Neuropsychology Review

, Volume 24, Issue 3, pp 271–289 | Cite as

Structural Imaging Measures of Brain Aging

  • Samuel N. Lockhart
  • Charles DeCarli


During the course of normal aging, biological changes occur in the brain that are associated with changes in cognitive ability. This review presents data from neuroimaging studies of primarily “normal” or healthy brain aging. As such, we focus on research in unimpaired or nondemented older adults, but also include findings from lifespan studies that include younger and middle aged individuals as well as from populations with prodromal or clinically symptomatic disease such as cerebrovascular or Alzheimer’s disease. This review predominantly addresses structural MRI biomarkers, such as volumetric or thickness measures from anatomical images, and measures of white matter injury and integrity respectively from FLAIR or DTI, and includes complementary data from PET and cognitive or clinical testing as appropriate. The findings reveal highly consistent age-related differences in brain structure, particularly frontal lobe and medial temporal regions that are also accompanied by age-related differences in frontal and medial temporal lobe mediated cognitive abilities. Newer findings also suggest that degeneration of specific white matter tracts such as those passing through the genu and splenium of the corpus callosum may also be related to age-related differences in cognitive performance. Interpretation of these findings, however, must be tempered by the fact that comorbid diseases such as cerebrovascular and Alzheimer’s disease also increase in prevalence with advancing age. As such, this review discusses challenges related to interpretation of current theories of cognitive aging in light of the common occurrence of these later-life diseases. Understanding the differences between “Normal” and “Healthy” brain aging and identifying potential modifiable risk factors for brain aging is critical to inform potential treatments to stall or reverse the effects of brain aging and possibly extend cognitive health for our aging society.


Aging Brain imaging Cognition 


  1. Aggarwal, N. T., Wilson, R. S., Bienias, J. L., De Jager, P. L., Bennett, D. A., Evans, D. A., & DeCarli, C. (2010). The association of magnetic resonance imaging measures with cognitive function in a biracial population sample. Archives of Neurology, 67(4), 475–482.PubMedCentralPubMedGoogle Scholar
  2. Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., & Buckner, R. L. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924–935.PubMedCentralPubMedGoogle Scholar
  3. Assaf, Y., & Pasternak, O. (2008). Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. Journal of Molecular Neuroscience : MN, 34(1), 51–61. doi: 10.1007/s12031-007-0029-0.PubMedGoogle Scholar
  4. Bender, A. R., & Raz, N. (2012). Age-related differences in memory and executive functions in healthy APOE varepsilon4 carriers: the contribution of individual differences in prefrontal volumes and systolic blood pressure. Neuropsychologia, 50(5), 704–714. doi: 10.1016/j.neuropsychologia.2011.12.025.PubMedCentralPubMedGoogle Scholar
  5. Boon, A., Lodder, J., Heuts-van Raak, L., & Kessels, F. (1994). Silent brain infarcts in 755 consecutive patients with a first-ever supratentorial ischemic stroke. Relationship with index-stroke subtype, vascular risk factors, and mortality. Stroke, 25(12), 2384–2390.PubMedGoogle Scholar
  6. Boone, K. B., Miller, B. L., Lesser, I. M., Mehringer, C. M., Hill-Gutierrez, E., Goldberg, M. A., & Berman, N. G. (1992). Neuropsychological correlates of white-matter lesions in healthy elderly subjects. A threshold effect. Archives of Neurology, 49(5), 549–554.PubMedGoogle Scholar
  7. Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011). Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. Journal of Neuropathology and Experimental Neurology, 70(11), 960–969. doi: 10.1097/NEN.0b013e318232a379.PubMedGoogle Scholar
  8. Breteler, M. M. (2000). Vascular involvement in cognitive decline and dementia. Epidemiologic evidence from the Rotterdam Study and the Rotterdam Scan Study. Annals of the New York Academy of Sciences, 903(11 Suppl 5), 457–465.PubMedGoogle Scholar
  9. Breteler, M. M., van Amerongen, N. M., van Swieten, J. C., Claus, J. J., Grobbee, D. E., van Gijn, J., Hofman, A., & van Harskamp, F. (1994). Cognitive correlates of ventricular enlargement and cerebral white matter lesions on MRI: the Rotterdam Study. Stroke, 25, 1109–1115.PubMedGoogle Scholar
  10. Brickman, A. M., Schupf, N., Manly, J. J., Luchsinger, J. A., Andrews, H., Tang, M. X., & Brown, T. R. (2008). Brain morphology in older African Americans, Caribbean Hispanics, and whites from northern Manhattan. Archives of Neurology, 65(8), 1053–1061.PubMedCentralPubMedGoogle Scholar
  11. Bronge, L. (2002). Magnetic resonance imaging in dementia. A study of brain white matter changes. Acta Radiologica. Supplementum, 43(428), 1–32.Google Scholar
  12. Buckner, R. L. (2004). Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron, 44(1), 195–208.PubMedGoogle Scholar
  13. Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., & Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. Journal of Neuroscience, 29(6), 1860–1873. doi: 10.1523/JNEUROSCI.5062-08.2009.PubMedCentralPubMedGoogle Scholar
  14. Bucur, B., Madden, D. J., Spaniol, J., Provenzale, J. M., Cabeza, R., White, L. E., & Huettel, S. A. (2008). Age-related slowing of memory retrieval: contributions of perceptual speed and cerebral white matter integrity. Neurobiology of Aging, 29(7), 1070–1079. doi: 10.1016/j.neurobiolaging.2007.02.008.PubMedCentralPubMedGoogle Scholar
  15. Burt, V. L., Whelton, P., Roccella, E. J., Brown, C., Cutler, J. A., Higgins, M., & Labarthe, D. (1995). Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988–1991. Hypertension, 25(3), 305–313.PubMedGoogle Scholar
  16. Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage, 17(3), 1394–1402.PubMedGoogle Scholar
