Advertisement

Neuropsychology Review

, Volume 24, Issue 3, pp 290–299 | Cite as

Imaging Brain Effects of APOE4 in Cognitively Normal Individuals Across the Lifespan

  • Marine Fouquet
  • Florent L. Besson
  • Julie Gonneaud
  • Renaud La Joie
  • Gaël ChételatEmail author
Review

Abstract

The ε4 allele of the apolipoprotein E (APOE4) is associated with an increased risk of developing Alzheimer’s disease (AD). Hence, several studies have compared the brain characteristics of APOE4 carriers versus non-carriers in presymptomatic stages to determine early AD biomarkers. The present review provides an overview on APOE4-related brain changes in cognitively normal individuals, focusing on the main neuroimaging biomarkers for AD, i.e. cortical beta-amyloid (Aβ) deposition, hypometabolism and atrophy. The most consistent findings are observed with Aβ deposition as most studies report significantly higher cortical Aβ load in APOE4 carriers compared with non-carriers. Fluorodeoxyglucose-positron emission tomography studies are rare and tend to show hypometabolism in brain regions typically impaired in AD. Structural magnetic resonance imaging findings are the most numerous and also the most discrepant, showing atrophy in AD-sensitive regions in some studies but contradicting results as well. Altogether, this suggests a graded effect of APOE4, with a predominant effect on Aβ over brain structure and metabolism. Multimodal studies confirm this view and also suggest that APOE4 effects on brain structure and function are mediated by both Aβ-dependent and Aβ-independent pathological processes. Neuroimaging studies on asymptomatic APOE4 carriers offer relevant information to the understanding of early pathological mechanisms of the disease, although caution is needed as to whether APOE4 effects reflect AD pathological processes, and are representative of these effects in non-carriers.

Keywords

Apolipoprotein ε4 Structural MRI FDG-PET Amyloid PET imaging Preclinical stage Aging 

Notes

Conflicts of Interest

None to disclose.

References

  1. Alexopoulos, P., Richter-Schmidinger, T., Horn, M., Maus, S., Reichel, M., Sidiropoulos, C., et al. (2011). Hippocampal volume differences between healthy young apolipoprotein E ε2 and ε4 carriers. Journal of Alzheimer’s Disease, 26(2), 207–210.PubMedGoogle Scholar
  2. Bacskai, B. J., Frosch, M. P., Freeman, S. H., Raymond, S. B., Augustinack, J. C., Johnson, K. A., et al. (2007). Molecular imaging with Pittsburgh compound B confirmed at autopsy: a case report. Archives of Neurology, 64(3), 431–434.PubMedGoogle Scholar
  3. Barboriak, D. P., Doraiswamy, P. M., Krishnan, K. R., Vidyarthi, S., Sylvester, J., & Charles, H. C. (2000). Hippocampal sulcal cavities on MRI: relationship to age and apolipoprotein E genotype. Neurology, 54(11), 2150–2153.PubMedGoogle Scholar
  4. Berlau, D. J., Corrada, M. M., Head, E., & Kawas, C. H. (2009). APOE epsilon2 is associated with intact cognition but increased Alzheimer pathology in the oldest old. Neurology, 72(9), 829–834.PubMedCentralPubMedGoogle Scholar
  5. Bookheimer, S. Y., Strojwas, M. H., Cohen, M. S., Saunders, A. M., Pericak-Vance, M. A., Mazziotta, J. C., et al. (2000). Patterns of brain activation in people at risk for Alzheimer’s disease. The New England Journal of Medicine, 343(7), 450–456.PubMedCentralPubMedGoogle Scholar
  6. Bu, G. (2009). Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nature Reviews Neuroscience, 10(5), 333–344.PubMedCentralPubMedGoogle Scholar
  7. Bunce, D., Anstey, K. J., Cherbuin, N., Gautam, P., Sachdev, P., & Easteal, S. (2012). APOE genotype and entorhinal cortex volume in non-demented community-dwelling adults in midlife and early old age. Journal of Alzheimer’s Disease, 30(4), 935–942.PubMedGoogle Scholar
  8. Burggren, A. C., Zeineh, M. M., Ekstrom, A. D., Braskie, M. N., Thompson, P. M., Small, G. W., et al. (2008). Reduced cortical thickness in hippocampal subregions among cognitively normal apolipoprotein E e4 carriers. NeuroImage, 41(4), 1177–1183.PubMedCentralPubMedGoogle Scholar
