Neuropsychology Review

, Volume 23, Issue 3, pp 169–209 | Cite as

Neuroimaging Biomarkers in Mild Traumatic Brain Injury (mTBI)

  • Erin D. BiglerEmail author


Reviewed herein are contemporary neuroimaging methods that detect abnormalities associated with mild traumatic brain injury (mTBI). Despite advances in demonstrating underlying neuropathology in a subset of individuals who sustain mTBI, considerable disagreement persists in neuropsychology about mTBI outcome and metrics for evaluation. This review outlines a thesis for the select use of sensitive neuroimaging methods as potential biomarkers of brain injury recognizing that the majority of individuals who sustain an mTBI recover without neuroimaging signs or neuropsychological sequelae detected with methods currently applied. Magnetic resonance imaging (MRI) provides several measures that could serve as mTBI biomarkers including the detection of hemosiderin and white matter abnormalities, assessment of white matter integrity derived from diffusion tensor imaging (DTI), and quantitative measures that directly assess neuroanatomy. Improved prediction of neuropsychological outcomes in mTBI may be achieved with the use of targeted neuroimaging markers.


Mild Traumatic Brain Injury (mTBI) Concussion Neuropsychology Neuroimaging Biomarkers Neuropathology Brain damage Cognitive and neurobehavioral sequelae 



Anterior corona radiata


Automated neurological assessment metrics


Corpus callosum


Computed tomography


Chronic traumatic encephalopathy


California verbal learning test


Diffuse axonal injury


Diffusion kurtosis imaging


Default mode network




Disability status scale


Diffusion tensor imaging


Executive function


Executive network


Finite element


Fluid attenuated inversion recovery


Functional magnetic resonance imaging


Glasgow coma scale


Gray matter


Gradient recalled echo


Gulf war illness


Long delay free recall


Loss of consciousness




Mild cognitive impairment


Magnetic resonance


Magnetic resonance imaging


Magnetic resonance spectroscopy


Multiple sclerosis


Mild traumatic brain injury


Mild complicated traumatic brain injury


Orthopedically injured


Post-concussion(al) syndrome


Post-traumatic amnesia


Reticular activating system


Rey auditory verbal learning test


Reaction time

SD or s.d.

Standard deviation


Symbol digit modality test


Susceptibility weighted imaging


Traumatic brain injury


Tract-based spatial statistics


Uncinate fasciculus


World Health Organization


White matter


White matter hyperintensities



The assistance of Jo Ann Petrie, Ph.D. in the preparation of this manuscript is gratefully acknowledged as is the assistance of Tracy J. Abildskov in preparation of some of the illustrations.


