Advertisement

Neuropsychology Review

, Volume 24, Issue 1, pp 32–48 | Cite as

Brain Networks in Schizophrenia

  • Martijn P. van den HeuvelEmail author
  • Alex Fornito
Review

Abstract

Schizophrenia—a severe psychiatric condition characterized by hallucinations, delusions, loss of initiative and cognitive function—is hypothesized to result from abnormal anatomical neural connectivity and a consequent decoupling of the brain’s integrative thought processes. The rise of in vivo neuroimaging techniques has refueled the formulation of dysconnectivity hypotheses, linking schizophrenia to abnormal structural and functional connectivity in the brain at both microscopic and macroscopic levels. Over the past few years, advances in high-field structural and functional neuroimaging techniques have made it increasingly feasible to reconstruct comprehensive maps of the macroscopic neural wiring system of the human brain, know as the connectome. In parallel, advances in network science and graph theory have improved our ability to study the spatial and topological organizational layout of such neural connectivity maps in detail. Combined, the field of neural connectomics has created a novel platform that provides a deeper understanding of the overall organization of brain wiring, its relation to healthy brain function and human cognition, and conversely, how brain disorders such as schizophrenia arise from abnormal brain network wiring and dynamics. In this review we discuss recent findings of connectomic studies in schizophrenia that examine how the disorder relates to disruptions of brain connectivity.

Keywords

Schizophrenia Brain networks Connectome Connectomics Structural connectivity Functional connectivity 

References

  1. Adelstein, J. S., Shehzad, Z., Mennes, M., Deyoung, C. G., Zuo, X. N., Kelly, C., Margulies, D. S., Bloomfield, A., Gray, J. R., Castellanos, F. X., & Milham, M. P. (2011). Personality is reflected in the brain’s intrinsic functional architecture. PLoS One, 6(11), e27633.PubMedCentralPubMedGoogle Scholar
  2. Alexander-Bloch, A. F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F., Lenroot, R., Giedd, J., & Bullmore, E. T. (2010). Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Frontiers in Systems Neuroscience, 4, 147.PubMedCentralPubMedGoogle Scholar
  3. Alexander-Bloch, A., Giedd, J. N., & Bullmore, E. (2013a). Imaging structural co-variance between human brain regions. Nature reviews Neuroscience, 14(5), 322–336.PubMedGoogle Scholar
  4. Alexander-Bloch, A. F., Vertes, P. E., Stidd, R., Lalonde, F., Clasen, L., Rapoport, J., Giedd, J., Bullmore, E. T., & Gogtay, N. (2013b). The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. Cerebral Cortex, 23(1), 127–138.PubMedCentralPubMedGoogle Scholar
  5. Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L., & Sporns, O. (2009). Modeling the impact of lesions in the human brain. PLoS Computational Biology, 5(6), e1000408.PubMedCentralPubMedGoogle Scholar
  6. Andreasen, N. C. (1999). A unitary model of schizophrenia: Bleuler’s “fragmented phrene” as schizencephaly. Archives of general psychiatry, 56(9), 781–787.PubMedGoogle Scholar
  7. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., & Basser, P. J. (2008). AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magnetic Resonance in Medicine, 59(6), 1347–1354.PubMedGoogle Scholar
  8. Assaf, Y., Alexander, D. C., Jones, D. K., Bizzi, A., Behrens, T. E., Clark, C. A., Cohen, Y., Dyrby, T. B., Huppi, P. S., Knoesche, T. R., Lebihan, D., Parker, G. J., Poupon, C., Anaby, D., Anwander, A., Bar, L., Barazany, D., Blumenfeld-Katzir, T., De-Santis, S., Duclap, D., Figini, M., Fischi, E., Guevara, P., Hubbard, P., Hofstetter, S., Jbabdi, S., Kunz, N., Lazeyras, F., Lebois, A., Liptrot, M. G., Lundell, H., Mangin, J. F., Dominguez, D. M., Morozov, D., Schreiber, J., Seunarine, K., Nava, S., Poupon, C., Riffert, T., Sasson, E., Schmitt, B., Shemesh, N., Sotiropoulos, S. N., Tavor, I., Zhang, H. G., & Zhou, F. L. (2013). The CONNECT project: combining macro- and micro-structure. NeuroImage, 80, 273–282.PubMedGoogle Scholar
  9. Barazany, D., Basser, P. J., & Assaf, Y. (2009). In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain, 132(Pt 5), 1210–1220.PubMedCentralPubMedGoogle Scholar
  10. Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of magnetic resonance, 111(3), 209–219.PubMedGoogle Scholar
  11. Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44(4), 625–632.PubMedGoogle Scholar
  12. Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., & Meyer-Lindenberg, A. (2008). Hierarchical organization of human cortical networks in health and schizophrenia. Journal of Neuroscience, 28(37), 9239–9248.PubMedCentralPubMedGoogle Scholar