  9. Chen, K., Reiman, E. M., Alexander, G. E., Caselli, R. J., Gerkin, R., Bandy, D., et al. (2007). Correlations between apolipoprotein E epsilon4 gene dose and whole brain atrophy rates. The American Journal of Psychiatry, 164(6), 916–921.PubMedGoogle Scholar
  10. Chen, K., Ayutyanont, N., Langbaum, J. B. S., Fleisher, A. S., Reschke, C., Lee, W., et al. (2012). Correlations between FDG PET glucose uptake-MRI gray matter volume scores and apolipoprotein E ε4 gene dose in cognitively normal adults: a cross-validation study using voxel-based multi-modal partial least squares. NeuroImage, 60(4), 2316–2322.PubMedCentralPubMedGoogle Scholar
  11. Chételat, G., & Fouquet, M. (2013). Neuroimaging biomarkers for Alzheimer’s disease in asymptomatic APOE4 carriers. Revue Neurologique, 169(10), 729–736.PubMedGoogle Scholar
  12. Chiang, G. C., Insel, P. S., Tosun, D., Schuff, N., Truran-Sacrey, D., Raptentsetsang, S. T., et al. (2010). Hippocampal atrophy rates and CSF biomarkers in elderly APOE2 normal subjects. Neurology, 75(22), 1976–1981.PubMedCentralPubMedGoogle Scholar
  13. Chiang, G. C., Insel, P. S., Tosun, D., Schuff, N., Truran-Sacrey, D., Raptentsetsang, S. T., et al. (2011). Impact of apolipoprotein E4-cerebrospinal fluid β-amyloid interaction on hippocampal volume loss over 1 year in mild cognitive impairment. Alzheimer’s & Dementia, 7(5), 514–520.Google Scholar
  14. Clark, C. M., Schneider, J. A., Bedell, B. J., Beach, T. G., Bilker, W. B., Mintun, M. A., et al. (2011). Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA, the Journal of the American Medical Association, 305(3), 275–283.Google Scholar
  15. Clark, C. M., Pontecorvo, M. J., Beach, T. G., Bedell, B. J., Coleman, R. E., Doraiswamy, P. M., et al. (2012). Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurology, 11(8), 669–678.Google Scholar
  16. Cohen, R. M., Small, C., Lalonde, F., Friz, J., & Sunderland, T. (2001). Effect of apolipoprotein E genotype on hippocampal volume loss in aging healthy women. Neurology, 57(12), 2223–2228.PubMedGoogle Scholar
  17. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921–923.PubMedGoogle Scholar
  18. Dean, D. C., 3rd, Jerskey, B. A., Chen, K., Protas, H., Thiyyagura, P., Roontiva, A., et al. (2014). Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. JAMA Neurology, 71(1), 11–22.PubMedCentralPubMedGoogle Scholar
  19. Den Heijer, T., Oudkerk, M., Launer, L. J., van Duijn, C. M., Hofman, A., & Breteler, M. M. B. (2002). Hippocampal, amygdalar, and global brain atrophy in different apolipoprotein E genotypes. Neurology, 59(5), 746–748.Google Scholar
  20. Dennis, E. L., & Thompson, P. M. (2014). Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychology Review, 24(1), 49–62.PubMedGoogle Scholar
  21. Dennis, N. A., Browndyke, J. N., Stokes, J., Need, A., Burke, J. R., Welsh-Bohmer, K. A., et al. (2010). Temporal lobe functional activity and connectivity in young adult APOE varepsilon4 carriers. Alzheimer’s & Dementia, 6(4), 303–311.Google Scholar
  22. Donix, M., Burggren, A. C., Suthana, N. A., Siddarth, P., Ekstrom, A. D., Krupa, A. K., et al. (2010a). Longitudinal changes in medial temporal cortical thickness in normal subjects with the APOE-4 polymorphism. NeuroImage, 53(1), 37–43.PubMedCentralPubMedGoogle Scholar
  23. Donix, M., Burggren, A. C., Suthana, N. A., Siddarth, P., Ekstrom, A. D., Krupa, A. K., et al. (2010b). Family history of Alzheimer’s disease and hippocampal structure in healthy people. The American Journal of Psychiatry, 167(11), 1399–1406.PubMedCentralPubMedGoogle Scholar
  24. Donix, M., Small, G. W., & Bookheimer, S. Y. (2012). Family history and APOE-4 genetic risk in Alzheimer’s disease. Neuropsychology Review, 22(3), 298–309.PubMedCentralPubMedGoogle Scholar
  25. Du, A.-T., Schuff, N., Chao, L. L., Kornak, J., Jagust, W. J., Kramer, J. H., et al. (2006). Age effects on atrophy rates of entorhinal cortex and hippocampus. Neurobiology of Aging, 27(5), 733–740.PubMedCentralPubMedGoogle Scholar