  17. Carmichael, O., Mungas, D., Beckett, L., Harvey, D., Tomaszewski Farias, S., Reed, B., Decarli, C. (2012). MRI predictors of cognitive change in a diverse and carefully characterized elderly population. Neurobiology of Aging, 33(1), 83–95.Google Scholar
  18. Carmichael, O., Schwarz, C., Drucker, D., Fletcher, E., Harvey, D., Beckett, L., Initiative., t. A. D. N. (2010). Longitudinal changes in white matter disease and cognition in the first year of the Alzheimers disease neuroimaging initiative. Archives of Neurology.Google Scholar
  19. Chien, D. T., Bahri, S., Szardenings, A. K., Walsh, J. C., Mu, F., Su, M. Y., & Kolb, H. C. (2013). Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. Journal of Alzheimer’s Disease, 34(2), 457–468. doi: 10.3233/JAD-122059.PubMedGoogle Scholar
  20. Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., Jr., & Roccella, E. J. (2003). The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA, 289(19), 2560–2572. doi: 10.1001/jama.289.19.2560.PubMedGoogle Scholar
  21. Chua, T. C., Wen, W., Slavin, M. J., & Sachdev, P. S. (2008). Diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease: a review. Current Opinion in Neurology, 21(1), 83–92.PubMedGoogle Scholar
  22. Coffey, C. E., Lucke, J. F., Saxton, J. A., Ratcliff, G., Unitas, L. J., Billig, B., & Bryan, R. N. (1998). Sex differences in brain aging: a quantitative magnetic resonance imaging study. Archives of Neurology, 55(2), 169–179.PubMedGoogle Scholar
  23. Coffey, C. E., Ratcliff, G., Saxton, J. A., Bryan, R. N., Fried, L. P., & Lucke, J. F. (2001). Cognitive correlates of human brain aging: a quantitative magnetic resonance imaging investigation. Journal of Neuropsychiatry and Clinical Neurosciences, 13(4), 471–485.PubMedGoogle Scholar
  24. Coffey, C. E., Saxton, J. A., Ratcliff, G., Bryan, R. N., & Lucke, J. F. (1999). Relation of education to brain size in normal aging: implications for the reserve hypothesis. Neurology, 53(1), 189–196.PubMedGoogle Scholar
  25. Coffey, C. E., Wilkinson, W. E., Parashos, I. A., Soady, S. A., Sullivan, R. J., Patterson, L. J., & Djang, W. T. (1992). Quantitative cerebral anatomy of the aging human brain: a cross-sectional study using magnetic resonance imaging. Neurology, 42(3 Pt 1), 527–536.PubMedGoogle Scholar
  26. Cordonnier, C. (2010). Brain microbleeds. Practical Neurology, 10(2), 94–100. doi: 10.1136/jnnp.2010.206086.PubMedGoogle Scholar
  27. Cordonnier, C., Klijn, C. J., van Beijnum, J., & Al-Shahi Salman, R. (2010). Radiological investigation of spontaneous intracerebral hemorrhage: systematic review and trinational survey. Stroke, 41(4), 685–690. doi: 10.1161/STROKEAHA.109.572495.PubMedGoogle Scholar
  28. Cordonnier, C., & van der Flier, W. M. (2011). Brain microbleeds and Alzheimer’s disease: innocent observation or key player? Brain, 134(Pt 2), 335–344. doi: 10.1093/brain/awq321.PubMedGoogle Scholar
  29. Cordonnier, C., van der Flier, W. M., Sluimer, J. D., Leys, D., Barkhof, F., & Scheltens, P. (2006). Prevalence and severity of microbleeds in a memory clinic setting. Neurology, 66(9), 1356–1360.PubMedGoogle Scholar
  30. Cummings, J. L. (1993). Frontal-subcorical circuits and human behavior. Archives of Neurology, 50, 873–880.PubMedGoogle Scholar
  31. Cummings, J. L. (1995). Anatomic and behavioral aspects of frontal-subcortical circuits. In J. Grafman & K. J. Holyoak (Eds.), Annals of the New York Academy of Sciences (Vol. 769, pp. 1–13). New York: The New York Academy of Sciences.Google Scholar
  32. Das, R. R., Seshadri, S., Beiser, A. S., Kelly-Hayes, M., Au, R., Himali, J. J., & Wolf, P. A. (2008). Prevalence and correlates of silent cerebral infarcts in the Framingham offspring study. Stroke, 39(11), 2929–2935.PubMedCentralPubMedGoogle Scholar
  33. de Groot, J. C., de Leeuw, F. E., & Breteler, M. M. (1998). Cognitive correlates of cerebral white matter changes. Journal of Neural Transmission. Supplementum, 53(1), 41–67.PubMedGoogle Scholar
  34. de Groot, J. C., de Leeuw, F. E., Oudkerk, M., van Gijn, J., Hofman, A., Jolles, J., & Breteler, M. M. (2000). Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study [see comments]. Annals of Neurology, 47(2), 145–151.PubMedGoogle Scholar
  35. de Leeuw, F. E., de Groot, J. C., Oudkerk, M., Witteman, J. C., Hofman, A., van Gijn, J., & Breteler, M. M. (1999). A follow-up study of blood pressure and cerebral white matter lesions. Annals of Neurology, 46(6), 827–833.PubMedGoogle Scholar
  36. Debette, S., Beiser, A., Decarli, C., Au, R., Himali, J. J., Kelly-Hayes, M., Seshadri, S. (2010). Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality. The Framingham Offspring Study. Stroke, 41(4), 600–606.Google Scholar
  37. Debette, S., Seshadri, S., Beiser, A., Au, R., Himali, J. J., Palumbo, C., & Decarli, C. (2011). Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology, 77(5), 461–468. doi: 10.1212/WNL.0b013e318227b227.PubMedCentralPubMedGoogle Scholar
  38. DeCarli, C. (2013). Clinically asymptomatic vascular brain injury: a potent cause of cognitive impairment among older individuals. Journal of Alzheimer’s Disease, 33(Suppl 1), S417–S426. doi: 10.3233/JAD-2012-129004.PubMedCentralPubMedGoogle Scholar
  39. DeCarli, C., Fletcher, E., Ramey, V., Harvey, D., & Jagust, W. J. (2005a). Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke, 36(1), 50–55.PubMedGoogle Scholar
  40. DeCarli, C., Kawas, C., Morrison, J. H., Reuter-Lorenz, P. A., Sperling, R. A., & Wright, C. B. (2012). Session II: Mechanisms of age-related cognitive change and targets for intervention: neural circuits, networks, and plasticity. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 67(7), 747–753. doi: 10.1093/gerona/gls111.Google Scholar
  41. DeCarli, C., Massaro, J., Harvey, D., Hald, J., Tullberg, M., Au, R., & Wolf, P. A. (2005b). Measures of brain morphology and infarction in the framingham heart study: establishing what is normal. Neurobiology of Aging, 26(4), 491–510.PubMedGoogle Scholar
