Nguyen D. D., et al. (2009b). A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophrenia Bulletin, 35(1), 96–108. doi: 10.1093/schbul/sbn155.PubMedCentralPubMedGoogle Scholar
  200. Price A. L., Patterson N. J., Plenge R. M., Weinblatt M. E., Shadick N. A., & Reich D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38(8), 904–909. doi: 10.1038/ng1847.PubMedGoogle Scholar
  201. Price A. L., Zaitlen N. A., Reich D., & Patterson N. (2010). New approaches to population stratification in genome-wide association studies. Nature Reviews. Genetics, 11(7), 459–463. doi: 10.1038/nrg2813.PubMedCentralPubMedGoogle Scholar
  202. Psaty B. M., & Sitlani C. (2013). The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium as a model of collaborative science. Epidemiology, 24(3), 346–348. doi: 10.1097/EDE.0b013e31828b2cbb.PubMedGoogle Scholar
  203. Psaty B. M., O’Donnell C. J., Gudnason V., Lunetta K. L., Folsom A. R., Rotter J. I., et al. (2009). Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circulation. Cardiovascular Genetics, 2(1), 73–80. doi: 10.1161/CIRCGENETICS.108.829747.PubMedCentralPubMedGoogle Scholar
  204. Rabl U., Meyer B. M., Diers K., Bartova L., Berger A., Mandorfer D., et al. (2014). Additive gene-environment effects on hippocampal structure in healthy humans. The Journal of Neuroscience, 34(30), 9917–9926. doi: 10.1523/JNEUROSCI.3113-13.2014.PubMedCentralPubMedGoogle Scholar
  205. Rakyan V. K., Down T. A., Balding D. J., & Beck S. (2011). Epigenome-wide association studies for common human diseases. Nature Reviews. Genetics, 12(8), 529–541. doi: 10.1038/nrg3000.PubMedCentralPubMedGoogle Scholar
  206. Rentería, M. E., Hansell, N. K., Strike, L. T., McMahon, K. L., de Zubicaray, G. I., Hickie, I. B., et al. (2014). Genetic architecture of subcortical brain regions: common and region-specific genetic contributions. Genes Brain and Behavior, n/a-n/a, doi: 10.1111/gbb.12177.
  207. Rijsdijk F. V., Viding E., De Brito S., Forgiarini M., Mechelli A., Jones A. P., et al. (2010). Heritable variations in gray matter concentration as a potential endophenotype for psychopathic traits. Archives of General Psychiatry, 67(4), 406–413. doi: 10.1001/archgenpsychiatry.2010.20.PubMedGoogle Scholar
  208. Rimol L. M., Panizzon M. S., Fennema-Notestine C., Eyler L. T., Fischl B., Franz C. E., et al. (2010). Cortical thickness is influenced by regionally specific genetic factors. Biological Psychiatry, 67(5), 493–499. doi: 10.1016/j.biopsych.2009.09.032.PubMedCentralPubMedGoogle Scholar
  209. Rogers J., Kochunov P., Zilles K., Shelledy W., Lancaster J., Thompson P., et al. (2010). On the genetic architecture of cortical folding and brain volume in primates. NeuroImage, 53(3), 1103–1108. doi: 10.1016/j.neuroimage.2010.02.020.PubMedCentralPubMedGoogle Scholar
  210. Rosenberg N. A., Huang L., Jewett E. M., Szpiech Z. A., Jankovic I., & Boehnke M. (2010). Genome-wide association studies in diverse populations. Nature Reviews. Genetics, 11(5), 356–366. doi: 10.1038/nrg2760.PubMedCentralPubMedGoogle Scholar
  211. Rousson V., Gasser T., & Seifert B. (2002). Assessing intrarater, interrater and test-retest reliability of continuous measurements. Statistics in Medicine, 21(22), 3431–3446. doi: 10.1002/sim.1253.PubMedGoogle Scholar
  212. Roussotte F. F., Jahanshad N., Hibar D. P., Sowell E. R., Kohannim O., Barysheva M., et al. (2014). A commonly carried genetic variant in the delta opioid receptor gene, OPRD1, is associated with smaller regional brain volumes: replication in elderly and young populations. Human Brain Mapping, 35(4), 1226–1236. doi: 10.1002/hbm.22247.PubMedCentralPubMedGoogle Scholar