  26. Dubois, B., Feldman, H. H., Jacova, C., Cummings, J. L., Dekosky, S. T., Barberger-Gateau, P., et al. (2010). Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurology, 9(11), 1118–1127.Google Scholar
  27. Ellis, K. A., Lim, Y. Y., Harrington, K., Ames, D., Bush, A. I., Darby, D., et al. (2013). Decline in cognitive function over 18 months in healthy older adults with high amyloid-β. Journal of Alzheimer’s Disease, 34(4), 861–871.PubMedGoogle Scholar
  28. Espeseth, T., Westlye, L. T., Fjell, A. M., Walhovd, K. B., Rootwelt, H., & Reinvang, I. (2008). Accelerated age-related cortical thinning in healthy carriers of apolipoprotein E epsilon 4. Neurobiology of Aging, 29(3), 329–340.PubMedGoogle Scholar
  29. Fan, M., Liu, B., Zhou, Y., Zhen, X., Xu, C., Jiang, T., et al. (2010). Cortical thickness is associated with different apolipoprotein E genotypes in healthy elderly adults. Neuroscience Letters, 479(3), 332–336.PubMedCentralPubMedGoogle Scholar
  30. Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., et al. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. a meta-analysis. APOE and Alzheimer disease meta analysis consortium. JAMA, the Journal of the American Medical Association, 278(16), 1349–1356.Google Scholar
  31. Fennema-Notestine, C., Panizzon, M. S., Thompson, W. R., Chen, C.-H., Eyler, L. T., Fischl, B., et al. (2011). Presence of ApoE ε4 allele associated with thinner frontal cortex in middle age. Journal of Alzheimer’s Disease, 26(Suppl 3), 49–60.PubMedCentralPubMedGoogle Scholar
  32. Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., et al. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 7209–7214.PubMedCentralPubMedGoogle Scholar
  33. Filippini, N., Ebmeier, K. P., MacIntosh, B. J., Trachtenberg, A. J., Frisoni, G. B., Wilcock, G. K., et al. (2011). Differential effects of the APOE genotype on brain function across the lifespan. NeuroImage, 54(1), 602–610.PubMedGoogle Scholar
  34. Fjell, A. M., Westlye, L. T., Grydeland, H., Amlien, I., Espeseth, T., Reinvang, I., et al. (2014a). Accelerating cortical thinning: unique to dementia or universal in aging? Cerebral Cortex, 24(4), 919–934.PubMedGoogle Scholar
  35. Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Alzheimer’s Disease Neuroimaging Initiative. (2014b). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology [in press].Google Scholar
  36. Fleisher, A. S., Chen, K., Liu, X., Ayutyanont, N., Roontiva, A., Thiyyagura, P., et al. (2013). Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiology of Aging, 34(1), 1–12.PubMedGoogle Scholar
  37. Gallagher, M., & Koh, M. T. (2011). Episodic memory on the path to Alzheimer’s disease. Current Opinion in Neurobiology, 21(6), 929–934.PubMedCentralPubMedGoogle Scholar
  38. Genin, E., Hannequin, D., Wallon, D., Sleegers, K., Hiltunen, M., Combarros, O., et al. (2011). APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Molecular Psychiatry, 16(9), 903–907.PubMedCentralPubMedGoogle Scholar
  39. Gold, B. T., Johnson, N. F., Powell, D. K., & Smith, C. D. (2012). White matter integrity and vulnerability to Alzheimer’s disease: preliminary findings and future directions. Biochimica et Biophysica Acta, 1822(3), 416–422.PubMedCentralPubMedGoogle Scholar
  40. Han, S. D., Houston, W. S., Jak, A. J., Eyler, L. T., Nagel, B. J., Fleisher, A. S., et al. (2007). Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemispheric compensatory response. Neurobiology of Aging, 28(2), 238–247.PubMedCentralPubMedGoogle Scholar
  41. Hinrichs, A. L., Mintun, M. A., Head, D., Fagan, A. M., Holtzman, D. M., Morris, J. C., et al. (2010). Cortical binding of pittsburgh compound B, an endophenotype for genetic studies of Alzheimer’s disease. Biological Psychiatry, 67(6), 581–583.PubMedCentralPubMedGoogle Scholar
  42. Holtzman, D. M., Herz, J., & Bu, G. (2012). Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(3), a006312.PubMedCentralPubMedGoogle Scholar