  42. DeCarli, C., Miller, B. L., Swan, G. E., Reed, T., Wolf, P. A., Garner, J., & Carmelli, D. (1999). Predictors of brain morphology for the men of the NHLBI twin study. Stroke, 30(3), 529–536.PubMedGoogle Scholar
  43. DeCarli, C., Murphy, D. G., Gillette, J. A., Haxby, J. V., Teichberg, D., Schapiro, M. B., & Horwitz, B. (1994). Lack of age-related differences in temporal lobe volume of very healthy adults. AJNR American Journal of Neuroradiology, 15(4), 689–696.PubMedGoogle Scholar
  44. DeCarli, C., Murphy, D. G., Tranh, M., Grady, C. L., Haxby, J. V., Gillette, J. A., et al. (1995). The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults. Neurology, 45(11), 2077–2084.PubMedGoogle Scholar
  45. den Heijer, T., van der Lijn, F., Ikram, A., Koudstaal, P. J., van der Lugt, A., Krestin, G. P., & Breteler, M. M. (2012). Vascular risk factors, apolipoprotein E, and hippocampal decline on magnetic resonance imaging over a 10-year follow-up. Alzheimers Dement, 8(5), 417–425. doi: 10.1016/j.jalz.2011.07.005.Google Scholar
  46. Dickstein, D. L., Kabaso, D., Rocher, A. B., Luebke, J. I., Wearne, S. L., & Hof, P. R. (2007). Changes in the structural complexity of the aged brain. Aging Cell, 6(3), 275–284. doi: 10.1111/j.1474-9726.2007.00289.x.PubMedCentralPubMedGoogle Scholar
  47. Draganski, B., Lutti, A., & Kherif, F. (2013). Impact of brain aging and neurodegeneration on cognition: evidence from MRI. Current Opinion in Neurology, 26(6), 640–645. doi: 10.1097/WCO.0000000000000029.PubMedGoogle Scholar
  48. Du, A. T., Schuff, N., Chao, L. L., Kornak, J., Jagust, W. J., Kramer, J. H., & Weiner, M. W. (2006). Age effects on atrophy rates of entorhinal cortex and hippocampus. Neurobiology of Aging, 27(5), 733–740.PubMedCentralPubMedGoogle Scholar
  49. Farias, S. T., Mungas, D., Reed, B., Carmichael, O., Beckett, L., Harvey, D., & Decarli, C. (2012). Maximal brain size remains an important predictor of cognition in old age, independent of current brain pathology. Neurobiology of Aging, 33(8), 1758–1768. doi: 10.1016/j.neurobiolaging.2011.03.017.PubMedCentralPubMedGoogle Scholar
  50. Fazekas, F., Kleinert, R., Roob, G., Kleinert, G., Kapeller, P., Schmidt, R., & Hartung, H. P. (1999). Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR American Journal of Neuroradiology, 20(4), 637–642.PubMedGoogle Scholar
  51. Fazekas, F., Schmidt, R., & Scheltens, P. (1998). Pathophysiologic mechanisms in the development of age-related white matter changes of the brain. Dementia and Geriatric Cognitive Disorders, 9(Supp l), 2–5.PubMedGoogle Scholar
  52. Fisher, C. M. (1965). Lacunes: small, deep cerebral infarcts. Neurology, 15, 774–784.PubMedGoogle Scholar
  53. Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Alzheimer’s Disease Neuroimaging, I. (2013). Brain changes in older adults at very low risk for Alzheimer’s disease. Journal of Neuroscience, 33(19), 8237–8242. doi: 10.1523/JNEUROSCI.5506-12.2013.PubMedCentralPubMedGoogle Scholar
  54. Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Alzheimer’s Disease Neuroimaging, I. (2014a). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117, 20–40. doi: 10.1016/j.pneurobio.2014.02.004.PubMedGoogle Scholar
  55. Fjell, A. M., Westlye, L. T., Grydeland, H., Amlien, I., Espeseth, T., Reinvang, I., & Alzheimer Disease Neuroimaging, I. (2014b). Accelerating cortical thinning: unique to dementia or universal in aging? Cerebral Cortex, 24(4), 919–934. doi: 10.1093/cercor/bhs379.PubMedGoogle Scholar
  56. Fletcher, E., Raman, M., Huebner, P., Liu, A., Mungas, D., Carmichael, O., & DeCarli, C. (2013). Loss of fornix white matter volume as a predictor of cognitive impairment in cognitively normal elderly individuals. JAMA Neurology, 70(11), 1389–1395. doi: 10.1001/jamaneurol.2013.3263.PubMedGoogle Scholar
  57. Fotenos, A. F., Snyder, A. Z., Girton, L. E., Morris, J. C., & Buckner, R. L. (2005). Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology, 64(6), 1032–1039. doi: 10.1212/01.WNL.0000154530.72969.11.PubMedGoogle Scholar
  58. Frisoni, G. B., Bocchetta, M., Chetelat, G., Rabinovici, G. D., de Leon, M. J., Kaye, J., & For, I. s. N. P. I. A. (2013). Imaging markers for Alzheimer disease: which vs how. Neurology, 81(5), 487–500. doi: 10.1212/WNL.0b013e31829d86e8.PubMedCentralPubMedGoogle Scholar
  59. Gattringer, T., Enzinger, C., Ropele, S., Gorani, F., Petrovic, K. E., Schmidt, R., & Fazekas, F. (2012). Vascular risk factors, white matter hyperintensities and hippocampal volume in normal elderly individuals. Dementia and Geriatric Cognitive Disorders, 33(1), 29–34. doi: 10.1159/000336052.PubMedGoogle Scholar
  60. Ge, Y., Grossman, R. I., Babb, J. S., Rabin, M. L., Mannon, L. J., & Kolson, D. L. (2002). Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR - American Journal of Neuroradiology, 23(8), 1327–1333.PubMedGoogle Scholar
  61. Geschwind, N. (1965a). Disconnexion syndromes in animals and man. I. Brain, 88(2), 237–294.PubMedGoogle Scholar
  62. Geschwind, N. (1965b). Disconnexion syndromes in animals and man. II. Brain, 88(3), 585–644.PubMedGoogle Scholar
  63. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179. doi: 10.1073/pnas.0402680101.PubMedCentralPubMedGoogle Scholar
  64. Goldstein, L. B., Bushnell, C. D., Adams, R. J., Appel, L. J., Braun, L. T., Chaturvedi, S., & Outcomes, R. (2011). Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 42(2), 517–584. doi: 10.1161/STR.0b013e3181fcb238.PubMedGoogle Scholar
  65. Good, C. D., Ng, V. W., Clifton, A., Britton, J. A., Hart, Y., & Wilkins, P. (1998). Amyloid angiopathy causing widespread miliary haemorrhages within the brain evident on MRI. Neuroradiology, 40(5), 308–311.PubMedGoogle Scholar
  66. Goos, J. D., Henneman, W. J., Sluimer, J. D., Vrenken, H., Sluimer, I. C., Barkhof, F., & van der Flier, W. M. (2010). Incidence of cerebral microbleeds: a longitudinal study in a memory clinic population. Neurology, 74(24), 1954–1960. doi: 10.1212/WNL.0b013e3181e396ea.PubMedGoogle Scholar