  1. Abdullah, K. G., Lubelski, D., Nucifora, P. G., & Brem, S. (2013). Use of diffusion tensor imaging in glioma resection. Neurosurgical Focus, 34(4), E1. doi: 10.3171/2013.1.FOCUS12412.PubMedCrossRefGoogle Scholar
  2. Adams, J. H., Graham, D. I., Murray, L. S., & Scott, G. (1982). Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Annals of Neurology, 12(6), 557–563. doi: 10.1002/ana.410120610.PubMedCrossRefGoogle Scholar
  3. Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–329. doi: 10.1016/j.nurt.2007.05.011.PubMedCrossRefGoogle Scholar
  4. Alexander, M. P. (1998). In the pursuit of proof of brain damage after whiplash injury. Neurology, 51(2), 336–340.PubMedCrossRefGoogle Scholar
  5. Allen, M. D., Wu, T. C., & Bigler, E. D. (2011). Traumatic brain injury alters word memory test performance by slowing response time and increasing cortical activation: an fMRI study of a symptom validity test. Psychological Injury and Law, 4, 140–146.CrossRefGoogle Scholar
  6. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4), 550–562. doi: 10.1016/j.neuron.2010.02.005.PubMedCrossRefGoogle Scholar
  7. Aoki, Y., Inokuchi, R., Gunshin, M., Yahagi, N., & Suwa, H. (2012). Diffusion tensor imaging studies of mild traumatic brain injury: a meta-analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 83(9), 870–876. doi: 10.1136/jnnp-2012-302742.PubMedCrossRefGoogle Scholar
  8. Arciniegas, D. B. (2011). Clinical electrophysiologic assessments and mild traumatic brain injury: state-of-the-science and implications for clinical practice. International Journal of Psychophysiology, 82(1), 41–52. doi: 10.1016/j.ijpsycho.2011.03.004.PubMedCrossRefGoogle Scholar
  9. Arenivas, A., Diaz-Arrastia, R., Spence, J., Cullum, C. M., Krishnan, K., Bosworth, C., et al. (2012). Three approaches to investigating functional compromise to the default mode network after traumatic axonal injury. Brain Imaging and Behavior. doi: 10.1007/s11682-012-9191-2.PubMedGoogle Scholar
  10. Armstrong, C. M., Reger, G. M., Edwards, J., Rizzo, A. A., Courtney, C. G., & Parsons, T. D. (2012). Validity of the Virtual Reality Stroop Task (VRST) in active duty military. Journal of Clinical and Experimental Neuropsychology, 35(2), 113–123. doi: 10.1080/13803395.2012.740002.PubMedCrossRefGoogle Scholar
  11. Bailey, D. M., Jones, D. W., Sinnott, A., Brugniaux, J. V., New, K. J., Hodson, D., et al. (2013). Impaired cerebral haemodynamic function associated with chronic traumatic brain injury in professional boxers. Clinical Science, 124(3), 177–189. doi: 10.1042/CS20120259.PubMedCrossRefGoogle Scholar
  12. Barlow, K. M., Crawford, S., Stevenson, A., Sandhu, S. S., Belanger, F., & Dewey, D. (2010). Epidemiology of postconcussion syndrome in pediatric mild traumatic brain injury. Pediatrics, 126(2), e374–e381. doi: 10.1542/peds.2009-0925.PubMedCrossRefGoogle Scholar
  13. Barth, J. T., Macciocchi, S. N., Giordani, B., Rimel, R., Jane, J. A., & Boll, T. J. (1983). Neuropsychological sequelae of minor head injury. Neurosurgery, 13(5), 529–533.PubMedCrossRefGoogle Scholar
  14. Baugh, C. M., Stamm, J. M., Riley, D. O., Gavett, B. E., Shenton, M. E., Lin, A., et al. (2012). Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging and Behavior, 6(2), 244–254. doi: 10.1007/s11682-012-9164-5.PubMedCrossRefGoogle Scholar
  15. Bavikatte, G., Gaber, T., & Eshiett, M. U. (2010). Posterior reversible encephalopathy syndrome as a complication of Guillain-Barre syndrome. Journal of Clinical Neuroscience, 17(7), 924–926. doi: 10.1016/j.jocn.2009.11.009.PubMedCrossRefGoogle Scholar
  16. Bayly, P. V., Clayton, E. H., & Genin, G. M. (2012). Quantitative imaging methods for the development and validation of brain biomechanics models. Annual Review of Biomedical Engineering, 14, 369–396. doi: 10.1146/annurev-bioeng-071811-150032.PubMedCrossRefGoogle Scholar
  17. Bazarian, J. J., Zhu, T., Blyth, B., Borrino, A., & Zhong, J. (2012). Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magnetic Resonance Imaging, 30(2), 171–180. doi: 10.1016/j.mri.2011.10.001.PubMedCrossRefGoogle Scholar
  18. Beghi, M., Beghi, E., Cornaggia, C. M., & Gobbi, G. (2006). Idiopathic generalized epilepsies of adolescence. Epilepsia, 47(Suppl 2), 107–110. doi: 10.1111/j.1528-1167.2006.00706.x.PubMedCrossRefGoogle Scholar
  19. Bendlin, B. B., Ries, M. L., Lazar, M., Alexander, A. L., Dempsey, R. J., Rowley, H. A., et al. (2008). Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. NeuroImage, 42(2), 503–514. doi: 10.1016/j.neuroimage.2008.04.254.PubMedCrossRefGoogle Scholar
  20. Bennett, R. E., Mac Donald, C. L., & Brody, D. L. (2012). Diffusion tensor imaging detects axonal injury in a mouse model of repetitive closed-skull traumatic brain injury. Neuroscience Letters, 513(2), 160–165. doi: 10.1016/j.neulet.2012.02.024.PubMedCrossRefGoogle Scholar