  13. Bassett, D. S., Bullmore, E. T., Meyer-Lindenberg, A., Apud, J. A., Weinberger, D. R., & Coppola, R. (2009). Cognitive fitness of cost-efficient brain functional networks. Proceedings of the National Academy of Sciences of the United States of America, 106(28), 11747–11752.PubMedCentralPubMedGoogle Scholar
  14. Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences of the United States of America, 108(18), 7641–7646.PubMedCentralPubMedGoogle Scholar
  15. Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system—a technical review. NMR in Biomedicine, 15(7–8), 435–455.PubMedGoogle Scholar
  16. Beaulieu, C., & Allen, P. S. (1994). Determinants of anisotropic water diffusion in nerves. Magnetic Resonance in Medicine, 31(4), 394–400.PubMedGoogle Scholar
  17. Becerril, K. E., Repovs, G., & Barch, D. M. (2011). Error processing network dynamics in schizophrenia. NeuroImage, 54(2), 1495–1505.PubMedCentralPubMedGoogle Scholar
  18. Bleuler, E. (1911). Dementia praecox or the group of schizophrenias. New York: International Universities Press.Google Scholar
  19. Boersma M, Kemner C, De Reus M, Collin G, Snijders T, Hofman D, Buitelaar J, Stam C, van den Heuvel M. 2013. Disrupted functional brain networks in autistic toddlers. Brain connectivity.Google Scholar
  20. Boos, H. B., Mandl, R. C., van Haren, N. E., Cahn, W., van Baal, G. C., Kahn, R. S., & Hulshoff Pol, H. E. (2013). Tract-based diffusion tensor imaging in patients with schizophrenia and their non-psychotic siblings. European Neuropsychopharmacology, 23(4), 295–304.PubMedGoogle Scholar
  21. Bora, E., Fornito, A., Radua, J., Walterfang, M., Seal, M., Wood, S. J., Yucel, M., Velakoulis, D., & Pantelis, C. (2011). Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophrenia research, 127(1–3), 46–57.PubMedGoogle Scholar
  22. Breakspear, M., Jirsa, V., & Deco, G. (2011). Computational models of the brain: from structure to function. NeuroImage, 52(3), 727–730.Google Scholar
  23. Buckholtz, J. W., & Meyer-Lindenberg, A. (2012). Psychopathology and the human connectome: toward a transdiagnostic model of risk for mental illness. Neuron, 74(6), 990–1004.PubMedGoogle Scholar
  24. Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., Andrews-Hanna, J. R., Sperling, R. A., & Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. Journal of Neuroscience, 29(6), 1860–1873.PubMedCentralPubMedGoogle Scholar
  25. Bullmore, E. T., & Bassett, D. S. (2011). Brain graphs: graphical models of the human brain connectome. Annual review of clinical psychology, 7, 113–140.PubMedGoogle Scholar
  26. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature reviews, 10(3), 186–198.PubMedGoogle Scholar
  27. Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature reviews, 13(5), 336–349.PubMedGoogle Scholar
  28. Bullmore, E. T., Frangou, S., & Murray, R. M. (1997). The dysplastic net hypothesis: an integration of developmental and dysconnectivity theories of schizophrenia. Schizophrenia research, 28(2–3), 143–156.PubMedGoogle Scholar
  29. Bullmore, E., Barnes, A., Bassett, D. S., Fornito, A., Kitzbichler, M., Meunier, D., & Suckling, J. (2009). Generic aspects of complexity in brain imaging data and other biological systems. NeuroImage, 47(3), 1125–1134.PubMedGoogle Scholar
  30. Cabral, J., Hugues, E., Kringelbach, M. L., & Deco, G. (2012). Modeling the outcome of structural disconnection on resting-state functional connectivity. NeuroImage, 62(3), 1342–1353.PubMedGoogle Scholar
  31. Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J. P., Sporns, O., Do, K. Q., Maeder, P., Meuli, R., & Hagmann, P. (2011). Mapping the human connectome at multiple scales with diffusion spectrum MRI. Journal of neuroscience methods, 203(2), 386–397.PubMedGoogle Scholar
  32. Cole, M. W., Anticevic, A., Repovs, G., & Barch, D. (2011). Variable global dysconnectivity and individual differences in schizophrenia. Biological Psychiatry, 70(1), 43–50.PubMedCentralPubMedGoogle Scholar
  33. Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32(26), 8988–8999.PubMedCentralPubMedGoogle Scholar
  34. Collin, G., & van den Heuvel, M. P. (2013). The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the lifespan. Neuroscientist, 19(6), 616–28. doi: 10.1177/1073858413503712.Google Scholar
  35. Collin, G., de Reus, M. A., Cahn, W., Hulshoff Pol, H. E., Kahn, R. S., & van den Heuvel, M. P. (2012). Disturbed grey matter coupling in schizophrenia. European Neuropsychopharmacology, 23(1), 46–54.PubMedGoogle Scholar
  36. Collin, G., Kahn, R. S., Cahn, W., & van den Heuvel, M. P. (2013). Impaired rich club connectivity in unaffected siblings of schizophrenia patients. Schizophrenia Bulletin. doi: 10.1093/schbul/sbt162.
