Neuropsychology Review

, Volume 24, Issue 1, pp 3–15 | Cite as

Connecting the Dots: A Review of Resting Connectivity MRI Studies in Attention-Deficit/Hyperactivity Disorder

  • Jonathan PosnerEmail author
  • Christine Park
  • Zhishun Wang


Psychopathology is increasingly viewed from a circuit perspective in which a disorder stems not from circumscribed anomalies in discrete brain regions, but rather from impairments in distributed neural networks. This focus on neural circuitry has rendered resting state functional connectivity MRI (rs-fcMRI) an increasingly important role in the elucidation of pathophysiology including attention-deficit/hyperactivity disorder (ADHD). Unlike many other MRI techniques that focus on the properties of discrete brain regions, rs-fcMRI measures the coherence of neural activity across anatomically disparate brain regions, examining the connectivity and organization of neural circuits. In this review, we explore the methods available to investigators using rs-fcMRI techniques, including a discussion of their relative merits and limitations. We then review findings from extant rs-fcMRI studies of ADHD focusing on neural circuits implicated in the disorder, especially the default mode network, cognitive control network, and cortico-striato-thalamo-cortical loops. We conclude by suggesting future directions that may help advance subsequent rs-fcMRI research in ADHD.


Attention-deficit/hyperactivity disorder Functional connectivity Default mode network Cognitive control network Striatum 



This study was supported in part by NIMH grants: K23-MH091249 (JP) and R01-MH101172 (JP) and by funding from the Edwin S. Webster Foundation. Dr. Posner is a principal investigator on an investigator-initiated grant from Shire Pharmaceuticals.


  1. Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosciences, 13(7), 266–271.CrossRefGoogle Scholar
  2. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9(1), 357–381.PubMedCrossRefGoogle Scholar
  3. An, L., Cao, X. H., Cao, Q. J., Sun, L., Yang, L., Zou, Q. H., et al. (2013). Methylphenidate normalizes resting-state brain dysfunction in boys with attention deficit hyperactivity disorder. Neuropsychopharmacology, 38(7), 1287–1295.Google Scholar
  4. Barkley, R. (1997). Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65–94.PubMedCrossRefGoogle Scholar
  5. Barkley, R. A. (2002). Major life activity and health outcomes associated with attention-deficit/hyperactivity disorder. Journal of Clinical Psychiatry, 63(Suppl 12), 10–15.PubMedGoogle Scholar
  6. Barkley, R., & Fischer, M. (2010). The unique contribution of emotional impulsiveness to impairment in major life activities in hyperactive children as adults. Journal of the American Acadamy of Child and Adolescent Psychiatry, 49(5), 503–513.Google Scholar
  7. Barkley, R. A., Murphy, K. R., & Fischer, M. (2010). ADHD in adults: What the science says. New York: Guilford Press.Google Scholar
  8. Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society, B: Biological Sciences, 360(1457), 1001–1013.PubMedCentralCrossRefGoogle Scholar
  9. Biederman, J., Newcorn, J., & Sprich, S. (1991). Comorbidity of attention deficit hyperactivity disorder with conduct, depressive, anxiety, and other disorders. American Journal of Psychiatry, 148(5), 564–577.PubMedGoogle Scholar
  10. Biederman, J., Petty, C. R., Fried, R., Kaiser, R., Dolan, C. R., Schoenfeld, S., et al. (2008). Educational and occupational underattainment in adults with attention-deficit/hyperactivity disorder: A controlled study. Journal of Clinical Psychiatry, 69(8), 1217–1222.PubMedCrossRefGoogle Scholar
  11. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.PubMedCrossRefGoogle Scholar
  12. Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 4734–4739.CrossRefGoogle Scholar
  13. Buckner, R., Andrews-Hanna, J., & Schacter, D. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124, 1–38.PubMedCrossRefGoogle Scholar