  43. Honea, R. A., Vidoni, E., Harsha, A., & Burns, J. M. (2009). Impact of APOE on the healthy aging brain: a voxel-based MRI and DTI study. Journal of Alzheimer’s Disease, 18(3), 553–564.PubMedCentralPubMedGoogle Scholar
  44. Honea, R. A., Swerdlow, R. H., Vidoni, E. D., Goodwin, J., & Burns, J. M. (2010). Reduced gray matter volume in normal adults with a maternal family history of Alzheimer disease. Neurology, 74(2), 113–120.PubMedCentralPubMedGoogle Scholar
  45. Honea, R. A., Swerdlow, R. H., Vidoni, E. D., & Burns, J. M. (2011). Progressive regional atrophy in normal adults with a maternal history of Alzheimer disease. Neurology, 76(9), 822–829.PubMedCentralPubMedGoogle Scholar
  46. Hostage, C. A., Roy Choudhury, K., Doraiswamy, P. M., Petrella, J. R., & Alzheimer’s Disease Neuroimaging Initiative. (2013). Dissecting the gene dose-effects of the APOE ε4 and ε2 alleles on hippocampal volumes in aging and Alzheimer’s disease. PLoS One, 8(2), e54483.PubMedCentralPubMedGoogle Scholar
  47. Hua, X., Hibar, D. P., Lee, S., Toga, A. W., Jack, C. R., Jr., Weiner, M. W., et al. (2010). Sex and age differences in atrophic rates: an ADNI study with n = 1368 MRI scans. Neurobiology of Aging, 31(8), 1463–1480.PubMedCentralPubMedGoogle Scholar
  48. Huang, Y. (2010). Abeta-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer’s disease. Trends in Molecular Medicine, 16(6), 287–294.PubMedGoogle Scholar
  49. Huang, Y., & Mucke, L. (2012). Alzheimer mechanisms and therapeutic strategies. Cell, 148(6), 1204–1222.PubMedCentralPubMedGoogle Scholar
  50. Ikonomovic, M. D., Klunk, W. E., Abrahamson, E. E., Mathis, C. A., Price, J. C., Tsopelas, N. D., et al. (2008). Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain, 131(Pt 6), 1630–1645.PubMedCentralPubMedGoogle Scholar
  51. Jack, C. R., Jr., Petersen, R. C., Xu, Y. C., O’Brien, P. C., Waring, S. C., Tangalos, E. G., et al. (1998). Hippocampal atrophy and apolipoprotein E genotype are independently associated with Alzheimer’s disease. Annals of Neurology, 43(3), 303–310.PubMedCentralPubMedGoogle Scholar
  52. Jagust, W. J., Landau, S. M., & Alzheimer’s Disease Neuroimaging Initiative. (2012). Apolipoprotein E, not fibrillar β-amyloid, reduces cerebral glucose metabolism in normal aging. The Journal of Neuroscience, 32(50), 18227–18233.PubMedCentralPubMedGoogle Scholar
  53. Kantarci, K., Lowe, V., Przybelski, S. A., Weigand, S. D., Senjem, M. L., Ivnik, R. J., et al. (2012). APOE modifies the association between Aβ load and cognition in cognitively normal older adults. Neurology, 78(4), 232–240.PubMedCentralPubMedGoogle Scholar
  54. Kerchner, G. A., Berdnik, D., Shen, J. C., Bernstein, J. D., Fenesy, M. C., Deutsch, G. K., et al. (2014). APOE ε4 worsens hippocampal CA1 apical neuropil atrophy and episodic memory. Neurology, 82(8), 691–697.PubMedGoogle Scholar
  55. Khan, W., Giampietro, V., Ginestet, C., Dell’Acqua, F., Bouls, D., Newhouse, S., Dobson, R., et al. (2014). No differences in hippocampal volume between carriers and non-carriers of the ApoE ε4 and ε2 alleles in young healthy adolescents. Journal of Alzheimer’s Disease, 40(1), 37–43.PubMedGoogle Scholar
  56. Kim, J., Basak, J. M., & Holtzman, D. M. (2009). The role of apolipoprotein E in Alzheimer’s disease. Neuron, 63(3), 287–303.PubMedCentralPubMedGoogle Scholar
  57. Knickmeyer, R. C., Wang, J., Zhu, H., Geng, X., Woolson, S., Hamer, R. M., et al. (2014). Common variants in psychiatric risk genes predict brain structure at birth. Cerebral Cortex, 24(5), 1230–1246.PubMedGoogle Scholar
  58. Knopman, D. S., Jack, C. R., Jr, Wiste, H. J., Lundt, E. S., Weigand, S. D., Vemuri, P., et al. (2014). (18) F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiology of Aging [in press].Google Scholar
  59. Kok, E., Haikonen, S., Luoto, T., Huhtala, H., Goebeler, S., Haapasalo, H., & Karhunen, P. J. (2009). Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Annals of Neurology, 65(6), 650–657.PubMedGoogle Scholar