  37. Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853.PubMedCentralPubMedGoogle Scholar
  38. Dandash, O., Fornito, A., Lee, J., Keefe, R. S., Chee, M. W., Adcock, R. A., et al. (2013). Altered striatal functional connectivity in subjects with an at-risk mental state for psychosis. Schizophrenia Bulletin.Google Scholar
  39. de Lange, S., de Reus, M. A., & Van den Heuvel, M. P. (2014). The Laplacian spectrum of neural networks. Frontiers in Computational Neuroscience. doi: 10.3389/fncom.2013.00189.PubMedCentralPubMedGoogle Scholar
  40. de Reus, M. A., & van den Heuvel, M. P. (2013a). The parcellation-based connectome: limitations and extensions. NeuroImage, 80, 397–404.PubMedGoogle Scholar
  41. de Reus, M. A., & van den Heuvel M. P. (2013b). Rich club organization and its role in intermodular communication in the cat cortex. Journal of Neuroscience.Google Scholar
  42. Deco, G., Senden, M., & Jirsa, V. (2012). How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model. Frontiers in computational neuroscience, 6, 68.PubMedCentralPubMedGoogle Scholar
  43. Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G. L., Hagmann, P., & Corbetta, M. (2013). Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. Journal of Neuroscience, 33(27), 11239–11252.PubMedCentralPubMedGoogle Scholar
  44. Dennis, E. L., & Thompson, P. M. (2013). Mapping connectivity in the developing brain. International Journal of Developmental Neuroscience, 31(7), 525–542.PubMedGoogle Scholar
  45. Ellison-Wright, I., Bullmore, E. (2009). Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research, 108, 3–10.Google Scholar
  46. Esslinger, C., Walter, H., Kirsch, P., Erk, S., Schnell, K., Arnold, C., Haddad, L., Mier, D., Opitz von Boberfeld, C., Raab, K., Witt, S. H., Rietschel, M., Cichon, S., & Meyer-Lindenberg, A. (2009). Neural mechanisms of a genome-wide supported psychosis variant. Science, 324(5927), 605.PubMedGoogle Scholar
  47. Filippi, M., van den Heuvel, M. P., Fornito, A., He, Y., Hulshoff Pol, E., Agosta, F., Comi, G., & Rocca, M. A. (2013). Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet Neurology, 12(12), 1889–1199.Google Scholar
  48. Foong, J., Symms, M. R., Barker, G. J., Maier, M., Woermann, F. G., Miller, D. H., & Ron, M. A. (2001). Neuropathological abnormalities in schizophrenia: evidence from magnetization transfer imaging. Brain, 124(Pt 5), 882–892.PubMedGoogle Scholar
  49. Fornito, A., & Bullmore, E. T. (2010). What can spontaneous fluctuations of the blood oxygenation-level-dependent signal tell us about psychiatric disorders? Current Opinion in Psychiatry, 23, 239–249.PubMedGoogle Scholar
  50. Fornito, A., Zalesky, A., & Bullmore, E.T. (2010). Network scaling effects in graph analytic studies of human resting-state FMRI data. Frontiers in Systems Neuroscience, 4(22).Google Scholar
  51. Fornito, A., & Bullmore, E. T. (2012). Connectomic intermediate phenotypes for psychiatric disorders. Frontiers in psychiatry/Frontiers Research Foundation, 3, 32.Google Scholar
  52. Fornito, A., Yucel, M., & Pantelis, C. (2009). Reconciling neuroimaging and neuropathological findings in schizophrenia and bipolar disorder. Current opinion in psychiatry, 22(3), 312–319.PubMedGoogle Scholar
  53. Fornito, A., Yoon, J., Zalesky, A., Bullmore, E. T., & Carter, C. S. (2011a). General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance. Biological Psychiatry, 70(1), 64–72.PubMedGoogle Scholar
  54. Fornito, A., Zalesky, A., Bassett, D. S., Meunier, D., Ellison-Wright, I., Yucel, M., Wood, S. J., Shaw, K., O’Connor, J., Nertney, D., Mowry, B. J., Pantelis, C., & Bullmore, E. T. (2011b). Genetic influences on cost-efficient organization of human cortical functional networks. Journal of Neuroscience, 31(9), 3261–3270.PubMedGoogle Scholar
  55. Fornito, A., Harrison, B. J., Zalesky, A., & Simons, J. S. (2012a). Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12788–12793.Google Scholar
  56. Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012b). Schizophrenia, neuroimaging and connectomics. Neuroimage, 62(4), 2296–2314.Google Scholar
  57. Fornito, A., Harrison, B. J., Goodby, E., Dean, A., Ooi, C., Nathan, P. J., Lennox, B. R., Jones, P. B., Suckling, J., & Bullmore, E. T. (2013a). Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis. JAMA Psychiatry, 70, 1143–1151Google Scholar
  58. Fornito, A., Zalesky, A., & Breakspear, M. (2013b). Graph analysis of the human connectome: promise, progress, and pitfalls. NeuroImage, 80, 426–444.Google Scholar
  59. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature reviews, 8(9), 700–711.PubMedGoogle Scholar
  60. Fox, M. D., Snyder, A. Z., Zacks, J. M., & Raichle, M. E. (2006). Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nature neuroscience, 9(1), 23–25.PubMedGoogle Scholar
  61. Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 3270–3283.PubMedCentralPubMedGoogle Scholar
  62. Friston, K. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping, 2, 22.Google Scholar
  63. Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30, 115–125.PubMedGoogle Scholar
  64. Friston, K. (2005). Disconnection and cognitive dysmetria in schizophrenia. The American Journal of Psychiatry, 162(3), 429–432.PubMedGoogle Scholar
  65. Friston, K. J., & Frith, C. D. (1995). Schizophrenia: a disconnection syndrome? Clinical Neuroscience, 3(2), 89–97.PubMedGoogle Scholar