  21. Benson, R. R., Gattu, R., Sewick, B., Kou, Z., Zakariah, N., Cavanaugh, J. M., et al. (2012). Detection of hemorrhagic and axonal pathology in mild traumatic brain injury using advanced MRI: implications for neurorehabilitation. NeuroRehabilitation, 31(3), 261–279. doi: 10.3233/NRE-2012-0795.PubMedGoogle Scholar
  22. Biasca, N., & Maxwell, W. L. (2007). Minor traumatic brain injury in sports: a review in order to prevent neurological sequelae. Progress in Brain Research, 161, 263–291. doi: 10.1016/S0079-6123(06)61019-4.PubMedCrossRefGoogle Scholar
  23. Bigler, E. D. (2004). Neuropsychological results and neuropathological findings at autopsy in a case of mild traumatic brain injury. Journal of the International Neuropsychological Society: JINS, 10(5), 794–806. doi: 10.1017/S1355617704105146.PubMedCrossRefGoogle Scholar
  24. Bigler, E. D. (2007). Anterior and middle cranial fossa in traumatic brain injury: relevant neuroanatomy and neuropathology in the study of neuropsychological outcome. Neuropsychology, 21(5), 515–531. doi: 10.1037/0894-4105.21.5.515.PubMedCrossRefGoogle Scholar
  25. Bigler, E. D. (2008). Neuropsychology and clinical neuroscience of persistent post-concussive syndrome. Journal of the International Neuropsychological Society: JINS, 14(1), 1–22. doi: 10.1017/S135561770808017X.PubMedCrossRefGoogle Scholar
  26. Bigler, E. D. (2012). Mild traumatic brain injury: the elusive timing of “recovery”. Neuroscience Letters, 509(1), 1–4. doi: 10.1016/j.neulet.2011.12.009.PubMedCrossRefGoogle Scholar
  27. Bigler, E. D. (2013). Neuroinflammation and the dynamic lesion in traumatic brain injury. Brain, 136(Pt 1), 9–11. doi: 10.1093/brain/aws342.PubMedGoogle Scholar
  28. Bigler, E. D., Yeo, R. A. & Turkheimer, E. (1989). Neuropsychological function and brain imaging. N.Y: Plenum Press.Google Scholar
  29. Bigler, E. D., Abildskov, T. J., Petrie, J., Dennis, M., Simic, N., Yaylor, H. G., et al. (2013a). Heterogeneity of brain lesions in pediatric traumatic brain injury. Neuropsychology, 32(4), 707–720. doi: 10.3233/NRE-130896.
  30. Bigler, E. D., & Bazarian, J. J. (2010). Diffusion tensor imaging: a biomarker for mild traumatic brain injury? Neurology, 74(8), 626–627. doi: 10.1212/WNL.0b013e3181d3e43a.PubMedCrossRefGoogle Scholar
  31. Bigler, E. D., & Brooks, M. (2009). Traumatic brain injury and forensic neuropsychology. The Journal of head trauma rehabilitation, 24(2), 76–87. doi: 10.1097/HTR.0b013e31819c2190.PubMedCrossRefGoogle Scholar
  32. Bigler, E. D., Deibert, E., & Filley, C. M. (2013a). When is a concussion no longer a concussion? Neurology, 81(1), 14–15. doi: 10.1212/WNL.0b013e318299cd0e.
  33. Bigler, E. D., Farrer, T. J., Pertab, J. L., James, K., Petrie, J., & Hedges, D. W. (2013c). Reaffirmed limitations of meta-analytic methods in the study of mild traumatic brain injury: A response to Rohling et al. The Clinical Neuropsychologist, in press.Google Scholar
  34. Bigler, E. D., & Maxwell, W. L. (2011). Neuroimaging and neuropathology of TBI. NeuroRehabilitation, 28(2), 63–74. doi: 10.3233/NRE-2011-0633.PubMedGoogle Scholar
  35. Bigler, E. D., & Maxwell, W. L. (2012). Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging and Behavior, 6(2), 108–136. doi: 10.1007/s11682-011-9145-0.PubMedCrossRefGoogle Scholar
  36. Bigler, E. D., & Snyder, J. L. (1995). Neuropsychological outcome and quantitative neuroimaging in mild head injury. Archives of Clinical Neuropsychology, 10(2), 159–174.PubMedGoogle Scholar
  37. Blaine, H., Sullivan, K., & Edmed, S. (2013). The effect of varied test instructions on neuropsychological performance following mild traumatic brain injury: an investigation of ‘Diagnosis threat’. Journal of Neurotrauma. doi: 10.1089/neu.2013.2865.PubMedGoogle Scholar
  38. Blennow, K., Hardy, J., & Zetterberg, H. (2012). The neuropathology and neurobiology of traumatic brain injury. Neuron, 76(5), 886–899. doi: 10.1016/j.neuron.2012.11.021.PubMedCrossRefGoogle Scholar
  39. Blumbergs, P. C., Scott, G., Manavis, J., Wainwright, H., Simpson, D. A., & McLean, A. J. (1994). Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet, 344(8929), 1055–1056.PubMedCrossRefGoogle Scholar
  40. Boll, T. J., & Barth, J. (1983). Mild head injury. Psychiatric Developments, 1(3), 263–275.PubMedGoogle Scholar
  41. Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., et al. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4690–4695. doi: 10.1073/pnas.1113455109.PubMedCrossRefGoogle Scholar
  42. Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De Boissezon, X., et al. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. The Journal of Neuroscience, 31(38), 13442–13451. doi: 10.1523/JNEUROSCI.1163-11.2011.PubMedCrossRefGoogle Scholar
  43. Boone, K. B. (2013). Clinical practice of forensic neuropsychology. New York: Springer.Google Scholar
  44. Bornstein, R. A., Weir, B. K., Petruk, K. C., & Disney, L. B. (1987). Neuropsychological function in patients after subarachnoid hemorrhage. Neurosurgery, 21(5), 651–654.PubMedCrossRefGoogle Scholar