  60. Kukolja, J., Thiel, C. M., Eggermann, T., Zerres, K., & Fink, G. R. (2010). Medial temporal lobe dysfunction during encoding and retrieval of episodic memory in non-demented APOE epsilon4 carriers. Neuroscience, 168(2), 487–497.PubMedGoogle Scholar
  61. Langbaum, J. B. S., Chen, K., Caselli, R. J., Lee, W., Reschke, C., Bandy, D., et al. (2010). Hypometabolism in Alzheimer-affected brain regions in cognitively healthy Latino individuals carrying the apolipoprotein E epsilon4 allele. Archives of Neurology, 67(4), 462–468.PubMedCentralPubMedGoogle Scholar
  62. Leinonen, V., Alafuzoff, I., Aalto, S., Suotunen, T., Savolainen, S., Någren, K., et al. (2008). Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh compound B. Archives of Neurology, 65(10), 1304–1309.PubMedGoogle Scholar
  63. Lemaître, H., Crivello, F., Dufouil, C., Grassiot, B., Tzourio, C., Alpérovitch, A., et al. (2005). No epsilon4 gene dose effect on hippocampal atrophy in a large MRI database of healthy elderly subjects. NeuroImage, 24(4), 1205–1213.PubMedGoogle Scholar
  64. Lim, Y. Y., Ellis, K. A., Pietrzak, R. H., Ames, D., Darby, D., Harrington, K., et al. (2012). Stronger effect of amyloid load than APOE genotype on cognitive decline in healthy older adults. Neurology, 79(16), 1645–1652.PubMedGoogle Scholar
  65. Lim, Y. Y., Ellis, K. A., Ames, D., Darby, D., Harrington, K., Martins, R. N., et al. (2013). Aβ amyloid, cognition, and APOE genotype in healthy older adults. Alzheimer’s & Dementia. Google Scholar
  66. Lim, Y. Y., Maruff, P., Pietrzak, R. H., Ames, D., Ellis, K. A., Harrington, K., et al. (2014). Effect of amyloid on memory and non-memory decline from preclinical to clinical Alzheimer’s disease. Brain, 137(Pt 1), 221–231.PubMedGoogle Scholar
  67. Lind, J., Larsson, A., Persson, J., Ingvar, M., Nilsson, L.-G., Bäckman, L., et al. (2006). Reduced hippocampal volume in non-demented carriers of the apolipoprotein E epsilon4: relation to chronological age and recognition memory. Neuroscience Letters, 396(1), 23–27.PubMedGoogle Scholar
  68. Liu, Y., Paajanen, T., Westman, E., Wahlund, L.-O., Simmons, A., Tunnard, C., et al. (2010a). Effect of APOE ε4 allele on cortical thicknesses and volumes: the addneuromed study. Journal of Alzheimer’s Disease, 21(3), 947–966.PubMedGoogle Scholar
  69. Liu, Y., Paajanen, T., Westman, E., Zhang, Y., Wahlund, L.-O., Simmons, A., et al. (2010b). APOE ε2 allele is associated with larger regional cortical thicknesses and volumes. Dementia and Geriatric Cognitive Disorders, 30(3), 229–237.PubMedGoogle Scholar
  70. Liu, C.-C., Liu, C.-C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nature Reviews Neurology, 9(2), 106–118.PubMedCentralPubMedGoogle Scholar
  71. Lowe, V. J., Weigand, S. D., Senjem, M. L., Vemuri, P., Jordan, L., Kantarci, K., et al. (2014). Association of hypometabolism and amyloid levels in aging, normal subjects. Neurology [in press].Google Scholar
  72. Lu, P. H., Thompson, P. M., Leow, A., Lee, G. J., Lee, A., Yanovsky, I., et al. (2011). Apolipoprotein E genotype is associated with temporal and hippocampal atrophy rates in healthy elderly adults: a tensor-based morphometry study. Journal of Alzheimer’s Disease, 23(3), 433–442.PubMedCentralPubMedGoogle Scholar
  73. Mathis, C. A., Kuller, L. H., Klunk, W. E., Snitz, B. E., Price, J. C., Weissfeld, L. A., et al. (2013). In vivo assessment of amyloid-β deposition in nondemented very elderly subjects. Annals of Neurology, 73(6), 751–761.PubMedCentralPubMedGoogle Scholar
  74. Matura, S., Prvulovic, D., Jurcoane, A., Hartmann, D., Miller, J., Scheibe, M., et al. (2014). Differential effects of the ApoE4 genotype on brain structure and function. NeuroImage, 89, 81–91.PubMedGoogle Scholar
  75. Mielke, M. M., Wiste, H. J., Weigand, S. D., Knopman, D. S., Lowe, V. J., Roberts, R. O., et al. (2012). Indicators of amyloid burden in a population-based study of cognitively normal elderly. Neurology, 79(15), 1570–1577.PubMedCentralPubMedGoogle Scholar