  14. Bush, G., Valera, E. M., & Seidman, L. J. (2005). Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biological Psychiatry, 57(11), 1273–1284.PubMedCrossRefGoogle Scholar
  15. Calhoun, V. D., Adali, T., Hansen, L. K., Larsen, J., & Pekar, J. J. (2003). ICA of functional MRI data: an overview.Google Scholar
  16. Cao, Q., Zang, Y., Sun, L., Sui, M., Long, X., Zou, Q., et al. (2006). Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport, 17(10), 1033–1036.PubMedCrossRefGoogle Scholar
  17. Cao, X., Cao, Q., Long, X., Sun, L., Sui, M., Zhu, C., et al. (2009). Abnormal resting-state functional connectivity patterns of the putamen in medication-naive children with attention deficit hyperactivity disorder. Brain Research, 1303, 195–206.PubMedCrossRefGoogle Scholar
  18. Cardinal, R. N., Winstanley, C. A., Robbins, T. W., & Everitt, B. J. (2004). Limbic corticostriatal systems and delayed reinforcement. Annals of the New York Academy of Sciences, 1021(1), 33–50.PubMedCrossRefGoogle Scholar
  19. Casey, B., Trainor, R., Orendi, J., Schubert, A., Nystrom, L., Giedd, J., et al. (1997a). A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. Journal of Cognitive Neuroscience, 9(6), 835–847.PubMedCrossRefGoogle Scholar
  20. Casey, B. J., Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Schubert, A. B., et al. (1997b). Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 36(3), 374–383.PubMedCrossRefGoogle Scholar
  21. Castellanos, F. X., Margulies, D. S., Kelly, C., Uddin, L. Q., Ghaffari, M., Kirsch, A., et al. (2008). Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biological Psychiatry, 63(3), 332–337.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Castellanos, F. X., Kelly, C., & Milham, M. P. (2009). The restless brain: attention-deficit hyperactivity disorder, resting-state functional connectivity, and intrasubject variability. Canadian Journal of Psychiatry Revue Canadienne de Psychiatrie, 54(10), 665.PubMedCentralPubMedGoogle Scholar
  23. Castellanos, F. X., Di Martino, A., Craddock, R. C., Mehta, A. D., & Milham, M. P. (2013). Clinical applications of the functional connectome. Neuroimage, 80, 527–540.PubMedCrossRefGoogle Scholar
  24. Cocchi, L., Bramati, I. E., Zalesky, A., Furukawa, E., Fontenelle, L. F., Moll, J., et al. (2012). Altered functional brain connectivity in a non-clinical sample of young adults with attention-deficit/hyperactivity disorder. The Journal of Neuroscience, 32(49), 17753–17761.PubMedCrossRefGoogle Scholar
  25. Cole, M. W., & Schneider, W. (2007). The cognitive control network: integrated cortical regions with dissociable functions. NeuroImage, 37(1), 343–360.PubMedCrossRefGoogle Scholar
  26. Costa Dias, T. G., Wilson, V. B., Bathula, D. R., Iyer, S. P., Mills, K. L., Thurlow, B. L., et al. (2012). Reward circuit connectivity relates to delay discounting in children with attention-deficit/hyperactivity disorder. European Neuropsychopharmacology, 23(1), 33–45.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Di Martino, A., Scheres, A., Margulies, D., Kelly, A., Uddin, L., Shehzad, Z., et al. (2008). Functional connectivity of human striatum: a resting state FMRI study. Cerebral Cortex, 18(12), 2735.PubMedCrossRefGoogle Scholar
  28. Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., et al. (2010). Prediction of individual brain maturity using fMRI. Science, 329, 1358–1361.Google Scholar
  29. Ejaz, M. (2008). A Framework for Implementing Independent Component Analysis Algorithms: ProQuest.Google Scholar
  30. Fair, D., Dosenbach, N., Church, J., Cohen, A., Brahmbhatt, S., Miezin, F., et al. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences, 104(33), 13507.CrossRefGoogle Scholar
  31. Fair, D., Cohen, A., Dosenbach, N., Church, J., Miezin, F., Barch, D., et al. (2008). The maturing architecture of the brain’s default network. Proceedings of the National Academy of Sciences, 105(10), 4028.CrossRefGoogle Scholar