  67. Gorelick, P. B., Scuteri, A., Black, S. E., Decarli, C., Greenberg, S. M., Iadecola, C., & Seshadri, S. (2011). Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. doi: 10.1161/STR.0b013e3182299496.PubMedCentralGoogle Scholar
  68. Grady, C. L. (2008). Cognitive neuroscience of aging. Annals of the New York Academy of Sciences, 1124, 127–144. doi: 10.1196/annals.1440.009.PubMedGoogle Scholar
  69. Grady, C. L., & Craik, F. I. (2000). Changes in memory processing with age. Current Opinion in Neurobiology, 10(2), 224–231.PubMedGoogle Scholar
  70. Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4637–4642.PubMedCentralPubMedGoogle Scholar
  71. Gunning-Dixon, F. M., Head, D., McQuain, J., Acker, J. D., & Raz, N. (1998). Differential aging of the human striatum: a prospective MR imaging study. AJNR - American Journal of Neuroradiology, 19(8), 1501–1507.PubMedGoogle Scholar
  72. Gunning-Dixon, F. M., & Raz, N. (2000). The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology, 14(2), 224–232.PubMedGoogle Scholar
  73. Guttmann, C. R., Jolesz, F. A., Kikinis, R., Killiany, R. J., Moss, M. B., Sandor, T., & Albert, M. S. (1998). White matter changes with normal aging. Neurology, 50(4), 972–978.PubMedGoogle Scholar
  74. Hachinski, V., Iadecola, C., Petersen, R. C., Breteler, M. M., Nyenhuis, D. L., Black, S. E., & Leblanc, G. G. (2006). National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke, 37(9), 2220–2241.PubMedGoogle Scholar
  75. Hayes, T. L., Larimer, N., Adami, A., & Kaye, J. A. (2009). Medication adherence in healthy elders: small cognitive changes make a big difference. Journal of Aging and Health, 21(4), 567–580. doi: 10.1177/0898264309332836.PubMedCentralPubMedGoogle Scholar
  76. Head, D., Rodrigue, K. M., Kennedy, K. M., & Raz, N. (2008). Neuroanatomical and cognitive mediators of age-related differences in episodic memory. Neuropsychology, 22(4), 491–507.PubMedCentralPubMedGoogle Scholar
  77. Hinton, L., Carter, K., Reed, B. R., Beckett, L., Lara, E., DeCarli, C., & Mungas, D. (2010). Recruitment of a community-based cohort for research on diversity and risk of dementia. Alzheimer Disease and Associated Disorders, 24(3), 234–241. doi: 10.1097/WAD.0b013e3181c1ee01.PubMedCentralPubMedGoogle Scholar
  78. Jack, C. R., Jr., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., & Trojanowski, J. Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurology, 12(2), 207–216. doi: 10.1016/S1474-4422(12)70291-0.PubMedCentralGoogle Scholar
  79. Jagust, W., & D’ Eposito, M. (2009). In W. Jagust & M. D’ Eposito (Eds.), Imaging the aging brain. New York: Oxford.Google Scholar
  80. Jeerakathil, T., Wolf, P. A., Beiser, A., Hald, J. K., Au, R., Kase, C. S., & DeCarli, C. (2004a). Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke, 35(8), 1831–1835.PubMedGoogle Scholar
  81. Jeerakathil, T., Wolf, P. A., Beiser, A., Massaro, J., Seshadri, S., D’Agostino, R. B., & DeCarli, C. (2004b). Stroke risk profile predicts white matter hyperintensity volume: the Framingham Study. Stroke; A Journal of Cerebral Circulation, 35(8), 1857–1861. doi: 10.1161/01.STR.0000135226.53499.85.PubMedGoogle Scholar
  82. Jernigan, T. L., Archibald, S. L., Berhow, M. T., Sowell, E. R., Foster, D. S., & Hesselink, J. R. (1991). Cerebral structure on MRI, Part I: localization of age-related changes. Biological Psychiatry, 29(1), 55–67.PubMedGoogle Scholar
  83. Jernigan, T. L., Archibald, S. L., Fennema-Notestine, C., Gamst, A. C., Stout, J. C., Bonner, J., & Hesselink, J. R. (2001). Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiology of Aging, 22(4), 581–594.PubMedGoogle Scholar
  84. Jones, D. W., & Hall, J. E. (2004). Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure and evidence from new hypertension trials. Hypertension, 43(1), 1–3. doi: 10.1161/ Scholar
  85. Kaye, J. A., DeCarli, C., Luxenberg, J. S., & Rapoport, S. I. (1992). The significance of age-related enlargement of the cerebral ventricles in healthy men and women measured by quantitative computed X-ray tomography. Journal of the American Geriatrics Society, 40(3), 225–231.PubMedGoogle Scholar
  86. Kennedy, K. M., & Raz, N. (2009). Aging white matter and cognition: differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia, 47(3), 916–927. doi: 10.1016/j.neuropsychologia.2009.01.001.PubMedCentralPubMedGoogle Scholar
  87. Klostermann, E. C., Braskie, M. N., Landau, S. M., O’Neil, J. P., & Jagust, W. J. (2012). Dopamine and frontostriatal networks in cognitive aging. Neurobiology of Aging, 33(3), 623 e615–624. doi: 10.1016/j.neurobiolaging.2011.03.002.Google Scholar
  88. Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., & Långström, B. (2004). Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Annals of Neurology, 55(3), 306–319. doi: 10.1002/ana.20009.PubMedGoogle Scholar
  89. Lee, D. Y., Fletcher, E., Carmichael, O. T., Singh, B., Mungas, D., Reed, B., & DeCarli, C. (2012). Sub-Regional Hippocampal Injury is Associated with Fornix Degeneration in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 4, 1. doi: 10.3389/fnagi.2012.00001.PubMedCentralPubMedGoogle Scholar
  90. Lee, D. Y., Fletcher, E., Martinez, O., Ortega, M., Zozulya, N., Kim, J., & Decarli, C. (2009). Regional pattern of white matter microstructural changes in normal aging, MCI, and AD. Neurology, 73(21), 1722–1728.PubMedCentralPubMedGoogle Scholar
  91. Lee, D. Y., Fletcher, E., Martinez, O., Zozulya, N., Kim, J., Tran, J., & DeCarli, C. (2010). Vascular and degenerative processes differentially affect regional interhemispheric connections in normal aging, mild cognitive impairment, and Alzheimer disease. Stroke, 41(8), 1791–1797. doi: 10.1161/STROKEAHA.110.582163.PubMedCentralPubMedGoogle Scholar
  92. Lee, S. H., Kim, S. M., Kim, N., Yoon, B. W., & Roh, J. K. (2007). Cortico-subcortical distribution of microbleeds is different between hypertension and cerebral amyloid angiopathy. Journal of Neurological Sciences, 258(1–2), 111–114. doi: 10.1016/j.jns.2007.03.008.Google Scholar