  76. Mormino, E. C., Betensky, R. A., Hedden, T., Schultz, A. P., Ward, A., Huijbers, W., et al. (2014). Amyloid and APOE {varepsilon} 4 interact to influence short-term decline in preclinical Alzheimer disease. Neurology [in press].Google Scholar
  77. Morra, J. H., Tu, Z., Apostolova, L. G., Green, A. E., Avedissian, C., Madsen, S. K., et al. (2009). Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer’s disease, mild cognitive impairment, and elderly controls. NeuroImage, 45(1 Suppl), S3–15.PubMedCentralPubMedGoogle Scholar
  78. Morris, J. C., Roe, C. M., Xiong, C., Fagan, A. M., Goate, A. M., Holtzman, D. M., et al. (2010). APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Annals of Neurology, 67(1), 122–131.PubMedCentralPubMedGoogle Scholar
  79. Mosconi, L., Brys, M., Switalski, R., Mistur, R., Glodzik, L., Pirraglia, E., et al. (2007). Maternal family history of Alzheimer’s disease predisposes to reduced brain glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 104(48), 19067–19072.PubMedCentralPubMedGoogle Scholar
  80. Mosconi, L., Mistur, R., Switalski, R., Brys, M., Glodzik, L., Rich, K., et al. (2009). Declining brain glucose metabolism in normal individuals with a maternal history of Alzheimer disease. Neurology, 72(6), 513–520.PubMedCentralPubMedGoogle Scholar
  81. Mueller, S. G., & Weiner, M. W. (2009). Selective effect of age, Apo e4, and Alzheimer’s disease on hippocampal subfields. Hippocampus, 19(6), 558–564.PubMedCentralPubMedGoogle Scholar
  82. Mueller, S. G., Schuff, N., Raptentsetsang, S., Elman, J., & Weiner, M. W. (2008). Selective effect of Apo e4 on CA3 and dentate in normal aging and Alzheimer’s disease using high resolution MRI at 4 T. NeuroImage, 42(1), 42–48.PubMedCentralPubMedGoogle Scholar
  83. Murphy, K. R., Landau, S. M., Choudhury, K. R., Hostage, C. A., Shpanskaya, K. S., Sair, H. I., et al. (2013). Mapping the effects of ApoE4, age and cognitive status on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid density and growth. NeuroImage, 78, 474–480.PubMedCentralPubMedGoogle Scholar
  84. O’Dwyer, L., Lamberton, F., Matura, S., Tanner, C., Scheibe, M., Miller, J., et al. (2012). Reduced hippocampal volume in healthy young ApoE4 carriers: an MRI study. PLoS One, 7(11), e48895.PubMedCentralPubMedGoogle Scholar
  85. Plassman, B. L., Welsh-Bohmer, K. A., Bigler, E. D., Johnson, S. C., Anderson, C. V., Helms, M. J., et al. (1997). Apolipoprotein E epsilon 4 allele and hippocampal volume in twins with normal cognition. Neurology, 48(4), 985–989.PubMedGoogle Scholar
  86. Protas, H. D., Chen, K., Langbaum, J. B. S., Fleisher, A. S., Alexander, G. E., Lee, W., et al. (2013). Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurology, 70(3), 320–325.PubMedCentralPubMedGoogle Scholar
  87. Reiman, E. M., Caselli, R. J., Yun, L. S., Chen, K., Bandy, D., Minoshima, S., et al. (1996). Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. The New England Journal of Medicine, 334(12), 752–758.PubMedGoogle Scholar
  88. Reiman, E. M., Uecker, A., Caselli, R. J., Lewis, S., Bandy, D., de Leon, M. J., et al. (1998). Hippocampal volumes in cognitively normal persons at genetic risk for Alzheimer’s disease. Annals of Neurology, 44(2), 288–291.PubMedGoogle Scholar
  89. Reiman, E. M., Chen, K., Alexander, G. E., Caselli, R. J., Bandy, D., Osborne, D., et al. (2004). Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proceedings of the National Academy of Sciences of the United States of America, 101(1), 284–289.PubMedCentralPubMedGoogle Scholar
  90. Reiman, E. M., Chen, K., Alexander, G. E., Caselli, R. J., Bandy, D., Osborne, D., et al. (2005). Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8299–8302.PubMedCentralPubMedGoogle Scholar
  91. Reiman, E. M., Chen, K., Liu, X., Bandy, D., Yu, M., Lee, W., et al. (2009). Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6820–6825.PubMedCentralPubMedGoogle Scholar