  32. Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U., Church, J. A., Miezin, F. M., et al. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5(5), e1000381. doi: 10.1371/journal.pcbi.1000381.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Fair, D. A., Posner, J., Nagel, B. J., Bathula, D., Dias, T. G. C., Mills, K. L., et al. (2010). Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol Psychiatry, 68(12), 1084–1091.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Fair, D. A., Nigg, J. T., Iyer, S., Bathula, D., Mills, K. L., Dosenbach, N. U., et al. (2012). Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Frontiers in Systems Neuroscience, 6, 80.PubMedCentralPubMedGoogle Scholar
  35. Fox, M. D., & Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience, 4.Google Scholar
  36. Fox, M., & Raichle, M. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711.PubMedCrossRefGoogle Scholar
  37. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Grady, C. L., Protzner, A. B., Kovacevic, N., Strother, S. C., Afshin-Pour, B., Wojtowicz, M., et al. (2010). A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cerebral Cortex, 20(6), 1432–1447.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Hoekzema, E., Carmona, S., Ramos‐Quiroga, J. A., Richarte Fernández, V., Bosch, R., Soliva, J. C., et al. (2013). An independent components and functional connectivity analysis of resting state fMRI data points to neural network dysregulation in adult ADHD. Human brain mapping.Google Scholar
  40. Kessler, R. C., Adler, L., Barkley, R., Biederman, J., Conners, C. K., Demler, O., et al. (2006). The prevalence and correlates of adult ADHD in the United States: results from the national comorbidity survey replication. The American Journal of Psychiatry, 163(4), 716.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Kisilev, P., Zibulevsky, M., & Zeevi, Y. Y. (2003). A multiscale framework for blind separation of linearly mixed signals. The Journal of Machine Learning Research, 4, 1339–1363.Google Scholar
  42. Konova, A. B., Moeller, S. J., Tomasi, D., Volkow, N. D., & Goldstein, R. Z. (2013). Effects of methylphenidate on resting-state functional connectivity of the mesocorticolimbic dopamine pathways in cocaine addictioneffects of methylphenidate in cocaine addictioneffects of methylphenidate in cocaine addiction. JAMA Psychiatry, 70(8), 857–868.PubMedCrossRefGoogle Scholar
  43. Konrad, K., & Eickhoff, S. B. (2010). Is the ADHD brain wired differently? a review on structural and functional connectivity in attention deficit hyperactivity disorder. Human Brain Mapping, 31(6), 904–916.PubMedCrossRefGoogle Scholar
  44. Lehéricy, S., Ducros, M., Van De Moortele, P. F., Francois, C., Thivard, L., Poupon, C., et al. (2004). Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Annals of Neurology, 55(4), 522–529.PubMedCrossRefGoogle Scholar
  45. Li, C.-S. R., Yan, P., Bergquist, K. L., & Sinha, R. (2007). Greater activation of the “default” brain regions predicts stop signal errors. NeuroImage, 38(3), 640–648.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Maia, T. V., Cooney, R. E., & Peterson, B. S. (2008). The neural bases of obsessive-compulsive disorder in children and adults. Development and Psychopathology, 20(4), 1251–1283.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Marsh, R., Maia, T. V., & Peterson, B. S. (2009). Functional disturbances within frontostriatal circuits across multiple childhood psychopathologies. American Journal of Psychiatry, 166(6), 664.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Middleton, F. A., & Strick, P. L. (2001). A revised neuroanatomy of frontal-subcortical circuits. Frontal-Subcortical Circuits in Psychiatric and Neurological Disorders, 44–58.Google Scholar
  49. Milham, M. P., Fair, D., Mennes, M., & Mostofsky, S. H. (2012). The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Frontiers in Systems Neuroscience, 6, 62.Google Scholar