  66. Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6, 218–229.PubMedGoogle Scholar
  67. Friston, K. J., Li, B., Daunizeau, J., & Stephan, K. E. (2011). Network discovery with DCM. NeuroImage, 56(3), 1202–1221.PubMedCentralPubMedGoogle Scholar
  68. Glahn, D. C., Laird, A. R., Ellison-Wright, I., Thelen, S. M., Robinson, J. L., Lancaster, J. L., Bullmore, E., & Fox, P. T. (2008). Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biological Psychiatry, 64(9), 774–781.PubMedGoogle Scholar
  69. Glahn, D. C., Winkler, A. M., Kochunov, P., Almasy, L., Duggirala, R., Carless, M. A., Curran, J. C., Olvera, R. L., Laird, A. R., Smith, S. M., Beckmann, C. F., Fox, P. T., & Blangero, J. (2010). Genetic control over the resting brain. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1223–1228.PubMedCentralPubMedGoogle Scholar
  70. Gogtay, N., Hua, X., Stidd, R., Boyle, C. P., Lee, S., Weisinger, B., Chavez, A., Giedd, J. N., Clasen, L., Toga, A. W., Rapoport, J. L., & Thompson, P. M. (2012). Delayed white matter growth trajectory in young nonpsychotic siblings of patients with childhood-onset schizophrenia. Archives of general psychiatry, 69(9), 875–884.PubMedGoogle Scholar
  71. Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., & Beaulieu, C. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19(3), 524–536.PubMedCentralPubMedGoogle Scholar
  72. Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current opinion in neurology, 21(4), 424–430.PubMedGoogle Scholar
  73. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS biology, 6(7), e159.PubMedCentralPubMedGoogle Scholar
  74. Hagmann P, Cammoun L, Gigandet X, Gerhard S, Ellen Grant P, Wedeen V, Meuli R, Thiran JP, Honey CJ, Sporns, O. (2010a). MR connectomics: Principles and challenges. Journal of Neuroscience methods.Google Scholar
  75. Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V. J., Meuli, R., Thiran, J. P., & Grant, P. E. (2010b). White matter maturation reshapes structural connectivity in the late developing human brain. Proceedings of the National Academy of Sciences of the United States of America, 107(44), 19067–19072.PubMedCentralPubMedGoogle Scholar
  76. He, Y., Chen, Z. J., & Evans, A. C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17(10), 2407–2419.PubMedGoogle Scholar
  77. Hesselmann, G., Kell, C. A., Eger, E., Kleinschmidt, A. (2008). Spontaneous local variations in ongoing neural activity bias perceptual decisions. Proceedings of the National Academy of Sciences of the United States of America, 105, 10984–10989.Google Scholar
  78. Hoffman, R. E., Fernandez, T., Pittman, B., & Hampson, M. (2011). Elevated functional connectivity along a corticostriatal loop and the mechanism of auditory/verbal hallucinations in patients with schizophrenia. Biological Psychiatry, 69(5), 407–414.PubMedCentralPubMedGoogle Scholar
  79. Honey, C. J., & Sporns, O. (2008). Dynamical consequences of lesions in cortical networks. Human brain mapping, 29(7), 802–809.PubMedGoogle Scholar
  80. Honey, C. J., Kotter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10240–10245.PubMedCentralPubMedGoogle Scholar
  81. Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 2035–2040.PubMedCentralPubMedGoogle Scholar
  82. Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophrenia Bulletin, 35, 549–562.PubMedCentralPubMedGoogle Scholar
  83. Hulshoff Pol, H. E., Schnack, H. G., Mandl, R. C., Cahn, W., Collins, D. L., Evans, A. C., & Kahn, R. S. (2004). Focal white matter density changes in schizophrenia: reduced inter-hemispheric connectivity. NeuroImage, 21(1), 27–35.PubMedGoogle Scholar
  84. Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., Della Penna, S., Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J., Handwerker, D. A., Keilholz, S., Kiviniemi, V., Leopold, D. A., de Pasquale, F., Sporns, O., Walter, M., & Chang, C. (2013). Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage, 80, 360–378.PubMedGoogle Scholar
  85. Iturria-Medina, Y., Sotero, R. C., Canales-Rodriguez, E. J., Aleman-Gomez, Y., & Melie-Garcia, L. (2008). Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. NeuroImage, 40(3), 1064–1076.PubMedGoogle Scholar
  86. Jahanshad, N., Kochunov, P. V., Sprooten, E., Mandl, R. C., Nichols, T. E., Almasy, L., Blangero, J., Brouwer, R. M., Curran, J. E., de Zubicaray, G. I., Duggirala, R., Fox, P. T., Hong, L. E., Landman, B. A., Martin, N. G., McMahon, K. L., Medland, S. E., Mitchell, B. D., Olvera, R. L., Peterson, C. P., Starr, J. M., Sussmann, J. E., Toga, A. W., Wardlaw, J. M., Wright, M. J., Hulshoff Pol, H. E., Bastin, M. E., McIntosh, A. M., Deary, I. J., Thompson, P. M., & Glahn, D. C. (2013a). Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. NeuroImage, 81, 455–469.PubMedGoogle Scholar
  87. Jahanshad, N., Rajagopalan, P., Hua, X., Hibar, D. P., Nir, T. M., Toga, A. W., Jack, C. R., Jr., Saykin, A. J., Green, R. C., Weiner, M. W., Medland, S. E., Montgomery, G. W., Hansell, N. K., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Wright, M. J., & Thompson, P. M. (2013b). Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity. Proceedings of the National Academy of Sciences of the United States of America, 110(12), 4768–4773.PubMedCentralPubMedGoogle Scholar
  88. Jbabdi, S., & Johansen-Berg, H. (2011). Tractography: where do we go from here? Brain connectivity, 1(3), 169–183.PubMedCentralPubMedGoogle Scholar