  92. Rimajova, M., Lenzo, N. P., Wu, J.-S., Bates, K. A., Campbell, A., Dhaliwal, S. S., et al. (2008). Fluoro-2-deoxy-D-glucose (FDG)-PET in APOEepsilon4 carriers in the Australian population. Journal of Alzheimer’s Disease, 13(2), 137–146.PubMedGoogle Scholar
  93. Risacher, S. L., Shen, L., West, J. D., Kim, S., McDonald, B. C., Beckett, L. A., et al. (2010). Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort. Neurobiology of Aging, 31(8), 1401–1418.PubMedCentralPubMedGoogle Scholar
  94. Rodrigue, K. M., Kennedy, K. M., Devous, M. D., Sr., Rieck, J. R., Hebrank, A. C., Diaz-Arrastia, R., et al. (2012). β-Amyloid burden in healthy aging: regional distribution and cognitive consequences. Neurology, 78(6), 387–395.PubMedCentralPubMedGoogle Scholar
  95. Roe, C. M., Fagan, A. M., Grant, E. A., Hassenstab, J., Moulder, K. L., Maue Dreyfus, D., et al. (2013). Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology, 80(19), 1784–1791.PubMedCentralPubMedGoogle Scholar
  96. Roussotte, F. F., Gutman, B. A., Madsen, S. K., Colby, J. B., Narr, K. L., Thompson, P. M., et al. (2014). The apolipoprotein E epsilon 4 allele is associated with ventricular expansion rate and surface morphology in dementia and normal aging. Neurobiology of Aging, 35(6), 1309–1317.PubMedGoogle Scholar
  97. Rowe, C. C., Ellis, K. A., Rimajova, M., Bourgeat, P., Pike, K. E., Jones, G., et al. (2010). Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiology of Aging, 31(8), 1275–1283.PubMedGoogle Scholar
  98. Samuraki, M., Matsunari, I., Chen, W.-P., Shima, K., Yanase, D., Takeda, N., et al. (2012). Glucose metabolism and gray-matter concentration in apolipoprotein E ε4 positive normal subjects. Neurobiology of Aging, 33(10), 2321–2323.PubMedGoogle Scholar
  99. Saunders, A. M., Schmader, K., Breitner, J. C., Benson, M. D., Brown, W. T., Goldfarb, L., et al. (1993). Apolipoprotein E epsilon 4 allele distributions in late-onset Alzheimer’s disease and in other amyloid-forming diseases. Lancet, 342(8873), 710–711.PubMedGoogle Scholar
  100. Scheinin, N. M., Wikman, K., Jula, A., Perola, M., Vahlberg, T., Rokka, J., et al. (2014). Cortical 11C-PIB Uptake is Associated with Age, APOE Genotype, and Gender in « Healthy Aging ». Journal of Alzheimer’s Disease [in press].Google Scholar
  101. Schmidt, H., Schmidt, R., Fazekas, F., Semmler, J., Kapeller, P., Reinhart, B., et al. (1996). Apolipoprotein E e4 allele in the normal elderly: neuropsychologic and brain MRI correlates. Clinical Genetics, 50(5), 293–299.PubMedGoogle Scholar
  102. Schuff, N., Woerner, N., Boreta, L., Kornfield, T., Shaw, L. M., Trojanowski, J. Q., et al. (2009). MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain, 132(Pt 4), 1067–1077.PubMedCentralPubMedGoogle Scholar
  103. Shaw, P., Lerch, J. P., Pruessner, J. C., Taylor, K. N., Rose, A. B., Greenstein, D., et al. (2007). Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study. Lancet Neurology, 6(6), 494–500.Google Scholar
  104. Small, G. W., Mazziotta, J. C., Collins, M. T., Baxter, L. R., Phelps, M. E., Mandelkern, M. A., et al. (1995). Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA, the Journal of the American Medical Association, 273(12), 942–947.Google Scholar
  105. Soininen, H., Partanen, K., Pitkänen, A., Hallikainen, M., Hänninen, T., Helisalmi, S., et al. (1995). Decreased hippocampal volume asymmetry on MRIs in nondemented elderly subjects carrying the apolipoprotein E epsilon 4 allele. Neurology, 45(2), 391–392.PubMedGoogle Scholar
  106. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 280–292.Google Scholar
  107. Striepens, N., Scheef, L., Wind, A., Meiberth, D., Popp, J., Spottke, A., et al. (2011). Interaction effects of subjective memory impairment and ApoE4 genotype on episodic memory and hippocampal volume. Psychological Medicine, 41(9), 1997–2006.PubMedGoogle Scholar
  108. Suthana, N. A., Krupa, A., Donix, M., Burggren, A., Ekstrom, A. D., Jones, M., et al. (2010). Reduced hippocampal CA2, CA3, and dentate gyrus activity in asymptomatic people at genetic risk for Alzheimer’s disease. NeuroImage, 53(3), 1077–1084.PubMedCentralPubMedGoogle Scholar