  45. Breedlove, E. L., Robinson, M., Talavage, T. M., Morigaki, K. E., Yoruk, U., O’Keefe, K., et al. (2012). Biomechanical correlates of symptomatic and asymptomatic neurophysiological impairment in high school football. Journal of Biomechanics, 45(7), 1265–1272. doi: 10.1016/j.jbiomech.2012.01.034.PubMedCrossRefGoogle Scholar
  46. Brenner, L. A., Terrio, H., Homaifar, B. Y., Gutierrez, P. M., Staves, P. J., Harwood, J. E., et al. (2010). Neuropsychological test performance in soldiers with blast-related mild TBI. Neuropsychology, 24(2), 160–167. doi: 10.1037/a0017966.PubMedCrossRefGoogle Scholar
  47. Browne, K. D., Chen, X. H., Meaney, D. F., & Smith, D. H. (2011). Mild traumatic brain injury and diffuse axonal injury in swine. Journal of Neurotrauma, 28(9), 1747–1755. doi: 10.1089/neu.2011.1913.PubMedCrossRefGoogle Scholar
  48. Bryer, E. J., Medaglia, J. D., Rostami, S., & Hillary, F. G. (2013). Neural recruitment after mild traumatic brain injury is task dependent: a meta-analysis. Journal of the International Neuropsychological Society: JINS, 1–12, doi: 10.1017/S1355617713000490.
  49. Budde, M. D., Janes, L., Gold, E., Turtzo, L. C., & Frank, J. A. (2011). The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using fourier analysis of stained tissue sections. Brain, 134(Pt 8), 2248–2260. doi: 10.1093/brain/awr161.PubMedCrossRefGoogle Scholar
  50. Bugalho, P., & Oliveira-Maia, A. J. (2012). Impulse control disorders in Parkinson’s disease: crossroads between neurology, psychiatry and neuroscience. Behavioural Neurology. doi: 10.3233/BEN-129019. Epub ahead of print.PubMedGoogle Scholar
  51. Butler, M. A., Corboy, J. R., & Filley, C. M. (2009). How the conflict between American psychiatry and neurology delayed the appreciation of cognitive dysfunction in multiple sclerosis. Neuropsychology Review, 19(3), 399–410. doi: 10.1007/s11065-009-9089-y.PubMedCrossRefGoogle Scholar
  52. Caeyenberghs, K., Leemans, A., Leunissen, I., Gooijers, J., Michiels, K., Sunaert, S., et al. (2012). Altered structural networks and executive deficits in traumatic brain injury patients. Brain Structure & Function. doi: 10.1007/s00429-012-0494-2. Epub ahead of print.Google Scholar
  53. Campbell, Z., Zakzanis, K. K., Jovanovski, D., Joordens, S., Mraz, R., & Graham, S. J. (2009). Utilizing virtual reality to improve the ecological validity of clinical neuropsychology: an FMRI case study elucidating the neural basis of planning by comparing the Tower of London with a three-dimensional navigation task. Applied Neuropsychology, 16(4), 295–306. doi: 10.1080/09084280903297891.PubMedCrossRefGoogle Scholar
  54. Carone, D. A., & Bush, S. S. (2013). Traumatic brain injury: Symptom validity assessment and malingering. New York: Springer.Google Scholar
  55. Carroll, L. J., Cassidy, J. D., Holm, L., Kraus, J., & Coronado, V. G. (2004a). Methodological issues and research recommendations for mild traumatic brain injury: the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Journal of Rehabilitation Medicine, 43(Suppl), 113–125.PubMedCrossRefGoogle Scholar
  56. Carroll, L. J., Cassidy, J. D., Peloso, P. M., Borg, J., von Holst, H., Holm, L., et al. (2004b). Prognosis for mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Journal of Rehabilitation Medicine, 43(Suppl), 84–105.PubMedCrossRefGoogle Scholar
  57. Catani, M., & Thiebaut de Schotten, M. (2008). A diffusion tensor mapping tractography atlas for virtual in vivo dissections. Cortex, 44(8), 1105–1132. doi: 10.1016/j.cortex.Google Scholar
  58. Catani, M., Dell’acqua, F., Bizzi, A., Forkel, S. J., Williams, S. C., Simmons, A., et al. (2012). Beyond cortical localization in clinico-anatomical correlation. Cortex, 48(10), 1262–1287. doi: 10.1016/j.cortex.2012.07.001.PubMedCrossRefGoogle Scholar
  59. Catani, M., & Thiebaut de Schotten, M. (2012). Atlas of human brain connections. Oxford: Oxford University Press.CrossRefGoogle Scholar
  60. Cernich, A., Reeves, D., Sun, W., & Bleiberg, J. (2007). Automated neuropsychological assessment metrics sports medicine battery. Archives of Clinical Neuropsychology, 22(Suppl 1), S101–S114. doi: 10.1016/j.acn.2006.10.008.PubMedCrossRefGoogle Scholar
  61. Chanraud, S., Zahr, N., Sullivan, E. V., & Pfefferbaum, A. (2010). MR diffusion tensor imaging: a window into white matter integrity of the working brain. Neuropsychology Review, 20(2), 209–225. doi: 10.1007/s11065-010-9129-7.PubMedCrossRefGoogle Scholar
  62. Chapman, C. H., Nagesh, V., Sundgren, P. C., Buchtel, H., Chenevert, T. L., Junck, L., et al. (2012). Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive decline. International Journal of Radiation Oncology, Biology, Physics, 82(5), 2033–2040. doi: 10.1016/j.ijrobp.2011.01.068.PubMedCrossRefGoogle Scholar