  93. Lemaitre, H., Goldman, A. L., Sambataro, F., Verchinski, B. A., Meyer-Lindenberg, A., Weinberger, D. R., & Mattay, V. S. (2012). Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiology of Aging, 33(3), 617.e611–617.e619. doi: 10.1016/j.neurobiolaging.2010.07.013.Google Scholar
  94. Lim, K. O., Zipursky, R. B., Murphy, G. M., Jr., & Pfefferbaum, A. (1990). In vivo quantification of the limbic system using MRI: effects of normal aging. Psychiatry Research, 35(1), 15–26.PubMedGoogle Scholar
  95. Lockhart, S. N., Mayda, A. B., Roach, A. E., Fletcher, E., Carmichael, O., Maillard, P., & Decarli, C. (2012). Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging. Frontiers in Human Neuroscience, 6, 56. doi: 10.3389/fnhum.2012.00056.PubMedCentralPubMedGoogle Scholar
  96. Lockhart, S. N., Roach, A. E., Luck, S. J., Geng, J., Beckett, L., Carmichael, O., & DeCarli, C. (2014). White matter hyperintensities are associated with visual search behavior independent of generalized slowing in aging. Neuropsychologia, 52, 93–101. doi: 10.1016/j.neuropsychologia.2013.10.011.PubMedGoogle Scholar
  97. Longstreth, W. T., Jr., Arnold, A. M., Manolio, T. A., Burke, G. L., Bryan, N., Jungreis, C. A., & Fried, L. (2000). Clinical correlates of ventricular and sulcal size on cranial magnetic resonance imaging of 3,301 elderly people. The Cardiovascular Health Study. Collaborative Research Group. Neuroepidemiology, 19(1), 30–42.PubMedGoogle Scholar
  98. Longstreth, W. T., Jr., Bernick, C., Manolio, T. A., Bryan, N., Jungreis, C. A., & Price, T. R. (1998). Lacunar infarcts defined by magnetic resonance imaging of 3660 elderly people: the Cardiovascular Health Study. Archives of Neurology, 55(9), 1217–1225.PubMedGoogle Scholar
  99. Longstreth, W. T., Jr., Dulberg, C., Manolio, T. A., Lewis, M. R., Beauchamp, N. J., Jr., O’Leary, D., & Furberg, C. D. (2002). Incidence, manifestations, and predictors of brain infarcts defined by serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study. Stroke, 33(10), 2376–2382.PubMedGoogle Scholar
  100. Longstreth, W. T., Jr., Manolio, T. A., Arnold, A., Burke, G. L., Bryan, N., Jungreis, C. A., & Fried, L. (1996). Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study [see comments]. Stroke, 27(8), 1274–1282.PubMedGoogle Scholar
  101. Madden, D. J., Whiting, W. L., Huettel, S. A., White, L. E., MacFall, J. R., & Provenzale, J. M. (2004). Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. NeuroImage, 21(3), 1174–1181.PubMedGoogle Scholar
  102. Maillard, P., Carmichael, O., Fletcher, E., Reed, B., Mungas, D., & DeCarli, C. (2012a). Coevolution of white matter hyperintensities and cognition in the elderly. Neurology, 79(5), 442–448. doi: 10.1212/WNL.0b013e3182617136.PubMedCentralPubMedGoogle Scholar
  103. Maillard, P., Carmichael, O., Harvey, D., Fletcher, E., Reed, B., Mungas, D., & DeCarli, C. (2013). FLAIR and diffusion MRI signals are independent predictors of white matter hyperintensities. AJNR - American Journal of Neuroradiology, 34(1), 54–61. doi: 10.3174/ajnr.A3146.PubMedCentralPubMedGoogle Scholar
  104. Maillard, P., Fletcher, E., Harvey, D., Carmichael, O., Reed, B., Mungas, D., & DeCarli, C. (2011). White matter hyperintensity penumbra. Stroke, 42(7), 1917–1922. doi: 10.1161/STROKEAHA.110.609768.PubMedCentralPubMedGoogle Scholar
  105. Maillard, P., Seshadri, S., Beiser, A., Himali, J. J., Au, R., Fletcher, E., & DeCarli, C. (2012b). Effects of systolic blood pressure on white-matter integrity in young adults in the Framingham Heart Study: a cross-sectional study. Lancet Neurology, 11(12), 1039–1047. doi: 10.1016/S1474-4422(12)70241-7.PubMedCentralGoogle Scholar
  106. Mattson, M. P., & Magnus, T. (2006). Ageing and neuronal vulnerability. Nature Review Neuroscience, 7(4), 278–294.Google Scholar
  107. Mayda, A. B., Westphal, A., Carter, C. S., & DeCarli, C. (2011). Late life cognitive control deficits are accentuated by white matter disease burden. Brain, 134(Pt 6), 1673–1683. doi: 10.1093/brain/awr065.PubMedCentralPubMedGoogle Scholar
  108. Mayda, A. V., & DeCarli, C. (2009). Vascular cognitive impairment: Prodrome to VaD? In L.-O. Wahlund, T. Erkinjuntti, & S. Gauthier (Eds.), Vascular cognitive impairment in clinical practice (pp. 11–31). Cambridge: Cambridge University Press.Google Scholar
  109. Mega, M. S., & Cummings, J. L. (1994). Frontal-subcortical Circuits and Neuropsychiatric Disorders. Neurosciences, 6, 358–370.Google Scholar
  110. Meier-Ruge, W., Ulrich, J., Bruhlmann, M., & Meier, E. (1992). Age-related white matter atrophy in the human brain. Annals of the New York Academy of Sciences, 673, 260–269.PubMedGoogle Scholar
  111. Mori, S., Wakana, S., Nagae-Poetscher, L. M., & van Zijl, P. C. M. (2005). MRI atlas of human white matter. Amsterdam: Elsevier.Google Scholar
  112. Morris, J. C., Roe, C. M., Grant, E. A., Head, D., Storandt, M., Goate, A. M., & Mintun, M. A. (2009). Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Archives of Neurology, 66(12), 1469–1475. doi: 10.1001/archneurol.2009.269.PubMedCentralPubMedGoogle Scholar
  113. Mungas, D., Reed, B. R., Farias, S. T., & Decarli, C. (2009). Age and education effects on relationships of cognitive test scores with brain structure in demographically diverse older persons. Psychology and Aging, 24(1), 116–128.PubMedCentralPubMedGoogle Scholar
  114. Mungas, D., Reed, B. R., Jagust, W. J., DeCarli, C., Mack, W. J., Kramer, J. H., & Chui, H. C. (2002). Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease. Neurology, 59(6), 867–873.PubMedCentralPubMedGoogle Scholar
  115. Murphy, D. G., DeCarli, C., McIntosh, A. R., Daly, E., Mentis, M. J., Pietrini, P., & Rapoport, S. I. (1996). Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Archives of General Psychiatry, 53(7), 585–594.PubMedGoogle Scholar