  109. Taylor, J. L., Scanlon, B. K., Farrell, M., Hernandez, B., Adamson, M. M., Ashford, J. W., Noda, A., et al. (2014). APOE-epsilon4 and aging of medial temporal lobe gray matter in healthy adults older than 50 years. Neurobiology of Aging [in press].Google Scholar
  110. Thompson, W. K., Hallmayer, J., & O’Hara, R. (2011). Design considerations for characterizing psychiatric trajectories across the lifespan: application to effects of APOE-ε4 on cerebral cortical thickness in Alzheimer’s disease. The American Journal of Psychiatry, 168(9), 894–903.PubMedGoogle Scholar
  111. Tohgi, H., Takahashi, S., Kato, E., Homma, A., Niina, R., Sasaki, K., et al. (1997). Reduced size of right hippocampus in 39- to 80-year-old normal subjects carrying the apolipoprotein E epsilon4 allele. Neuroscience Letters, 236(1), 21–24.PubMedGoogle Scholar
  112. Trachtenberg, A. J., Filippini, N., & Mackay, C. E. (2012). The effects of APOE-ε4 on the BOLD response. Neurobiology of Aging, 33(2), 323–334.PubMedGoogle Scholar
  113. Tuminello, E. R., & Han, S. D. (2011). The apolipoprotein e antagonistic pleiotropy hypothesis: review and recommendations. International Journal of Alzheimer’s Disease, 2011, 726197.PubMedCentralPubMedGoogle Scholar
  114. Villemagne, V. L., & Rowe, C. C. (2013). Long night’s journey into the day: amyloid-β imaging in Alzheimer’s disease. Journal of Alzheimer’s Disease, 33(Suppl 1), S349–359.PubMedGoogle Scholar
  115. Villemagne, V. L., Pike, K. E., Chetelat, G., Ellis, K. A., Mulligan, R. S., Bourgeat, P., et al. (2011). Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Annals of Neurology, 69(1), 181–192.PubMedCentralPubMedGoogle Scholar
  116. Villemagne, V. L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K. A., Salvado, O., et al. (2013). Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurology, 12(4), 357–367.Google Scholar
  117. Vlassenko, A. G., Mintun, M. A., Xiong, C., Sheline, Y. I., Goate, A. M., Benzinger, T. L. S., et al. (2011). Amyloid-beta plaque growth in cognitively normal adults: longitudinal [11C] Pittsburgh compound B data. Annals of Neurology, 70(5), 857–861.PubMedCentralPubMedGoogle Scholar
  118. Westlye, E. T., Lundervold, A., Rootwelt, H., Lundervold, A. J., & Westlye, L. T. (2011). Increased hippocampal default mode synchronization during rest in middle-aged and elderly APOE ε4 carriers: relationships with memory performance. The Journal of Neuroscience, 31(21), 7775–7783.PubMedGoogle Scholar
  119. Wierenga, C. E., & Bondi, M. W. (2007). Use of functional magnetic resonance imaging in the early identification of Alzheimer’s disease. Neuropsychology Review, 17(2), 127–143.PubMedCentralPubMedGoogle Scholar
  120. Wishart, H. A., Saykin, A. J., McAllister, T. W., Rabin, L. A., McDonald, B. C., Flashman, L. A., et al. (2006). Regional brain atrophy in cognitively intact adults with a single APOE epsilon4 allele. Neurology, 67(7), 1221–1224.PubMedGoogle Scholar
  121. Yi, D., Lee, D. Y., Sohn, B. K., Choe, Y. M., Seo, E. H., Byun, M. S., et al. (2014). Beta-Amyloid Associated Differential Effects of APOE ε4 on Brain Metabolism in Cognitively Normal Elderly. The American Journal of Geriatric Psychiatry: official journal of the American Association for Geriatric Psychiatry [in press].Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Marine Fouquet
    • 1
    • 2
    • 3
    • 4
  • Florent L. Besson
    • 1
    • 2
    • 3
    • 4
    • 5
  • Julie Gonneaud
    • 1
    • 2
    • 3
    • 4
  • Renaud La Joie
    • 1
    • 2
    • 3
    • 4
  • Gaël Chételat
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.INSERM, U1077CaenFrance
  2. 2.Université de Caen Basse-Normandie, UMR-S1077CaenFrance
  3. 3.Ecole Pratique des Hautes Etudes, UMR-S1077CaenFrance
  4. 4.CHU de Caen, U1077CaenFrance
  5. 5.Department of Nuclear MedicineCHU de CaenCaenFrance

Personalised recommendations