  63. Chaput, G., Giguere, J. F., Chauny, J. M., Denis, R., & Lavigne, G. (2009). Relationship among subjective sleep complaints, headaches, and mood alterations following a mild traumatic brain injury. Sleep Medicine, 10(7), 713–716. doi: 10.1016/j.sleep.2008.07.015.PubMedCrossRefGoogle Scholar
  64. Chatelin, S., Deck, C., Renard, F., Kremer, S., Heinrich, C., Armspach, J. P., et al. (2011). Computation of axonal elongation in head trauma finite element simulation. Journal of the Mechanical Behavior of Biomedical Materials, 4(8), 1905–1919. doi: 10.1016/j.jmbbm.2011.06.007.PubMedCrossRefGoogle Scholar
  65. Chen, A. J., & D’Esposito, M. (2010). Traumatic brain injury: from bench to bedside [corrected] to society. Neuron, 66(1), 11–14. doi: 10.1016/j.neuron.2010.04.004.PubMedCrossRefGoogle Scholar
  66. Chen, C. J., Wu, C. H., Liao, Y. P., Hsu, H. L., Tseng, Y. C., Liu, H. L., et al. (2012a). Working memory in patients with mild traumatic brain injury: functional MR imaging analysis. Radiology, 264(3), 844–851. doi: 10.1148/radiol.12112154.PubMedCrossRefGoogle Scholar
  67. Chen, J. K., Johnston, K. M., Collie, A., McCrory, P., & Ptito, A. (2007). A validation of the post concussion symptom scale in the assessment of complex concussion using cognitive testing and functional MRI. Journal of Neurology, Neurosurgery, and Psychiatry, 78(11), 1231–1238. doi: 10.1136/jnnp.2006.110395.PubMedCrossRefGoogle Scholar
  68. Chen, Z., Leung, L. Y., Mountney, A., Liao, Z., Yang, W., Lu, X. C., et al. (2012b). A novel animal model of closed-head concussive-induced mild traumatic brain injury: development, implementation, and characterization. Journal of Neurotrauma, 29(2), 268–280. doi: 10.1089/neu.2011.2057.PubMedCrossRefGoogle Scholar
  69. Choe, M. C., Babikian, T., DiFiori, J., Hovda, D. A., & Giza, C. C. (2012). A pediatric perspective on concussion pathophysiology. Current Opinion in Pediatrics, 24(6), 689–695. doi: 10.1097/MOP.0b013e32835a1a44.PubMedCrossRefGoogle Scholar
  70. Chu, Z., Wilde, E. A., Hunter, J. V., McCauley, S. R., Bigler, E. D., Troyanskaya, M., et al. (2010). Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescents. AJNR. American Journal of Neuroradiology, 31(2), 340–346. doi: 10.3174/ajnr.A1806.PubMedCrossRefGoogle Scholar
  71. Ciaramelli, E., Serino, A., Di Santantonio, A., & Ladavas, E. (2006). Central executive system impairment in traumatic brain injury. Brain and Cognition, 60(2), 198–199.PubMedGoogle Scholar
  72. Cipolotti, L., & Warrington, E. K. (1995). Neuropsychological assessment. Journal of Neurology, Neurosurgery, and Psychiatry, 58(6), 655–664.PubMedCrossRefGoogle Scholar
  73. Cohen, A. S., Pfister, B. J., Schwarzbach, E., Grady, M. S., Goforth, P. B., & Satin, L. S. (2007). Injury-induced alterations in CNS electrophysiology. Progress in Brain Research, 161, 143–169. doi: 10.1016/S0079-6123(06)61010-8.PubMedCrossRefGoogle Scholar
  74. Colgan, N. C., Cronin, M. M., Gobbo, O. L., O’Mara, S. M., O’Connor, W. T., & Gilchrist, M. D. (2010). Quantitative MRI analysis of brain volume changes due to controlled cortical impact. Journal of Neurotrauma, 27(7), 1265–1274. doi: 10.1089/neu.2009.1267.PubMedCrossRefGoogle Scholar
  75. Cubon, V. A., Putukian, M., Boyer, C., & Dettwiler, A. (2011). A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion. Journal of Neurotrauma, 28(2), 189–201. doi: 10.1089/neu.2010.1430.PubMedCrossRefGoogle Scholar
  76. de Guise, E., Lepage, J. F., Tinawi, S., LeBlanc, J., Dagher, J., Lamoureux, J., et al. (2010). Comprehensive clinical picture of patients with complicated vs uncomplicated mild traumatic brain injury. The Clinical Neuropsychologist, 24(7), 1113–1130. doi: 10.1080/13854046.2010.506199.PubMedCrossRefGoogle Scholar
  77. Dean, P. J., & Sterr, A. (2013). Long-term effects of mild traumatic brain injury on cognitive performance. Frontiers in Human Neuroscience, 7, 30. doi: 10.3389/fnhum.2013.00030.PubMedCrossRefGoogle Scholar
  78. Deepika, A., Munivenkatappa, A., Devi, B. I., & Shukla, D. (2012). Does isolated traumatic subarachnoid hemorrhage affect outcome in patients with mild traumatic brain injury? The Journal of Head Trauma Rehabilitation. doi: 10.1097/HTR.0b013e31825e19e5. Epub ahead of print.PubMedGoogle Scholar
  79. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (2000). California verbal learning test (2nd ed.). San Antonio: Psychological Corporation.Google Scholar
  80. Denburg, S. D., Stewart, K. E., Hart, L. E., & Denburg, J. A. (2003). How “soft” are soft neurological signs? The relationship of subjective neuropsychiatric complaints to cognitive function in systemic lupus erythematosus. The Journal of Rheumatology, 30(5), 1006–1010.PubMedGoogle Scholar
  81. Dewitt, D., Perez-Polo, J. R. P. D., Hulsebosch, C., Dash, P. K., & Robertson, C. S. (2013). Challenges in the development of rodent models of mild traumatic brain injury. Journal of Neurotrauma. doi: 10.1089/neu.2012.2349.Google Scholar