  89. Jirsa, V. K., Sporns, O., Breakspear, M., Deco, G., & McIntosh, A. R. (2010). Towards the virtual brain: network modeling of the intact and the damaged brain. Archives italiennes de biologie, 148(3), 189–205.PubMedGoogle Scholar
  90. Johansen-Berg, H. (2013). Human connectomics—what will the future demand? NeuroImage, 80, 541–544.PubMedGoogle Scholar
  91. Johansen-Berg, H., Rushworth, M. F., Bogdanovic, M. D., Kischka, U., Wimalaratna, S., & Matthews, P. M. (2002). The role of ipsilateral premotor cortex in hand movement after stroke. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14518–14523.PubMedCentralPubMedGoogle Scholar
  92. Jones, D. K. (2008). Studying connections in the living human brain with diffusion MRI. Cortex; a journal devoted to the study of the nervous system and behavior, 44(8), 936–952.PubMedGoogle Scholar
  93. Karbasforoushan, H., & Woodward, N. D. (2013). Resting-state networks in schizophrenia. Current topics in medicinal chemistry, 12(21), 2404–2414.Google Scholar
  94. Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, J., Schmitt, G., Zetzsche, T., Decker, P., Reiser, M., Moller, H. J., & Gaser, C. (2009). Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of General Psychiatry, 66(7), 700–712.PubMedGoogle Scholar
  95. Kraepelin, E. (1919). Dementia praecox and paraphrenia. Edinburgh: Livingstone.Google Scholar
  96. Kubicki, M., Park, H., Westin, C. F., Nestor, P. G., Mulkern, R. V., Maier, S. E., Niznikiewicz, M., Connor, E. E., Levitt, J. J., Frumin, M., Kikinis, R., Jolesz, F. A., McCarley, R. W., & Shenton, M. E. (2005). DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. NeuroImage, 26(4), 1109–1118.PubMedCentralPubMedGoogle Scholar
  97. Kubicki, M., McCarley, R., Westin, C. F., Park, H. J., Maier, S., Kikinis, R., Jolesz, F. A., & Shenton, M. E. (2007). A review of diffusion tensor imaging studies in schizophrenia. Journal of psychiatric research, 41(1–2), 15–30.PubMedCentralPubMedGoogle Scholar
  98. Kubicki, M., Shenton, M. E., Maciejewski, P. K., Pelavin, P. E., Hawley, K. J., Ballinger, T., Swisher, T., Jabbar, G. A., Thermenos, H. W., Keshavan, M. S., Seidman, L. J., & Delisi, L. E. (2013). Decreased axial diffusivity within language connections: a possible biomarker of schizophrenia risk. Schizophrenia research, 148(1–3), 67–73.PubMedGoogle Scholar
  99. Kuperberg, G. R., Broome, M. R., McGuire, P. K., David, A. S., Eddy, M., Ozawa, F., Goff, D., West, W. C., Williams, S. C., van der Kouwe, A. J., Salat, D. H., Dale, A. M., & Fischl, B. (2003). Regionally localized thinning of the cerebral cortex in schizophrenia. Archives of general psychiatry, 60(9), 878–888.PubMedGoogle Scholar
  100. Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging, 13(4), 534–546.PubMedGoogle Scholar
  101. Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., & Jiang, T. (2009). Brain anatomical network and intelligence. PLoS computational biology, 5(5), e1000395.PubMedCentralPubMedGoogle Scholar
  102. Li, Y., Liu, B., Hou, B., Qin, W., Wang, D., Yu, C., & Jiang, T. (2013). Less efficient information transfer in Cys-allele carriers of DISC1: a brain network study based on diffusion MRI. Cerebral Cortex, 23(7), 1715–1723.PubMedGoogle Scholar
  103. Liang, M., Zhou, Y., Jiang, T., Liu, Z., Tian, L., Liu, H., & Hao, Y. (2006). Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport, 17(2), 209–213.PubMedGoogle Scholar
  104. Liang, X., Zou, Q., He, Y., & Yang, Y. (2013). Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proceedings of the National Academy of Sciences of the United States of America, 110(5), 1929–1934.PubMedCentralPubMedGoogle Scholar
  105. Lisman, J. E., Coyle, J. T., Green, R. W., Javitt, D. C., Benes, F. M., Heckers, S., & Grace, A. A. (2008). Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends in neurosciences, 31, 234–242.PubMedCentralPubMedGoogle Scholar
  106. Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., & Jiang, T. (2008). Disrupted small-world networks in schizophrenia. Brain, 131(Pt 4), 945–961.PubMedGoogle Scholar
  107. Liu, M., Zeng, L. L., Shen, H., Liu, Z., & Hu, D. (2012). Potential risk for healthy siblings to develop schizophrenia: evidence from pattern classification with whole-brain connectivity. Neuroreport, 23(5), 265–269.PubMedGoogle Scholar
  108. Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., & Bullmore, E. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30(28), 9477–9487.PubMedCentralPubMedGoogle Scholar
  109. Mandl, R. C, Schnack H. G, Luigjes, J., van den Heuvel, M. P., Cahn, W., Kahn, R. S., & Hulshoff Pol, H. E. (2010). Tract-based analysis of magnetization transfer ratio and diffusion tensor imaging of the frontal and frontotemporal connections in schizophrenia. Schizophrenia Bulletin, 36(4), 778–787. doi: 10.1093/schbul/sbn161.Google Scholar
  110. Meyer-Lindenberg, A., & Weinberger, D. R. (2006). Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature reviews Neuroscience, 7(10), 818–827.PubMedGoogle Scholar
  111. Micheloyannis, S., Pachou, E., Stam, C. J., Breakspear, M., Bitsios, P., Vourkas, M., Erimaki, S., & Zervakis, M. (2006). Small-world networks and disturbed functional connectivity in schizophrenia. Schizophrenia research, 87(1–3), 60–66.PubMedGoogle Scholar