  116. Murphy, D. G., DeCarli, C., Schapiro, M. B., Rapoport, S. I., & Horwitz, B. (1992). Age-related differences in volumes of subcortical nuclei, brain matter, and cerebrospinal fluid in healthy men as measured with magnetic resonance imaging [published erratum appears in Arch Neurol 1994 Jan;51(1):60]. Archives of Neurology, 49(8), 839–845.PubMedGoogle Scholar
  117. Nettiksimmons, J., Beckett, L., Schwarz, C., Carmichael, O., Fletcher, E., & Decarli, C. (2013). Subgroup of ADNI normal controls characterized by atrophy and cognitive decline associated with vascular damage. Psychology and Aging, 28(1), 191–201. doi: 10.1037/a0031063.PubMedCentralPubMedGoogle Scholar
  118. Nordahl, C. W., Ranganath, C., Yonelinas, A. P., Decarli, C., Fletcher, E., & Jagust, W. J. (2006). White matter changes compromise prefrontal cortex function in healthy elderly individuals. Journal Cognitive Neuroscience, 18(3), 418–429.Google Scholar
  119. Nordahl, C. W., Ranganath, C., Yonelinas, A. P., DeCarli, C., Reed, B. R., & Jagust, W. J. (2005). Different mechanisms of episodic memory failure in mild cognitive impairment. Neuropsychologia, 43(11), 1688–1697.PubMedCentralPubMedGoogle Scholar
  120. Nusbaum, A. O., Tang, C. Y., Buchsbaum, M. S., Wei, T. C., & Atlas, S. W. (2001). Regional and global changes in cerebral diffusion with normal aging. AJNR American Journal of Neuroradiology, 22(1), 136–142.PubMedGoogle Scholar
  121. O’Sullivan, M., Jones, D. K., Summers, P. E., Morris, R. G., Williams, S. C. R., & Markus, H. S. (2001). Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology, 57(4), 632–638.PubMedGoogle Scholar
  122. O’Sullivan, M., Morris, R. G., Huckstep, B., Jones, D. K., Williams, S. C., & Markus, H. S. (2004). Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. Journal of Neurology, Neurosurgery and Psychiatry, 75(3), 441–447.PubMedCentralPubMedGoogle Scholar
  123. Ortman, J. M., & Guarneri, C. E. (2009). United States population projections: 2000 to 2050. United States Census Bureau. Google Scholar
  124. Ott, A., Stolk, R. P., Hofman, A., van Harskamp, F., Grobbee, D. E., & Breteler, M. M. (1996). Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia, 39(11), 1392–1397.PubMedGoogle Scholar
  125. Pantoni, L. (2002). Pathophysiology of age-related cerebral white matter changes. Cerebrovascular Diseases (Basel, Switzerland), 13(Suppl 2), 7–10.Google Scholar
  126. Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196. doi: 10.1146/annurev.psych.59.103006.093656.PubMedCentralPubMedGoogle Scholar
  127. Parks, C. M., Iosif, A. M., Farias, S., Reed, B., Mungas, D., & Decarli, C. (2011). Executive function mediates effects of white matter hyperintensities on episodic memory. Neuropsychologia, 49(10), 2817–2824. doi: 10.1016/j.neuropsychologia.2011.06.003.PubMedCentralPubMedGoogle Scholar
  128. Pettersen, J. A., Sathiyamoorthy, G., Gao, F. Q., Szilagyi, G., Nadkarni, N. K., St George-Hyslop, P., & Black, S. E. (2008). Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook dementia study. Archives of Neurology, 65(6), 790–795. doi: 10.1001/archneur.65.6.790.PubMedGoogle Scholar
  129. Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51(9), 874–887.PubMedGoogle Scholar
  130. Pfefferbaum, A., Rohlfing, T., Rosenbloom, M. J., Chu, W., Colrain, I. M., & Sullivan, E. V. (2013). Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85 years) measured with atlas-based parcellation of MRI. NeuroImage, 65, 176–193. doi: 10.1016/j.neuroimage.2012.10.008.PubMedCentralPubMedGoogle Scholar
  131. Raz, N., Gunning-Dixon, F., Head, D., Williamson, A., & Acker, J. D. (2001). Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. AJNR - American Journal of Neuroradiology, 22(6), 1161–1167.PubMedGoogle Scholar
  132. Raz, N., Gunning-Dixon, F. M., Head, D., Dupuis, J. H., & Acker, J. D. (1998). Neuroanatomical correlates of cognitive aging: evidence from structural magnetic resonance imaging. Neuropsychology, 12(1), 95–114.PubMedGoogle Scholar
  133. Raz, N., Gunning, F. M., Head, D., Dupuis, J. H., McQuain, J., Briggs, S. D., & Acker, J. D. (1997). Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cerebral Cortex, 7(3), 268–282.PubMedGoogle Scholar
  134. Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., & Acker, J. D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676–1689. doi: 10.1093/cercor/bhi044.PubMedGoogle Scholar
  135. Raz, N., Rodrigue, K. M., Kennedy, K. M., & Acker, J. D. (2007). Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults. Neuropsychology, 21(2), 149–157. doi: 10.1037/0894-4105.21.2.149.PubMedGoogle Scholar
  136. Raz, N., Torres, I. J., & Acker, J. D. (1992a). Age-related shrinkage of the mamillary bodies: in vivo MRI evidence. Neuroreport, 3(8), 713–716.PubMedGoogle Scholar
  137. Raz, N., Torres, I. J., & Acker, J. D. (1995). Age, gender, and hemispheric differences in human striatum: a quantitative review and new data from in vivo MRI morphometry. Neurobiology of Learning and Memory, 63(2), 133–142.PubMedGoogle Scholar
  138. Raz, N., Torres, I. J., Spencer, W. D., White, K., & Acker, J. D. (1992b). Age-related regional differences in cerebellar vermis observed in vivo. Archives of Neurology, 49(4), 412–416.PubMedGoogle Scholar
  139. Reed, B. R., Mungas, D., Farias, S. T., Harvey, D., Beckett, L., Widaman, K., Decarli, C. (2010). Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain, 133(pt8), 2196–2209.Google Scholar
  140. Rusinek, H., De Santi, S., Frid, D., Tsui, W. H., Tarshish, C. Y., Convit, A., & de Leon, M. J. (2003). Regional brain atrophy rate predicts future cognitive decline: 6-year longitudinal MR imaging study of normal aging. Radiology, 229(3), 691–696. doi: 10.1148/radiol.2293021299.PubMedGoogle Scholar
  141. Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S., Busa, E., & Fischl, B. (2004). Thinning of the cerebral cortex in aging. Cerebral Cortex, 14(7), 721–730. doi: 10.1093/cercor/bhh032.PubMedGoogle Scholar