  213. Sabuncu M. R., Buckner R. L., Smoller J. W., Lee P. H., Fischl B., Sperling R. A., et al. (2012). The Association between a Polygenic Alzheimer Score and Cortical Thickness in Clinically Normal Subjects. Cerebral Cortex (New York, NY), 22(11), 2653–2661. doi: 10.1093/cercor/bhr348.Google Scholar
  214. Sachdev P. S., Lammel A., Trollor J. N., Lee T., Wright M. J., Ames D., et al. (2009). A comprehensive neuropsychiatric study of elderly twins: the Older Australian Twins Study. Twin Research and Human Genetics, 12(6), 573–582. doi: 10.1375/twin.12.6.573.PubMedGoogle Scholar
  215. Schaub M. A., Boyle A. P., Kundaje A., Batzoglou S., & Snyder M. (2012). Linking disease associations with regulatory information in the human genome. Genome Research, 22(9), 1748–1759. doi: 10.1101/gr.136127.111.PubMedCentralPubMedGoogle Scholar
  216. Scheggia D., Sannino S., Scattoni M. L., & Papaleo F. (2012). COMT as a drug target for cognitive functions and dysfunctions. CNS & Neurological Disorders Drug Targets, 11(3), 209–221.Google Scholar
  217. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421–427. doi: 10.1038/nature13595.PubMedCentralGoogle Scholar
  218. Schmitt J. E., Wallace G. L., Rosenthal M. A., Molloy E. A., Ordaz S., Lenroot R., et al. (2007). A multivariate analysis of neuroanatomic relationships in a genetically informative pediatric sample. NeuroImage, 35(1), 70–82. doi: 10.1016/j.neuroimage.2006.04.232.PubMedGoogle Scholar
  219. Schmitt J. E., Lenroot R. K., Wallace G. L., Ordaz S., Taylor K. N., Kabani N., et al. (2008). Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cerebral Cortex, 18(8), 1737–1747. doi: 10.1093/cercor/bhm211.PubMedCentralPubMedGoogle Scholar
  220. Schmitt J. E., Lenroot R. K., Ordaz S. E., Wallace G. L., Lerch J. P., Evans A. C., et al. (2009). Variance decomposition of MRI-based covariance maps using genetically informative samples and structural equation modeling. NeuroImage, 47(1), 56–64. doi: 10.1016/j.neuroimage.2008.06.039.PubMedCentralPubMedGoogle Scholar
  221. Schmitt J. E., Wallace G. L., Lenroot R. K., Ordaz S. E., Greenstein D., Clasen L., et al. (2010). A twin study of intracerebral volumetric relationships. Behavior Genetics, 40(2), 114–124. doi: 10.1007/s10519-010-9332-6.PubMedCentralPubMedGoogle Scholar
  222. Schmitt J. E., Neale M. C., Fassassi B., Perez J., Lenroot R. K., Wells E. M., et al. (2014). The dynamic role of genetics on cortical patterning during childhood and adolescence. Proceedings of the National Academy of Sciences of the United States of America, 111(18), 6774–6779. doi: 10.1073/pnas.1311630111.PubMedCentralPubMedGoogle Scholar
  223. Schumann G., Loth E., Banaschewski T., Barbot A., Barker G., Buchel C., et al. (2010). The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Molecular Psychiatry, 15(12), 1128–1139. doi: 10.1038/mp.2010.4.PubMedGoogle Scholar
  224. Seshadri S., DeStefano A. L., Au R., Massaro J. M., Beiser A. S., Kelly-Hayes M., et al. (2007). Genetic correlates of brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in the Framingham study. BMC Medical Genetics, 8(Suppl 1), S15. doi: 10.1186/1471-2350-8-S1-S15.PubMedCentralPubMedGoogle Scholar
  225. Sham P. C., & Purcell S. M. (2014). Statistical power and significance testing in large-scale genetic studies. Nature Reviews. Genetics, 15(5), 335–346. doi: 10.1038/nrg3706.PubMedGoogle Scholar