  112. Mori, S., & Barker, P. B. (1999). Diffusion magnetic resonance imaging: its principle and applications. Anatomical Record, 257(3), 102–109.PubMedGoogle Scholar
  113. Mori, S., & van Zijl, P. C. (2002). Fiber tracking: principles and strategies—a technical review. NMR in Biomedicine, 15(7–8), 468–480.PubMedGoogle Scholar
  114. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage, 44(3), 893–905.PubMedCentralPubMedGoogle Scholar
  115. Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8577–8582.PubMedCentralPubMedGoogle Scholar
  116. Newmann, M. (2010). Networks: An introduction. Princeton University Press.Google Scholar
  117. Nieuwenhuis, M., van Haren, N. E., Hulshoff Pol, H. E., Cahn, W., Kahn, R. S., & Schnack, H. G. (2013). Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. NeuroImage, 61(3), 606–612.Google Scholar
  118. Ottet, M. C., Schaer, M., Debbane, M., Cammoun, L., Thiran, J. P., & Eliez, S. (2013). Graph theory reveals dysconnected hubs in 22q11DS and altered nodal efficiency in patients with hallucinations. Frontiers in human neuroscience, 7, 402.PubMedCentralPubMedGoogle Scholar
  119. Palaniyappan, L., Simmonite, M., White, T. P., Liddle, E. B., & Liddle, P. F. (2013). Neural primacy of the salience processing system in schizophrenia. Neuron, 79(4), 814–828.PubMedCentralPubMedGoogle Scholar
  120. Pearlson, G. D., & Calhoun, V. D. (2009). Convergent approaches for defining functional imaging endophenotypes in schizophrenia. Frontiers in human neuroscience, 3, 37.PubMedCentralPubMedGoogle Scholar
  121. Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., & Mechelli, A. (2011). Dysconnectivity in schizophrenia: where are we now? Neuroscience and Biobehavioral Reviews, 35(5), 1110–1124.PubMedGoogle Scholar
  122. Power, J. D., Schlaggar, B. L., Lessov-Schlagger, C. N., & Petersen, S. E. (2013). Evidence for hubs in human functional brain networks. Neuron, 79, 15.Google Scholar
  123. Reijmer, Y. D., Leemans, A., Caeyenberghs, K., Heringa, S. M., Koek, H. L., & Biessels, G. J. (2013). Disruption of cerebral networks and cognitive impairment in Alzheimer disease. Neurology, 80(15), 1370–1377.PubMedGoogle Scholar
  124. Repovs, G., Csernansky, J. G., & Barch, D. M. (2011). Brain network connectivity in individuals with schizophrenia and their siblings. Biological Psychiatry, 69(10), 967–973.PubMedCentralPubMedGoogle Scholar
  125. Riecker, A., Groschel, K., Ackermann, H., Schnaudigel, S., Kassubek, J., & Kastrup, A. (2010). The role of the unaffected hemisphere in motor recovery after stroke. Human brain mapping, 31(7), 1017–1029.PubMedGoogle Scholar
  126. Rubinov M, Bullmore E. 2013. Schizophrenia and abnormal brain network hubs. Dialogues CNS.Google Scholar
  127. Saad, Z. S., Gotts, S. J., Murphy, K., Chen, G., Jo, H. J., Martin, A., & Cox, R. W. (2012). Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain connectivity, 2(1), 25–32.PubMedCentralPubMedGoogle Scholar
  128. Salvador, R., Suckling, J., Coleman, M. R., Pickard, J. D., Menon, D., & Bullmore, E. (2005). Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral Cortex, 15(9), 1332–1342.PubMedGoogle Scholar
  129. Salvador, R., Martinez, A., Pomarol-Clotet, E., Gomar, J., Vila, F., Sarro, S., Capdevila, A., & Bullmore, E. (2008). A simple view of the brain through a frequency-specific functional connectivity measure. NeuroImage, 39(1), 279–289.PubMedGoogle Scholar
  130. Schnack, H. G., Nieuwenhuis, M., van Haren, N. E., Abramovic, L., Scheewe, T. W., Brouwer, R. M., Hulshoff Pol, H. E., & Kahn, R. S. (2013). Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage, 84C, 299–306.Google Scholar
  131. Senden, M., Goebel, R., & Deco, G. (2012). Structural connectivity allows for multi-threading during rest: the structure of the cortex leads to efficient alternation between resting state exploratory behavior and default mode processing. NeuroImage, 60(4), 2274–2284.PubMedGoogle Scholar
  132. Shehzad, Z., Kelly, A. M., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin, L. Q., Lee, S. H., Margulies, D. S., Roy, A. K., Biswal, B. B., Petkova, E., Castellanos, F. X., Milham, M. P. (2009). The resting brain: unconstrained yet reliable. Cerebral Cortex, 19, 2209–2229.Google Scholar
  133. Shi, F., Yap, P. T., Gao, W., Lin, W., Gilmore, J. H., & Shen, D. (2012). Altered structural connectivity in neonates at genetic risk for schizophrenia: a combined study using morphological and white matter networks. NeuroImage, 62(3), 1622–1633.PubMedCentralPubMedGoogle Scholar
  134. Skudlarski, P., Jagannathan, K., Calhoun, V. D., Hampson, M., Skudlarska, B. A., & Pearlson, G. (2008). Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. NeuroImage, 43(3), 554–561.PubMedGoogle Scholar
  135. Skudlarski, P., Jagannathan, K., Anderson, K., Stevens, M. C., Calhoun, V. D., Skudlarska, B. A., & Pearlson, G. (2010). Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach. Biological Psychiatry, 68(1), 61–69.PubMedCentralPubMedGoogle Scholar
  136. Skudlarski, P., Schretlen, D. J., Thaker, G. K., Stevens, M. C., Keshavan, M. S., Sweeney, J. A., Tamminga, C. A., Clementz, B. A., O’Neil, K., & Pearlson, G. D. (2013). Diffusion tensor imaging white matter endophenotypes in patients with schizophrenia or psychotic bipolar disorder and their relatives. The American Journal of Psychiatry, 170(8), 886–898.PubMedGoogle Scholar