  82. Di Battista, A. P., Rhind, S. G., & Baker, A. J. (2013). Application of blood-based biomarkers in human mild traumatic brain injury. Frontiers in Neurology, 4, 44. doi: 10.3389/fneur.2013.00044.PubMedCrossRefGoogle Scholar
  83. Dineen, R. A., Vilisaar, J., Hlinka, J., Bradshaw, C. M., Morgan, P. S., Constantinescu, C. S., et al. (2009). Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain Injury, 132(Pt 1), 239–249. doi: 10.1093/brain/awn275.Google Scholar
  84. Duffin, J. T., Collins, D. R., Coughlan, T., O’Neill, D., Roche, R. A., & Commins, S. (2012). Subtle memory and attentional deficits revealed in an Irish stroke patient sample using domain-specific cognitive tasks. Journal of Clinical and Experimental Neuropsychology, 34(8), 864–875. doi: 10.1080/13803395.2012.690368.PubMedCrossRefGoogle Scholar
  85. Duhaime, A. C., Holshouser, B., Hunter, J. V., & Tong, K. (2012). Common data elements for neuroimaging of traumatic brain injury: pediatric considerations. Journal of Neurotrauma, 29(4), 629–633. doi: 10.1089/neu.2011.1927.PubMedCrossRefGoogle Scholar
  86. Editorial. (2010). A decade for psychiatric disorders. Nature, 463(7277), 9. doi: 10.1038/463009a.CrossRefGoogle Scholar
  87. Eisenberg, M. A., Andrea, J., Meehan, W., & Mannix, R. (2013). Time interval between concussions and symptom duration. Pediatrics. doi: 10.1542/peds.2013-0432.PubMedGoogle Scholar
  88. Evans, R. W. (2010). Persistent post-traumatic headache, postconcussion syndrome, and whiplash injuries: the evidence for a non-traumatic basis with an historical review. Headache, 50(4), 716–724. doi: 10.1111/j.1526-4610.2010.01645.x.PubMedCrossRefGoogle Scholar
  89. Farbota, K. D., Bendlin, B. B., Alexander, A. L., Rowley, H. A., Dempsey, R. J., & Johnson, S. C. (2012a). Longitudinal diffusion tensor imaging and neuropsychological correlates in traumatic brain injury patients. Frontiers in Human Neuroscience, 6, 160. doi: 10.3389/fnhum.2012.00160.PubMedCrossRefGoogle Scholar
  90. Farbota, K. D., Sodhi, A., Bendlin, B. B., McLaren, D. G., Xu, G., Rowley, H. A., et al. (2012b). Longitudinal volumetric changes following traumatic brain injury: a tensor-based morphometry study. Journal of the International Neuropsychological Society: JINS, 18(6), 1006–1018. doi: 10.1017/S1355617712000835.PubMedCrossRefGoogle Scholar
  91. Fox, W. C., Park, M. S., Belverud, S., Klugh, A., Rivet, D., & Tomlin, J. M. (2013). Contemporary imaging of mild TBI: the journey toward diffusion tensor imaging to assess neuronal damage. Neurological Research, 35(3), 223–232. doi: 10.1179/1743132813Y.0000000162.PubMedCrossRefGoogle Scholar
  92. Fujita, M., Wei, E. P., & Povlishock, J. T. (2012). Intensity- and interval-specific repetitive traumatic brain injury can evoke both axonal and microvascular damage. Journal of Neurotrauma, 29(12), 2172–2180. doi: 10.1089/neu.2012.2357.PubMedCrossRefGoogle Scholar
  93. Gardner, A., Kay-Lambkin, F., Stanwell, P., Donnelly, J., Williams, W. H., Hiles, A., et al. (2012). A systematic review of diffusion tensor imaging findings in sports-related concussion. Journal of Neurotrauma, 29(16), 2521–2538. doi: 10.1089/neu.2012.2628.PubMedCrossRefGoogle Scholar
  94. Geary, E. K., Kraus, M. F., Pliskin, N. H., & Little, D. M. (2010). Verbal learning differences in chronic mild traumatic brain injury. Journal of the International Neuropsychological Society: JINS, 16(3), 506–516. doi: 10.1017/S135561771000010X.PubMedCrossRefGoogle Scholar
  95. Geary, E. K., Kraus, M. F., Rubin, L. H., Pliskin, N. H., & Little, D. M. (2011). Verbal learning strategy following mild traumatic brain injury. Journal of the International Neuropsychological Society: JINS, 17(4), 709–719. doi: 10.1017/S1355617711000646.PubMedCrossRefGoogle Scholar
  96. Ghosh, A., Wilde, E. A., Hunter, J. V., Bigler, E. D., Chu, Z., Li, X., et al. (2009). The relation between Glasgow Coma Scale score and later cerebral atrophy in paediatric traumatic brain injury. Brain Injury, 23(3), 228–233. doi: 10.1080/02699050802672789.PubMedCrossRefGoogle Scholar
  97. Gladstone, J. (2009). From psychoneurosis to ICHD-2: an overview of the state of the art in post-traumatic headache. Headache, 49(7), 1097–1111. doi: 10.1111/j.1526-4610.2009.01461.x.PubMedCrossRefGoogle Scholar
  98. Gonzalez, P. G., & Walker, M. T. (2011). Imaging modalities in mild traumatic brain injury and sports concussion. Physical Medicine & Rehabilitation, 3(10 Suppl 2), S413–S424. doi: 10.1016/j.pmrj.2011.08.536.Google Scholar
  99. Gosselin, N., Bottari, C., Chen, J. K., Petrides, M., Tinawi, S., de Guise, E., et al. (2011). Electrophysiology and functional MRI in post-acute mild traumatic brain injury. Journal of Neurotrauma, 28(3), 329–341. doi: 10.1089/neu.2010.1493.PubMedCrossRefGoogle Scholar
  100. Graham, D. I., & Lantos, P. L. (2002). Greenfield’s neuropathology. London: Hodder Arnold.Google Scholar