  226. Shen L., Kim S., Risacher S. L., Nho K., Swaminathan S., West J. D., et al. (2010). Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort. NeuroImage, 53(3), 1051–1063. doi: 10.1016/j.neuroimage.2010.01.042.PubMedCentralPubMedGoogle Scholar
  227. Sherry S. T., Ward M. H., Kholodov M., Baker J., Phan L., Smigielski E. M., et al. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311.PubMedCentralPubMedGoogle Scholar
  228. Shi J., Thompson P. M., Gutman B., Wang Y., & Alzheimer’s Disease Neuroimaging I. (2013). Surface fluid registration of conformal representation: application to detect disease burden and genetic influence on hippocampus. NeuroImage, 78, 111–134. doi: 10.1016/j.neuroimage.2013.04.018.PubMedCentralPubMedGoogle Scholar
  229. Shields P. G. (2000). Publication bias is a scientific problem with adverse ethical outcomes: the case for a section for null results. Cancer Epidemiology, Biomarkers & Prevention, 9(8), 771–772.Google Scholar
  230. Silventoinen K., Sammalisto S., Perola M., Boomsma D. I., Cornes B. K., Davis C., et al. (2003). Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Research, 6(5), 399–408. doi: 10.1375/136905203770326402.PubMedGoogle Scholar
  231. Simic G., Kostovic I., Winblad B., & Bogdanovi N. (1997). Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. Journal of Comparative Neurology (1911), 379(4), 482–494.Google Scholar
  232. So H. C., Li M., & Sham P. C. (2011). Uncovering the total heritability explained by all true susceptibility variants in a genome-wide association study. Genetic Epidemiology, 35(6), 447–456. doi: 10.1002/gepi.20593.PubMedGoogle Scholar
  233. Sprooten, E., Fleming, K. M., Thomson, P. A., Bastin, M. E., Whalley, H. C., Hall, J., et al. (2013). White matter integrity as an intermediate phenotype: exploratory genome-wide association analysis in individuals at high risk of bipolar disorder. Psychiatry Research, 206(2–3), 223–231, doi: 10.1016/j.psychres.2012.11.002.
  234. Steffens D. C., Helms M. J., Krishnan K. R., & Burke G. L. (1999). Cerebrovascular disease and depression symptoms in the cardiovascular health study. Stroke, 30(10), 2159–2166.PubMedGoogle Scholar
  235. Stein J. L., Hua X., Morra J. H., Lee S., Hibar D. P., Ho A. J., et al. (2010). Genome-wide analysis reveals novel genes influencing temporal lobe structure with relevance to neurodegeneration in Alzheimer’s disease. NeuroImage, 51(2), 542–554. doi: 10.1016/j.neuroimage.2010.02.068.PubMedCentralPubMedGoogle Scholar
  236. Stein J. L., Hibar D. P., Madsen S. K., Khamis M., McMahon K. L., de Zubicaray G. I., et al. (2011). Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N = 1198) using genome-wide search. Molecular Psychiatry, 16(9), 927–881937. doi: 10.1038/mp.2011.32.PubMedCentralPubMedGoogle Scholar
  237. Stein J. L., Medland S. E., Vasquez A. A., Hibar D. P., Senstad R. E., Winkler A. M., et al. (2012). Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 44(5), 552–561. doi: 10.1038/ng.2250.PubMedCentralPubMedGoogle Scholar
  238. Stranger B. E., Stahl E. A., & Raj T. (2011). Progress and promise of genome-wide association studies for human complex trait genetics. Genetics, 187(2), 367–383. doi: 10.1534/genetics.110.120907.PubMedCentralPubMedGoogle Scholar
  239. Sullivan P. F. (2007). Spurious genetic associations. Biological Psychiatry, 61(10), 1121–1126. doi: 10.1016/j.biopsych.2006.11.010.PubMedGoogle Scholar
  240. Sullivan P. F., Daly M. J., & O’Donovan M. (2012). Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nature Reviews. Genetics, 13(8), 537–551. doi: 10.1038/nrg3240.PubMedCentralPubMedGoogle Scholar