  137. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., Watkins, K. E., Toro, R., Laird, A. R., & Beckmann, C. F. (2009). Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045.PubMedCentralPubMedGoogle Scholar
  138. Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., Ramsey, J. D., & Woolrich, M. W. (2011). Network modelling methods for FMRI. NeuroImage, 54(2), 875–891.PubMedGoogle Scholar
  139. Sporns O. 2011. Networks of the Brain MIT Press.Google Scholar
  140. Sporns, O. (2012a). Discovering the Human Connectome: MIT Press.Google Scholar
  141. Sporns, O. (2012b). Network attributes for segregation and integration in the human brain. Current opinion in neurobiology, 23(2), 162–171.Google Scholar
  142. Sporns, O., Tononi, G., & Kotter, R. (2005). The human connectome: a structural description of the human brain. PLoS Computational Biology, 1(4), e42.PubMedCentralPubMedGoogle Scholar
  143. Sporns, O., Honey, C. J., & Kotter, R. (2007). Identification and classification of hubs in brain networks. PLoS One, 2(10), e1049.PubMedCentralPubMedGoogle Scholar
  144. Stam, C. J., & Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear biomedical physics, 1(1), 3.PubMedCentralPubMedGoogle Scholar
  145. Stam, C. J., Jones, B. F., Manshanden, I., van Cappellen van Walsum, A. M., Montez, T., Verbunt, J. P., de Munck, J. C., van Dijk, B. W., Berendse, H. W., & Scheltens, P. (2006). Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. NeuroImage, 32(3), 1335–1344.PubMedGoogle Scholar
  146. Stephan, K. E., Baldeweg, T., & Friston, K. J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biological Psychiatry, 59(10), 929–939.PubMedGoogle Scholar
  147. Towlson, E. K., Vertes, P. E., Ahnert, S. E., Schafer, W. R., & Bullmore, E. T. (2013). The rich club of the C. elegans neuronal connectome. Journal of Neuroscience, 33(15), 6380–6387.PubMedGoogle Scholar
  148. Uranova, N. A., Vikhreva, O. V., Rachmanova, V. I., & Orlovskaya, D. D. (2013). Ultrastructural alterations of myelinated fibers and oligodendrocytes in the prefrontal cortex in schizophrenia: a postmortem morphometric study. Schizophrenia research and treatment, 2011, 325789.Google Scholar
  149. van Buchem, M. A. (1999). Magnetization transfer: applications in neuroradiology. Journal of computer assisted tomography, 23(Suppl 1), S9–S18.PubMedGoogle Scholar
  150. van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534.PubMedGoogle Scholar
  151. van den Heuvel, M. P., & Kahn, R. S. (2013). Abnormal brain wiring as a pathogenetic mechanism in schizophrenia. Biological Psychiatry, 70(12), 1107–1108.Google Scholar
  152. van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31(44), 11.Google Scholar
  153. van den Heuvel, M. P., & Sporns, O. (2013a). An anatomical substrate for integration among functional networks in human cortex. Journal of Neuroscience, 33(36), 14489–14500.PubMedGoogle Scholar
  154. van den Heuvel, M. P., & Sporns, O. (2013b). Network hubs in the human brain. Trends in Cognitive Science. doi: 10.1016/j.tics.2013.09.012.
  155. van den Heuvel, M. P., Mandl, R. C., & Hulshoff Pol, H. E. (2008a). Normalized group clustering of resting-state fMRI data. PLoS ONE, 3(4), e2001.PubMedCentralPubMedGoogle Scholar
  156. van den Heuvel, M. P., Stam, C. J., Boersma, M., & Hulshoff Pol, H. E. (2008b). Small-world and scale-free organization of voxel based resting-state functional connectivity in the human brain. NeuroImage, 43(3), 11.Google Scholar
  157. van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 7619–7624.PubMedGoogle Scholar
  158. van den Heuvel, M. P., Mandl, R. C., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2010). Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. Journal of Neuroscience, 30(47), 15915–15926.PubMedGoogle Scholar
  159. van den Heuvel, M. P., Kahn, R. S., Goni, J., & Sporns, O. (2012a). High-cost, high-capacity backbone for global brain communication. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11372–11377.PubMedCentralPubMedGoogle Scholar
  160. van den Heuvel, M. P., van Soelen, I. L., Stam, C. J., Kahn, R. S., Boomsma, D. I., Hulshoff Pol, H. E. (2012b). Genetic control of functional brain network efficiency in children. European Neuropsychopharmacology.Google Scholar
  161. van den Heuvel, M. P., Sporns, O., Collin, G., Scheewe, T., Mandl, R. C., Cahn, W., Goni, J., Hulshoff Pol, H. E., & Kahn, R. S. (2013). Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry, 70(8), 783–792.PubMedGoogle Scholar
  162. van Essen, D. C., & Ugurbil, K. (2013). The future of the human connectome. NeuroImage, 62(2), 1299–1310.Google Scholar
  163. van Haren, N. E., Schnack, H. G., Cahn, W., van den Heuvel, M. P., Lepage, C., Collins, L., Evans, A. C., Hulshoff Pol, H. E., & Kahn, R. S. (2012). Changes in cortical thickness during the course of illness in schizophrenia. Archives of general psychiatry, 68(9), 871–880.Google Scholar
  164. van Horn, J. D., Irimia, A., Torgerson, C. M., Chambers, M. C., Kikinis, R., & Toga, A. W. (2013). Mapping connectivity damage in the case of Phineas Gage. PLoS One, 7(5), e37454.Google Scholar
  165. Verstraete, E., Veldink, J. H., van den Berg, L. H., & van den Heuvel, M. P. (2012). Structural brain network imaging shows expanding disconnection of the motor system in amyotrophic lateral sclerosis. Human Brain Mapping. doi: 10.1002/hbm.22258.