  50. Mills, K. L., Bathula, D., Dias, T. G. C., Iyer, S. P., Fenesy, M. C., Musser, E. D., et al. (2012). Altered cortico-striatal–thalamic connectivity in relation to spatial working memory capacity in children with ADHD. Frontiers in Psychiatry, 3.Google Scholar
  51. Nooner, K. B., Colcombe, S. J., Tobe, R. H., Mennes, M., Benedict, M. M., Moreno, A. L., et al. (2012). The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Frontiers in Neuroscience, 6.Google Scholar
  52. Peterson, B., Kane, M., Alexander, G., Lacadie, C., Skudlarski, P., Leung, H., et al. (2002). An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cognitive Brain Research, 13(3), 427–440.PubMedCrossRefGoogle Scholar
  53. Pliszka, S. (2009). Treating ADHD and Comorbid Disorders: Psychosocial and psychopharmacological interventions. New York: Guilford Press.Google Scholar
  54. Polanczyk, G., de Lima, M., Horta, B., Biederman, J., & Rohde, L. (2007). The worldwide prevalence of ADHD: a systematic review and metaregression analysis. American Journal of Psychiatry, 164(6), 942–948.PubMedCrossRefGoogle Scholar
  55. Posner, J., Maia, T. V., Fair, D., Peterson, B. S., Sonuga-Barke, E. J., & Nagel, B. J. (2011a). The attenuation of dysfunctional emotional processing with stimulant medication: an fMRI study of adolescents with ADHD. Psychiatry Research: Neuroimaging, 193(3), 151–160.Google Scholar
  56. Posner, J., Nagel, B. J., Maia, T. V., Mechling, A., Oh, M., Wang, Z., et al. (2011b). Abnormal amygdalar activation and connectivity in adolescents with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 50(8), 828–837. e823.CrossRefGoogle Scholar
  57. Posner, J., Hellerstein, D. J., Gat, I., Mechling, A., Klahr, K., Wang, Z., et al. (2013a). Antidepressants normalize the default mode network in patients with dysthymiaantidepressants and the default mode network. JAMA Psychiatry, 70(4), 373–382.PubMedCrossRefGoogle Scholar
  58. Posner, J., Rauh, V., Gruber, A., Gat, I., Wang, Z., & Peterson, B. S. (2013b). Dissociable attentional and affective circuits in medication-naïve children with attention-deficit/hyperactivity disorder. Psychiatry Research: Neuroimaging, 213(1), 24-30.Google Scholar
  59. Posner, J., Marsh, R., Maia, T., Peterson, B., Gruber, A., & Simpson, H. (2013c). Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults wth Obsessive-Compulsive Disorder. Human brain mapping. doi: 10.1002/hbm.22371.
  60. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2011). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142–2154.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Qiu, M.-G., Ye, Z., Li, Q.-Y., Liu, G.-J., Xie, B., & Wang, J. (2011). Changes of brain structure and function in ADHD children. Brain Topography, 24(3–4), 243–252.PubMedCrossRefGoogle Scholar
  62. Raichle, M., & Snyder, A. (2007). A default mode of brain function: a brief history of an evolving idea. NeuroImage, 37(4), 1083–1090.PubMedCrossRefGoogle Scholar
  63. Raichle, M., MacLeod, A., Snyder, A., Powers, W., Gusnard, D., & Shulman, G. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Sato, J. R., Hoexter, M. Q., Castellanos, X. F., & Rohde, L. A. (2012). Abnormal brain connectivity patterns in adults with ADHD: a coherence study. PloS one, 7(9), e45671.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Shaw, P., Lerch, J., Greenstein, D., Sharp, W., Clasen, L., Evans, A., et al. (2006). Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 63(5), 540.PubMedCrossRefGoogle Scholar
  66. Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J. P., Greenstein, D., et al. (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Science, 104(49), 19649–19654.CrossRefGoogle Scholar
  67. Sheline, Y. I., Price, J. L., Yan, Z., & Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences, 107(24), 11020.CrossRefGoogle Scholar
  68. Sonuga-Barke, E. J. (2005). Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biological Psychiatry, 57(11), 1231–1238.PubMedCrossRefGoogle Scholar