  241. Taal H. R., St Pourcain B., Thiering E., Das S., Mook-Kanamori D. O., Warrington N. M., et al. (2012). Common variants at 12q15 and 12q24 are associated with infant head circumference. Nature Genetics, 44(5), 532–538. doi: 10.1038/ng.2238.PubMedCentralPubMedGoogle Scholar
  242. Teo Y. Y. (2008). Common statistical issues in genome-wide association studies: a review on power, data quality control, genotype calling and population structure. Current Opinion in Lipidology, 19(2), 133–143. doi: 10.1097/MOL.0b013e3282f5dd77.PubMedGoogle Scholar
  243. Teo Y. Y., Small K. S., & Kwiatkowski D. P. (2010). Methodological challenges of genome-wide association analysis in Africa. Nature Reviews. Genetics, 11(2), 149–160. doi: 10.1038/nrg2731.PubMedCentralPubMedGoogle Scholar
  244. Thomas D. (2010). Gene-environment-wide association studies: emerging approaches. Nature Reviews. Genetics, 11(4), 259–272. doi: 10.1038/nrg2764.PubMedCentralPubMedGoogle Scholar
  245. Thompson P. M., Cannon T. D., Narr K. L., van Erp T., Poutanen V. P., Huttunen M., et al. (2001). Genetic influences on brain structure. Nature Neuroscience, 4(12), 1253–1258. doi: 10.1038/nn758.PubMedGoogle Scholar
  246. Thompson P. M., Stein J. L., Medland S. E., Hibar D. P., Vasquez A. A., Renteria M. E., et al. (2014). The ENIGMA consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 8(2), 153–182. doi: 10.1007/s11682-013-9269-5.PubMedCentralPubMedGoogle Scholar
  247. Tost H., Bilek E., & Meyer-Lindenberg A. (2012). Brain connectivity in psychiatric imaging genetics. NeuroImage, 62(4), 2250–2260. doi: 10.1016/j.neuroimage.2011.11.007.PubMedGoogle Scholar
  248. Tucker-Drob E. M., Rhemtulla M., Harden K. P., Turkheimer E., & Fask D. (2011). Emergence of a Gene x socioeconomic status interaction on infant mental ability between 10 months and 2 years. Psychological Science, 22(1), 125–133. doi: 10.1177/0956797610392926.PubMedCentralPubMedGoogle Scholar
  249. Turkheimer E., Haley A., Waldron M., D’Onofrio B., & Gottesman I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14(6), 623–628.PubMedGoogle Scholar
  250. Turner, S. D. (2014). qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots.Google Scholar
  251. Turner S. T., Jack C. R., Fornage M., Mosley T. H., Boerwinkle E., & de Andrade M. (2004). Heritability of leukoaraiosis in hypertensive sibships. Hypertension, 43(2), 483–487. doi: 10.1161/01.hyp.0000112303.26158.92.PubMedGoogle Scholar
  252. van der Heijden C. D., Rijpkema M., Arias-Vasquez A., Hakobjan M., Scheffer H., Fernandez G., et al. (2013). Genetic variation in ataxia gene ATXN7 influences cerebellar grey matter volume in healthy adults. Cerebellum, 12(3), 390–395. doi: 10.1007/s12311-012-0423-1.PubMedGoogle Scholar
  253. van der Sijde M. R., Ng A., & Fu J. (2014). Systems genetics: From GWAS to disease pathways. Biochimica et Biophysica Acta. doi: 10.1016/j.bbadis.2014.04.025.PubMedGoogle Scholar
  254. van Leeuwen M., Peper J. S., van den Berg S. M., Brouwer R. M., Hulshoff Pol H. E., Kahn R. S., et al. (2009). A genetic analysis of brain volumes and IQ in children. Intelligence, 37(2), 181–191.Google Scholar
  255. Van Petten C. (2004). Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: review and meta-analysis. Neuropsychologia, 42(10), 1394–1413. doi: 10.1016/j.neuropsychologia.2004.04.006.PubMedGoogle Scholar
  256. van Soelen I. L., Brouwer R. M., van Leeuwen M., Kahn R. S., Hulshoff Pol H. E., & Boomsma D. I. (2011). Heritability of verbal and performance intelligence in a pediatric longitudinal sample. Twin Research and Human Genetics, 14(2), 119–128. doi: 10.1375/twin.14.2.119.PubMedGoogle Scholar