  166. Verstraete, E., Polders, D., Mandl, R. C. W., van den Heuvel, M. P., Veldink, J. H., Luijten, P., et al. (2013). Multimodal tract-based analysis in ALS patients at 7T: a specific white matter profile? Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration.Google Scholar
  167. Vertes, P. E., Alexander-Bloch, A. F., Gogtay, N., Giedd, J. N., Rapoport, J. L., & Bullmore, E. T. (2012). Simple models of human brain functional networks. Proceedings of the National Academy of Sciences of the United States of America, 109(15), 5868–5873.PubMedCentralPubMedGoogle Scholar
  168. Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Essen, D. C., Zempel, J. M., Snyder, L. H., Corbetta, M., & Raichle, M. E. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447(7140), 83–86.PubMedGoogle Scholar
  169. Volkow, N. D., Wolf, A. P., Brodie, J. D., Cancro, R., Overall, J. E., Rhoades, H., & Van Gelder, P. (1988). Brain interactions in chronic schizophrenics under resting and activation conditions. Schizophrenia Research, 1, 47–53.PubMedGoogle Scholar
  170. von Hohenberg, C. C., Pasternak, O., Kubicki, M., Ballinger, T., Vu, M. A., Swisher, T., et al. (2013). White matter microstructure in individuals at clinical high risk of psychosis: a whole-brain diffusion tensor imaging study. Schizophrenia Bulletin. doi: 10.1093/schbul/sbt079.
  171. Wang, L., Metzak, P. D., Honer, W. G., & Woodward, T. S. (2010). Impaired efficiency of functional networks underlying episodic memory-for-context in schizophrenia. Journal of Neuroscience, 30(39), 13171–13179.PubMedGoogle Scholar
  172. Wang, Q., Su, T. P., Zhou, Y., Chou, K. H., Chen, I. Y., Jiang, T., & Lin, C. P. (2012). Anatomical insights into disrupted small-world networks in schizophrenia. NeuroImage, 59(2), 1085–1093.PubMedGoogle Scholar
  173. Wernicke, C. (1885). Some new studies on aphasie. Fortschr Med Translated. In P. Eling (Ed.), Reader in the history of aphasia. Vol. 4 (pp. 90–98). Amsterdam: John Benjamins.Google Scholar
  174. Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., Shenton, M. E., Green, A. I., Nieto-Castanon, A., LaViolette, P., Wojcik, J., Gabrieli, J. D., & Seidman, L. J. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1279–1284.PubMedCentralPubMedGoogle Scholar
  175. Yu, Q., Sui, J., Rachakonda, S., He, H., Gruner, W., Pearlson, G., Kiehl, K. A., & Calhoun, V. D. (2011). Altered topological properties of functional network connectivity in schizophre nia during resting state: a small- world brain network study. PLoS ONE, 6, e25423.PubMedCentralPubMedGoogle Scholar
  176. Yu, Q., Sergey, M. P., Erhardt, E. B., Allen, E. A., Sui, J., Kiehl, K. A., Pearlson, G., & Calhoun, V. D. (2012). Modular organization of functional network connectivity in healthy controls and patients. Front Syst neurosci. doi: 10.3389/fnsys.2011.00103.PubMedCentralPubMedGoogle Scholar
  177. Yu, Q., Sui, J., Liu, J., Plis, S. M., Kiehl, K. A., Pearlson, G., & Calhoun, V. D. (2013). Disrupted correlation between low frequency power and connectivity strength of resting state brain networks in schizophrenia. Schizophrenia research, 143(1), 165–171.PubMedCentralPubMedGoogle Scholar
  178. Zalesky, A., Fornito, A., Bullmore, E.T. (2010). Network-based statistic: identifying differences in brain networks. Neuroimage 53, 1197–1207.Google Scholar
  179. Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yucel, M., Pantelis, C., & Bullmore, E. T. (2011a). Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage, 50(3), 970–983.Google Scholar
  180. Zalesky, A., Fornito, A., Seal, M. L., Cocchi, L., Westin, C. F., Bullmore, E. T., Egan, G. F., & Pantelis, C. (2011b). Disrupted axonal fiber connectivity in schizophrenia. Biological Psychiatry, 69(1), 80–89.PubMedGoogle Scholar
  181. Zalesky, A., Fornito, A., & Bullmore, E. (2012). On the use of correlation as a measure of network connectivity. NeuroImage, 60(4), 2096–2106.PubMedGoogle Scholar
  182. Zamora-Lopez, G., Zhou, C., & Kurths, J. (2009). Graph analysis of cortical networks reveals complex anatomical communication substrate. Chaos (Woodbury, NY), 19(1), 015117.Google Scholar
  183. Zhang, Y., Lin, L., Lin, C. P., Zhou, Y., Chou, K. H., Lo, C. Y., Su, T. P., & Jiang, T. (2012). Abnormal topological organization of structural brain networks in schizophrenia. Schizophrenia research, 141(2–3), 109–118.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Psychiatry, Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Monash Clinical and Imaging Neuroscience, School of Psychological Sciences & Monash Biomedical ImagingMonash UniversityMelbourneAustralia

Personalised recommendations