  101. Grau-Olivares, M., & Arboix, A. (2009). Mild cognitive impairment in stroke patients with ischemic cerebral small-vessel disease: a forerunner of vascular dementia? Expert Review of Neurotherapeutics, 9(8), 1201–1217. doi: 10.1586/ern.09.73.PubMedCrossRefGoogle Scholar
  102. Greer, J. E., Povlishock, J. T., & Jacobs, K. M. (2012). Electrophysiological abnormalities in both axotomized and nonaxotomized pyramidal neurons following mild traumatic brain injury. The Journal of Neuroscience, 32(19), 6682–6687. doi: 10.1523/JNEUROSCI.0881-12.2012.PubMedCrossRefGoogle Scholar
  103. Grindel, S. H. (2006). The use, abuse, and future of neuropsychologic testing in mild traumatic brain injury. Current sports medicine reports, 5(1), 9–14.PubMedCrossRefGoogle Scholar
  104. Gronseth, G. S. (2005). Gulf war syndrome: a toxic exposure? A systematic review. Neurologic Clinics, 23(2), 523–540. doi: 10.1016/j.ncl.2004.12.011.PubMedCrossRefGoogle Scholar
  105. Gronwall, D., & Wrightson, P. (1974a). Delayed recovery of intellectual function after minor head injury. Lancet, 2(7881), 605–609.PubMedCrossRefGoogle Scholar
  106. Gronwall, D., & Wrightson, P. (1974b). Letter: recovery after minor head injury. Lancet, 2(7894), 1452.PubMedCrossRefGoogle Scholar
  107. Gronwall, D., & Wrightson, P. (1975). Cumulative effect of concussion. Lancet, 2(7943), 995–997.PubMedCrossRefGoogle Scholar
  108. Gronwall, D., Wrightson, P., & Waddell, P. (1990). Head injury: The facts. New York: Oxford University Press.Google Scholar
  109. Grossman, E. J., Ge, Y., Jensen, J. H., Babb, J. S., Miles, L., Reaume, J., et al. (2012a). Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study. Journal of Neurotrauma, 29(13), 2318–2327. doi: 10.1089/neu.2011.1763.PubMedCrossRefGoogle Scholar
  110. Grossman, E. J., Jensen, J. H., Babb, J. S., Chen, Q., Tabesh, A., Fieremans, E., et al. (2012b). Cognitive impairment in mild traumatic brain injury: a longitudinal diffusional kurtosis and perfusion imaging study. AJNR. American Journal of Neuroradiology. doi: 10.3174/ajnr.A3358.PubMedGoogle Scholar
  111. Handratta, V., Hsu, E., Vento, J., Yang, C., & Tanev, K. (2010). Neuroimaging findings and brain-behavioral correlates in a former boxer with chronic traumatic brain injury. Neurocase, 16(2), 125–134. doi: 10.1080/13554790903329166.PubMedCrossRefGoogle Scholar
  112. Hanten, G., Li, X., Ibarra, A., Wilde, E. A., Barnes, A. F., McCauley, S. R., et al. (2012). Updating memory after mild TBI and orthopedic injuries. Journal of Neurotrauma. doi: 10.1089/neu.2012.2392.Google Scholar
  113. Hart, J., Kraut, M. A., Womack, K. B., Strain, J., Didehbani, N., Bartz, E., et al. (2013). Neuroimaging of cognitive dysfunction and depression in aging retired national football league players: a cross-sectional study. JAMA Neurology, 70(3), 326–335. doi: 10.1001/2013.jamaneurol.340.PubMedCrossRefGoogle Scholar
  114. Hartikainen, K. M., Waljas, M., Isoviita, T., Dastidar, P., Liimatainen, S., Solbakk, A. K., et al. (2010). Persistent symptoms in mild to moderate traumatic brain injury associated with executive dysfunction. Journal of Clinical and Experimental Neuropsychology, 32(7), 767–774. doi: 10.1080/13803390903521000.PubMedCrossRefGoogle Scholar
  115. Heitger, M. H., Jones, R. D., Macleod, A. D., Snell, D. L., Frampton, C. M., & Anderson, T. J. (2009). Impaired eye movements in post-concussion syndrome indicate suboptimal brain function beyond the influence of depression, malingering or intellectual ability. Brain, 132(Pt 10), 2850–2870. doi: 10.1093/brain/awp181.PubMedCrossRefGoogle Scholar
  116. Hellyer, P. J., Leech, R., Ham, T. E., Bonnelle, V., & Sharp, D. J. (2012). Individual prediction of white matter injury following traumatic brain injury. Annals of Neurology. doi: 10.1002/ana.23824. Epub ahead of print.
  117. Henry, L. C., Tremblay, J., Tremblay, S., Lee, A., Brun, C., Lepore, N., et al. (2011). Acute and chronic changes in diffusivity measures after sports concussion. Journal of Neurotrauma, 28(10), 2049–2059. doi: 10.1089/neu.2011.1836.PubMedCrossRefGoogle Scholar
  118. Ho, T., Brown, S., van Maanen, L., Forstmann, B. U., Wagenmakers, E. J., & Serences, J. T. (2012). The optimality of sensory processing during the speed-accuracy tradeoff. The Journal of Neuroscience, 32(23), 7992–8003. doi: 10.1523/JNEUROSCI.0340-12.2012.PubMedCrossRefGoogle Scholar
  119. Hopkins, R. O., Beck, C. J., Burnett, D. L., Weaver, L. K., Victoroff, J., & Bigler, E. D. (2006). Prevalence of white matter hyperintensities in a young healthy population. Journal of Neuroimaging, 16(3), 243–251. doi: 10.1111/j.1552-6569.2006.00047.x.PubMedCrossRefGoogle Scholar
  120. Hulkower, M. B., Poliak, D. B., Rosenbaum, S. B., Zimmerman, M. E., & Lipton, M. L. (2013). A decade of DTI in traumatic brain injury: 10 Years and 100 articles later. AJNR. American Journal of Neuroradiology. doi: 10.3174/ajnr.A3395. Epub ahead of print.PubMedGoogle Scholar