  257. van Soelen I. L., Brouwer R. M., van Baal G. C., Schnack H. G., Peper J. S., Collins D. L., et al. (2012). Genetic influences on thinning of the cerebral cortex during development. NeuroImage, 59(4), 3871–3880. doi: 10.1016/j.neuroimage.2011.11.044.PubMedGoogle Scholar
  258. van Soelen I. L., Brouwer R. M., van Baal G. C., Schnack H. G., Peper J. S., Chen L., et al. (2013). Heritability of volumetric brain changes and height in children entering puberty. Human Brain Mapping, 34(3), 713–725. doi: 10.1002/hbm.21468.PubMedGoogle Scholar
  259. Vermeer S. E., Hollander M., van Dijk E. J., Hofman A., Koudstaal P. J., Breteler M. M., et al. (2003). Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke, 34(5), 1126–1129. doi: 10.1161/01.STR.0000068408.82115.D2.PubMedGoogle Scholar
  260. Verweij K. J., Mosing M. A., Zietsch B. P., & Medland S. E. (2012). Estimating heritability from twin studies. Methods in Molecular Biology, 850, 151–170. doi: 10.1007/978-1-61779-555-8_9.PubMedGoogle Scholar
  261. Veyrieras J. B., Kudaravalli S., Kim S. Y., Dermitzakis E. T., Gilad Y., Stephens M., et al. (2008). High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genetics, 4(10), e1000214. doi: 10.1371/journal.pgen.1000214.PubMedCentralPubMedGoogle Scholar
  262. Videbech P., & Ravnkilde B. (2004). Hippocampal Volume and Depression: A meta-analysis of MRI Studies. The American Journal of Psychiatry, 161(11), 1957–1966.PubMedGoogle Scholar
  263. Vinkhuyzen A. A., Wray N. R., Yang J., Goddard M. E., & Visscher P. M. (2013). Estimation and partition of heritability in human populations using whole-genome analysis methods. Annual Review of Genetics, 47, 75–95. doi: 10.1146/annurev-genet-111212-133258.PubMedCentralPubMedGoogle Scholar
  264. Visscher, P. M., Hill, W. G., & Wray, N. R. (2008). Heritability in the genomics era--concepts and misconceptions. Nature Reviews. Genetics, 9(4), 255–266, doi: 10.1038/nrg2322.
  265. Visscher P. M., Brown M. A., McCarthy M. I., & Yang J. (2012a). Five years of GWAS discovery. American Journal of Human Genetics, 90(1), 7–24. doi: 10.1016/j.ajhg.2011.11.029.PubMedCentralPubMedGoogle Scholar
  266. Visscher P. M., Goddard M. E., Derks E. M., & Wray N. R. (2012b). Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses. Molecular Psychiatry, 17(5), 474–485. doi: 10.1038/mp.2011.65.PubMedGoogle Scholar
  267. Vounou M., Nichols T. E., Montana G., & Alzheimer’s Disease Neuroimaging I. (2010). Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach. NeuroImage, 53(3), 1147–1159. doi: 10.1016/j.neuroimage.2010.07.002.PubMedGoogle Scholar
  268. Vuoksimaa E., Panizzon M. S., Chen C. H., Fiecas M., Eyler L. T., Fennema-Notestine C., et al. (2014). The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cerebral Cortex. doi: 10.1093/cercor/bhu018.PubMedGoogle Scholar
  269. Wallace G. L., Eric Schmitt J., Lenroot R., Viding E., Ordaz S., Rosenthal M. A., et al. (2006). A pediatric twin study of brain morphometry. Journal of Child Psychology and Psychiatry, 47(10), 987–993. doi: 10.1111/j.1469-7610.2006.01676.x.PubMedGoogle Scholar
  270. Wallace G. L., Lee N. R., Prom-Wormley E. C., Medland S. E., Lenroot R. K., Clasen L. S., et al. (2010). A bivariate twin study of regional brain volumes and verbal and nonverbal intellectual skills during childhood and adolescence. Behavior Genetics, 40(2), 125–134. doi: 10.1007/s10519-009-9329-1.PubMedCentralPubMedGoogle Scholar