  142. Salerno, J. A., Murphy, D. G., Horwitz, B., DeCarli, C., Haxby, J. V., Rapoport, S. I., & Schapiro, M. B. (1992). Brain atrophy in hypertension. A volumetric magnetic resonance imaging study. Hypertension, 20(3), 340–348.PubMedGoogle Scholar
  143. Salthouse, T. (2004). What and when of cognitive aging. Current Directions in Psychological Science, 13(4), 140–144.Google Scholar
  144. Salthouse, T. A. (2000). Aging and measures of processing speed. Biological Psychology, 54(1–3), 35–54.PubMedGoogle Scholar
  145. Salthouse, T. A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging, 30(4), 507–514. doi: 10.1016/j.neurobiolaging.2008.09.023.PubMedCentralPubMedGoogle Scholar
  146. Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology, 7(3), 273–295. doi: 10.1037/0894-4105.7.3.273.Google Scholar
  147. Scheibel, M. E., Lindsay, R. D., Tomiyasu, U., & Scheibel, A. B. (1975). Progressive dendritic changes in aging human cortex. Experimental Neurology, 47(3), 392–403.PubMedGoogle Scholar
  148. Schmidt, R., Fazekas, F., Koch, M., Kapeller, P., Augustin, M., Offenbacher, H., & Lechner, H. (1995). Magnetic resonance imaging cerebral abnormalities and neuropsychologic test performance in elderly hypertensive subjects. A case–control study. Archives of Neurology, 52(9), 905–910.PubMedGoogle Scholar
  149. Seab, J. P., Jagust, W. J., Wong, S. T. S., et al. (1988). Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magnetic Resonance in Medicine, 8, 200–208.PubMedGoogle Scholar
  150. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42–52.PubMedCentralPubMedGoogle Scholar
  151. Seshadri, S., Wolf, P. A., Beiser, A., Elias, M. F., Au, R., Kase, C. S., & DeCarli, C. (2004). Stroke risk profile, brain volume, and cognitive function: the Framingham Offspring Study. Neurology, 63(9), 1591–1599.PubMedGoogle Scholar
  152. Shoamanesh, A., Kwok, C. S., & Benavente, O. (2011). Cerebral microbleeds: histopathological correlation of neuroimaging. Cerebrovascular Diseases, 32(6), 528–534. doi: 10.1159/000331466.PubMedGoogle Scholar
  153. Simpson, J. E., Fernando, M. S., Clark, L., Ince, P. G., Matthews, F., Forster, G., & Wharton, S. B. (2007a). White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathology and Applied Neurobiology, 33(4), 410–419.PubMedGoogle Scholar
  154. Simpson, J. E., Ince, P. G., Higham, C. E., Gelsthorpe, C. H., Fernando, M. S., Matthews, F., & Wharton, S. B. (2007b). Microglial activation in white matter lesions and nonlesional white matter of ageing brains. Neuropathology and Applied Neurobiology, 33(6), 670–683.PubMedGoogle Scholar
  155. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., & Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement, 7(3), 280–292. doi: 10.1016/j.jalz.2011.03.003.PubMedCentralPubMedGoogle Scholar
  156. Stern, Y. (2003). The concept of cognitive reserve: a catalyst for research. Journal of Clinical and Experimental Neuropsychology, 25(5), 589–593.PubMedGoogle Scholar
  157. Sullivan, E. V., Adalsteinsson, E., Hedehus, M., Ju, C., Moseley, M., Lim, K. O., & Pfefferbaum, A. (2001a). Equivalent disruption of regional white matter microstructure in ageing healthy men and women. Neuroreport, 12(1), 99–104.PubMedGoogle Scholar
  158. Sullivan, E. V., Marsh, L., Mathalon, D. H., Lim, K. O., & Pfefferbaum, A. (1995). Age-related decline in MRI volumes of temporal lobe gray matter but not hippocampus. Neurobiology of Aging, 16(4), 591–606.PubMedGoogle Scholar
  159. Sullivan, E. V., & Pfefferbaum, A. (2006). Diffusion tensor imaging and aging. Neuroscience and Biobehavioral Reviews, 30(6), 749–761.PubMedGoogle Scholar
  160. Sullivan, E. V., & Pfefferbaum, A. (2007). Neuroradiological characterization of normal adult ageing. The British Journal of Radiology, 80(Spec No 2), S99–S108. doi: 10.1259/bjr/22893432.PubMedGoogle Scholar
  161. Sullivan, E. V., Rosenbloom, M. J., Desmond, J. E., & Pfefferbaum, A. (2001b). Sex differences in corpus callosum size: relationship to age and intracranial size. Neurobiology of Aging, 22(4), 603–611.PubMedGoogle Scholar
  162. Sveinbjornsdottir, S., Sigurdsson, S., Aspelund, T., Kjartansson, O., Eiriksdottir, G., Valtysdottir, B., & Launer, L. J. (2008). Cerebral microbleeds in the population based AGES-Reykjavik study: prevalence and location. Journal of Neurology, Neurosurgery and Psychiatry, 79(9), 1002–1006. doi: 10.1136/jnnp.2007.121913.PubMedGoogle Scholar
  163. Swan, G. E., DeCarli, C., Miller, B. L., Reed, T., Wolf, P. A., & Carmelli, D. (2000). Biobehavioral characteristics of nondemented older adults with subclinical brain atrophy. Neurology, 54(11), 2108–2114.PubMedGoogle Scholar
  164. Swan, G. E., DeCarli, C., Miller, B. L., Reed, T., Wolf, P. A., Jack, L. M., & Carmelli, D. (1998). Association of midlife blood pressure to late-life cognitive decline and brain morphology. Neurology, 51(4), 986–993.PubMedGoogle Scholar
  165. Takashima, Y., Mori, T., Hashimoto, M., Kinukawa, N., Uchino, A., Yuzuriha, T., & Yao, H. (2011). Clinical correlating factors and cognitive function in community-dwelling healthy subjects with cerebral microbleeds. Journal of Stroke and Cerebrovascular Diseases, 20(2), 105–110. doi: 10.1016/j.jstrokecerebrovasdis.2009.11.007.PubMedGoogle Scholar
  166. Taylor, J. L., Scanlon, B. K., Farrell, M., Hernandez, B., Adamson, M. M., Ashford, J. W., & Weiner, M. W. (2014). APOE-epsilon4 and aging of medial temporal lobe gray matter in healthy adults older than 50 years. Neurobiology of Aging. doi: 10.1016/j.neurobiolaging.2014.05.011.Google Scholar
  167. Tullberg, M., Fletcher, E., DeCarli, C., Mungas, D., Reed, B. R., Harvey, D. J., & Jagust, W. J. (2004). White matter lesions impair frontal lobe function regardless of their location. Neurology, 63(2), 246–253.PubMedCentralPubMedGoogle Scholar
  168. van der Veen, P. H., Muller, M., Vincken, K. L., Mali, W. P., van der Graaf, Y., Geerlings, M. I., & Group, S. S. (2014). Brain volumes and risk of cardiovascular events and mortality. The SMART-MR study. Neurobiology of Aging, 35(7), 1624–1631. doi: 10.1016/j.neurobiolaging.2014.02.003.PubMedGoogle Scholar