  69. Sonuga-Barke, E. J., Taylor, E., Sembi, S., & Smith, J. (1992). Hyperactivity and delay aversion–I. The effect of delay on choice. Journal of Child Psychology and Psychiatry, 33(2), 387–398.PubMedCrossRefGoogle Scholar
  70. Sonuga-Barke, E. J., Sergeant, J. A., Nigg, J., & Willcutt, E. (2008). Executive dysfunction and delay aversion in attention deficit hyperactivity disorder: nosologic and diagnostic implications. Child and Adolescent Psychiatric Clinics of North America, 17(2), 367–384. ix.PubMedCrossRefGoogle Scholar
  71. Sun, L., Cao, Q., Long, X., Sui, M., Cao, X., Zhu, C., et al. (2012). Abnormal functional connectivity between the anterior cingulate and the default mode network in drug-naïve boys with attention deficit hyperactivity disorder. Psychiatry Research: Neuroimaging, 201(2), 120–127.PubMedCrossRefGoogle Scholar
  72. Tian, L., Jiang, T., Wang, Y., Zang, Y., He, Y., Liang, M., et al. (2006). Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neuroscience Letters, 400(1–2), 39–43.PubMedCrossRefGoogle Scholar
  73. Tian, L., Jiang, T., Liang, M., Zang, Y., He, Y., Sui, M., et al. (2008). Enhanced resting-state brain activities in ADHD patients: a fMRI study. Brain and Development, 30(5), 342–348.PubMedCrossRefGoogle Scholar
  74. Uddin, L. Q., Kelly, A., Biswal, B. B., Margulies, D. S., Shehzad, Z., Shaw, D., et al. (2008). Network homogeneity reveals decreased integrity of default-mode network in ADHD. Journal of Neuroscience Methods, 169(1), 249–254.PubMedCrossRefGoogle Scholar
  75. Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59(1), 431–438.PubMedCentralPubMedCrossRefGoogle Scholar
  76. Wang, Z., & Peterson, B. S. (2008). Partner‐matching for the automated identification of reproducible ICA components from fMRI datasets: Algorithm and validation. Human Brain Mapping, 29(8), 875–893.PubMedCentralPubMedCrossRefGoogle Scholar
  77. Wang, L., Zhu, C., He, Y., Zang, Y., Cao, Q., Zhang, H., et al. (2009). Altered small‐world brain functional networks in children with attention‐deficit/hyperactivity disorder. Human Brain Mapping, 30(2), 638–649.PubMedCrossRefGoogle Scholar
  78. Wang, Z., Maia, T. V., Marsh, R., Colibazzi, T., Gerber, A., & Peterson, B. S. (2011). The neural circuits that generate tics in Tourette’s syndrome. American Journal of Psychiatry, 168(12), 1326–1337.PubMedCrossRefGoogle Scholar
  79. Wang, X., Jiao, Y., Tang, T., Wang, H., & Lu, Z. (2013). Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder. European journal of radiology, 82(9), 1552–1557.PubMedCrossRefGoogle Scholar
  80. Weissman, D., Roberts, K., Visscher, K., & Woldorff, M. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971–978.PubMedCrossRefGoogle Scholar
  81. Wenger, M. J., & Schuster, C. (2007). Statistical and process models for cognitive neuroscience and aging: Psychology Press.Google Scholar
  82. Whalen, P. J., Bush, G., Shin, L. M., & Rauch, S. L. (2006). The emotional counting Stroop: a task for assessing emotional interference during brain imaging. Nature Protocols, 1(1), 293–296.PubMedCrossRefGoogle Scholar
  83. Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8, 49–76.PubMedCrossRefGoogle Scholar
  84. Yang, H., Wu, Q.-Z., Guo, L.-T., Li, Q.-Q., Long, X.-Y., Huang, X.-Q., et al. (2011). Abnormal spontaneous brain activity in medication-naive ADHD children: a resting state fMRI study. Neuroscience Letters, 502(2), 89–93.PubMedCrossRefGoogle Scholar
  85. Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature Reviews Neuroscience, 7(6), 464–476.PubMedCrossRefGoogle Scholar
  86. Yu-Feng, Z., Yong, H., Chao-Zhe, Z., Qing-Jiu, C., Man-Qiu, S., Meng, L., et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development, 29(2), 83–91.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jonathan Posner
    • 1
    • 2
    Email author
  • Christine Park
    • 2
  • Zhishun Wang
    • 1
    • 2
  1. 1.College of Physicians and SurgeonsNew York State Psychiatric InstituteNew YorkUSA
  2. 2.New York State Psychiatric InstituteNew YorkUSA

Personalised recommendations