  271. Wang Q., Xiang B., Deng W., Wu J., Li M., Ma X., et al. (2013a). Genome-wide association analysis with gray matter volume as a quantitative phenotype in first-episode treatment-naive patients with schizophrenia. PloS One, 8(9), e75083. doi: 10.1371/journal.pone.0075083.PubMedCentralPubMedGoogle Scholar
  272. Wang Y., Li J., Chen C., Chen C., Zhu B., Moysis R. K., et al. (2013b). COMT rs4680 Met is not always the ‘smart allele’: Val allele is associated with better working memory and larger hippocampal volume in healthy Chinese. Genes, Brain, and Behavior, 12(3), 323–329. doi: 10.1111/gbb.12022.PubMedGoogle Scholar
  273. Wellcome Trust Case Control C. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature, 447(7145), 661–678. doi: 10.1038/nature05911.Google Scholar
  274. Welter D., MacArthur J., Morales J., Burdett T., Hall P., Junkins H., et al. (2014). The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Research, 42(Database issue), D1001–D1006. doi: 10.1093/nar/gkt1229.PubMedCentralPubMedGoogle Scholar
  275. Winkler A. M., Kochunov P., Blangero J., Almasy L., Zilles K., Fox P. T., et al. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53(3), 1135–1146. doi: 10.1016/j.neuroimage.2009.12.028.PubMedCentralPubMedGoogle Scholar
  276. Wray N. R., Lee S. H., Mehta D., Vinkhuyzen A. A. E., Dudbridge F., & Middeldorp C. M. (2014). Research review: polygenic methods and their application to psychiatric traits. Journal of Child Psychology and Psychiatry, 55(10), 1068–1087. doi: 10.1111/jcpp.12295.PubMedGoogle Scholar
  277. Wright I. C., Rabe-Hesketh S., Woodruff P. W., David A. S., Murray R. M., & Bullmore E. T. (2000). Meta-analysis of regional brain volumes in schizophrenia. The American Journal of Psychiatry, 157(1), 16–25.PubMedGoogle Scholar
  278. Wright I. C., Sham P., Murray R. M., Weinberger D. R., & Bullmore E. T. (2002). Genetic contributions to regional variability in human brain structure: methods and preliminary results. NeuroImage, 17(1), 256–271.PubMedGoogle Scholar
  279. Yang J., Benyamin B., McEvoy B. P., Gordon S., Henders A. K., Nyholt D. R., et al. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42(7), 565–569. doi: 10.1038/ng.608.PubMedCentralPubMedGoogle Scholar
  280. Yang J., Lee S. H., Goddard M. E., & Visscher P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88(1), 76–82. doi: 10.1016/j.ajhg.2010.11.011.PubMedCentralPubMedGoogle Scholar
  281. Yoon U., Fahim C., Perusse D., & Evans A. C. (2010). Lateralized genetic and environmental influences on human brain morphology of 8-year-old twins. NeuroImage, 53(3), 1117–1125. doi: 10.1016/j.neuroimage.2010.01.007.PubMedCentralPubMedGoogle Scholar
  282. Zhang X., Lee M. R., Salmeron B. J., Stein D. J., Hong L. E., Geng X., et al. (2013). Prefrontal white matter impairment in substance users depends upon the catechol-o-methyl transferase (COMT) val158met polymorphism. NeuroImage, 69, 62–69. doi: 10.1016/j.neuroimage.2012.11.056.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Lachlan T. Strike
    • 1
    • 2
    • 3
    Email author
  • Baptiste Couvy-Duchesne
    • 1
    • 2
    • 3
  • Narelle K. Hansell
    • 1
  • Gabriel Cuellar-Partida
    • 4
  • Sarah E. Medland
    • 5
  • Margaret J. Wright
    • 1
    • 2
  1. 1.Neuroimaging Genetics, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
  2. 2.School of PsychologyUniversity of QueenslandBrisbaneAustralia
  3. 3.Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
  4. 4.Statistical Genetics, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
  5. 5.Quantitative Genetics, QIMR Berghofer Medical Research InstituteBrisbaneAustralia

Personalised recommendations