  169. van Velsen, E. F., Vernooij, M. W., Vrooman, H. A., van der Lugt, A., Breteler, M. M., Hofman, A., & Ikram, M. A. (2013). Brain cortical thickness in the general elderly population: the Rotterdam Scan Study. Neuroscience Letters, 550, 189–194. doi: 10.1016/j.neulet.2013.06.063.PubMedGoogle Scholar
  170. Vasan, R. S., Beiser, A., Seshadri, S., Larson, M. G., Kannel, W. B., D’Agostino, R. B., & Levy, D. (2002). Residual lifetime risk for developing hypertension in middle-aged women and men: the Framingham Heart Study. JAMA, 287(8), 1003–1010.PubMedGoogle Scholar
  171. Vasan, R. S., Larson, M. G., Leip, E. P., Evans, J. C., O’Donnell, C. J., Kannel, W. B., & Levy, D. (2001). Impact of high-normal blood pressure on the risk of cardiovascular disease. New England Journal of Medicine, 345(18), 1291–1297. doi: 10.1056/NEJMoa003417.PubMedGoogle Scholar
  172. Vermeer, S. E., Den Heijer, T., Koudstaal, P. J., Oudkerk, M., Hofman, A., & Breteler, M. M. (2003a). Incidence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke, 34(2), 392–396.PubMedGoogle Scholar
  173. Vermeer, S. E., Hollander, M., van Dijk, E. J., Hofman, A., Koudstaal, P. J., & Breteler, M. M. (2003b). Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke, 34(5), 1126–1129.PubMedGoogle Scholar
  174. Vermeer, S. E., Koudstaal, P. J., Oudkerk, M., Hofman, A., & Breteler, M. M. (2002). Prevalence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke, 33(1), 21–25.PubMedGoogle Scholar
  175. Vermeer, S. E., Longstreth, W. T., Jr., & Koudstaal, P. J. (2007). Silent brain infarcts: a systematic review. Lancet Neurology, 6(7), 611–619.Google Scholar
  176. Villeneuve, S., Reed, B. R., Madison, C. M., Wirth, M., Marchant, N. L., Kriger, S., & Jagust, W. J. (2014). Vascular risk and Abeta interact to reduce cortical thickness in AD vulnerable brain regions. Neurology. doi: 10.1212/WNL.0000000000000550.Google Scholar
  177. Wardlaw, J. M., Smith, E. E., Biessels, G. J., Cordonnier, C., Fazekas, F., Frayne, R., & nEuroimaging, S. T. f. R. V. c. o. (2013). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurology, 12(8), 822–838. doi: 10.1016/S1474-4422(13)70124-8.PubMedCentralGoogle Scholar
  178. Wen, W., & Sachdev, P. (2004). The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. NeuroImage, 22(1), 144–154.PubMedGoogle Scholar
  179. Werring, D. J., Gregoire, S. M., & Cipolotti, L. (2010). Cerebral microbleeds and vascular cognitive impairment. Journal of Neurological Sciences, 299(1–2), 131–135. doi: 10.1016/j.jns.2010.08.034.Google Scholar
  180. West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120(2), 272–292.PubMedGoogle Scholar
  181. Whelton, P. K., He, J., Appel, L. J., Cutler, J. A., Havas, S., Kotchen, T. A., & National High Blood Pressure Education Program Coordinating, C. (2002). Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. JAMA, 288(15), 1882–1888.PubMedGoogle Scholar
  182. Wilson, P. W., D’Agostino, R. B., Levy, D., Belanger, A. M., Silbershatz, H., & Kannel, W. B. (1998). Prediction of coronary heart disease using risk factor categories. Circulation, 97(18), 1837–1847.PubMedGoogle Scholar
  183. Wilson, R. S., Beckett, L. A., Bennett, D. A., Albert, M. S., & Evans, D. A. (1999). Change in cognitive function in older persons from a community population: relation to age and Alzheimer disease. Archives of Neurology, 56(10), 1274–1279.PubMedGoogle Scholar
  184. Wilson, R. S., Gilley, D. W., Bennett, D. A., Beckett, L. A., & Evans, D. A. (2000). Person-specific paths of cognitive decline in Alzheimer’s disease and their relation to age. Psychology and Aging, 15(1), 18–28.PubMedGoogle Scholar
  185. Wilson, R. S., Rajan, K. B., Barnes, L. L., Hebert, L. E., Mendes de Leon, C. F., & Evans, D. A. (2014). Cognitive aging and rate of hospitalization in an urban population of older people. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69(4), 447–454. doi: 10.1093/gerona/glt145.Google Scholar
  186. Wolf, P. A., D’Agostino, R. B., Belanger, A. J., & Kannel, W. B. (1991). Probability of stroke: a risk profile from the Framingham Study. Stroke; A Journal of Cerebral Circulation, 22(3), 312–318.PubMedGoogle Scholar
  187. Xia, C. F., Arteaga, J., Chen, G., Gangadharmath, U., Gomez, L. F., Kasi, D., & Kolb, H. C. (2013). [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement, 9(6), 666–676. doi: 10.1016/j.jalz.2012.11.008.PubMedGoogle Scholar
  188. Yonelinas, A. P. (2002). The nature of recollection and familiarity: a review of 30 years of research. Journal of Memory and Language, 46(3), 441–517.Google Scholar
  189. Yoshita, M., Fletcher, E., & DeCarli, C. (2005). Current concepts of analysis of cerebral white matter hyperintensities on magnetic resonance imaging. Topics in Magnetic Resonance Imaging, 16(6), 399–407. doi: 10.1097/01.rmr.0000245456.98029.a8.PubMedCentralPubMedGoogle Scholar
  190. Yoshita, M., Fletcher, E., Harvey, D., Ortega, M., Martinez, O., Mungas, D. M., & DeCarli, C. S. (2006). Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology, 67(12), 2192–2198.PubMedCentralPubMedGoogle Scholar
  191. Zhang, Y., Schuff, N., Jahng, G. H., Bayne, W., Mori, S., Schad, L., & Weiner, M. W. (2007). Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology, 68(1), 13–19. doi: 10.1212/01.wnl.0000250326.77323.01.PubMedCentralPubMedGoogle Scholar
  192. Zhu, Y. C., Dufouil, C., Tzourio, C., & Chabriat, H. (2011). Silent brain infarcts: a review of MRI diagnostic criteria. Stroke, 42(4), 1140–1145. doi: 10.1161/STROKEAHA.110.600114.PubMedGoogle Scholar
  193. Ziegler, D. A., Piguet, O., Salat, D. H., Prince, K., Connally, E., & Corkin, S. (2008). Cognition in healthy aging is related to regional white matter integrity, but not cortical thickness. Neurobiology of Aging. doi: 10.1016/j.neurobiolaging.2008.10.015.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Neurology and Center for NeuroscienceUniversity of California at DavisSacramentoUSA

Personalised recommendations