  121. Hunter, J. V., Wilde, E. A., Tong, K. A., & Holshouser, B. A. (2012). Emerging imaging tools for use with traumatic brain injury research. Journal of Neurotrauma, 29(4), 654–671. doi: 10.1089/neu.2011.1906.PubMedCrossRefGoogle Scholar
  122. Huston, J. M., & Field, A. S. (2013). Clinical applications of diffusion tensor imaging. Magnetic Resonance Imaging Clinics of North America, 21(2), 279–298. doi: 10.1016/j.mric.2012.12.003.PubMedCrossRefGoogle Scholar
  123. Hylin, M. J., Orsi, S. A., Zhao, J., Bockhorst, K., Perez, A., Moore, A. N., et al. (2013). Behavioral and histopathological alterations resulting from mild fluid percussion injury. Journal of Neurotrauma, 30(9), 702–715. doi: 10.1089/neu.2012.2630.PubMedCrossRefGoogle Scholar
  124. Iverson, G. L. (2005). Outcome from mild traumatic brain injury. Current Opinion in Psychiatry, 18(3), 301–317. doi: 10.1097/ Scholar
  125. Iverson, G. L., Hakulinen, U., Waljas, M., Dastidar, P., Lange, R. T., Soimakallio, S., et al. (2011). To exclude or not to exclude: white matter hyperintensities in diffusion tensor imaging research. Brain Injury, 25(13–14), 1325–1332. doi: 10.3109/02699052.2011.608409.PubMedCrossRefGoogle Scholar
  126. Iverson, G. L., Lange, R. T., Brooks, B. L., & Rennison, V. L. (2010). “Good old days” bias following mild traumatic brain injury. The Clinical Neuropsychologist, 24(1), 17–37. doi: 10.1080/13854040903190797.PubMedCrossRefGoogle Scholar
  127. Iverson, G. L., Lovell, M. R., & Collins, M. W. (2003). Interpreting change on ImPACT following sport concussion. The Clinical Neuropsychologist, 17(4), 460–467. doi: 10.1076/clin.17.4.460.27934.PubMedCrossRefGoogle Scholar
  128. Iverson, G. L., Lovell, M. R., Smith, S., & Franzen, M. D. (2000). Prevalence of abnormal CT-scans following mild head injury. Brain Injury, 14(12), 1057–1061.PubMedCrossRefGoogle Scholar
  129. Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences of the United States of America, 105(9), 3593–3598. doi: 10.1073/pnas.0712231105.PubMedCrossRefGoogle Scholar
  130. Jacobson, R. R. (1995). The post-concussional syndrome: physiogenesis, psychogenesis and malingering. An integrative model. Journal of Psychosomatic Research, 39(6), 675–693.PubMedCrossRefGoogle Scholar
  131. Jakola, A. S., Muller, K., Larsen, M., Waterloo, K., Romner, B., & Ingebrigtsen, T. (2007). Five-year outcome after mild head injury: a prospective controlled study. Acta Neurologica Scandinavica, 115(6), 398–402. doi: 10.1111/j.1600-0404.2007.00827.x.PubMedCrossRefGoogle Scholar
  132. Jellinger, K. A. (2013). Neuropathology of prolonged unresponsive wakefulness syndrome after blunt head injury: review of 100 post-mortem cases. Brain Injury, 27(7–8), 917–923. doi: 10.3109/02699052.2013.793395.PubMedCrossRefGoogle Scholar
  133. Jessen, F., Wiese, B., Bachmann, C., Eifflaender-Gorfer, S., Haller, F., Kolsch, H., et al. (2010). Prediction of dementia by subjective memory impairment: effects of severity and temporal association with cognitive impairment. Archives of General Psychiatry, 67(4), 414–422. doi: 10.1001/archgenpsychiatry.2010.30.PubMedCrossRefGoogle Scholar
  134. Jeter, C. B., Hergenroeder, G. W., Hylin, M. J., Redell, J. B., Moore, A. N., & Dash, P. K. (2013). Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. Journal of neurotrauma, 30(8), 657–670. doi: 10.1089/neu.2012.2439.PubMedCrossRefGoogle Scholar
  135. Johnson, B., Zhang, K., Gay, M., Horovitz, S., Hallett, M., Sebastianelli, W., et al. (2012a). Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. NeuroImage, 59(1), 511–518. doi: 10.1016/j.neuroimage.2011.07.081.PubMedCrossRefGoogle Scholar
  136. Johnson, V. E., Stewart, W., & Smith, D. H. (2012b). Axonal pathology in traumatic brain injury. Experimental Neurology, 246, 35–43. doi: 10.1016/j.expneurol.2012.01.013.PubMedCrossRefGoogle Scholar
  137. Jorge, R. E., Acion, L., White, T., Tordesillas-Gutierrez, D., Pierson, R., Crespo-Facorro, B., et al. (2012). White matter abnormalities in veterans with mild traumatic brain injury. The American Journal of Psychiatry, 169(12), 1284–1291. doi: 10.1176/appi.ajp.2012.12050600.PubMedCrossRefGoogle Scholar
  138. Junger, E. C., Newell, D. W., Grant, G. A., Avellino, A. M., Ghatan, S., Douville, C. M., et al. (1997). Cerebral autoregulation following minor head injury. Journal of Neurosurgery, 86(3), 425–432. doi: 10.3171/jns.1997.86.3.0425.PubMedCrossRefGoogle Scholar
  139. Kan, E. M., Ling, E. A., & Lu, J. (2012). Microenvironment changes in mild traumatic brain injury. Brain Research Bulletin, 87(4–5), 359–372. doi: 10.1016/j.brainresbull.2012.01.007.PubMedCrossRefGoogle Scholar
  140. Kasahara, K., Hashimoto, K., Abo, M., & Senoo, A. (2012). Voxel- and atlas-based analysis of diffusion tensor imaging may reveal focal axonal injuries in mild traumatic brain injury—comparison with diffuse axonal injury. Magnetic Resonance Imaging, 30(4), 496–505. doi: 10.1016/j.mri.2011.12.018.PubMedCrossRefGoogle Scholar
  141. Kashluba, S., Hanks, R. A., Casey, J. E., & Millis, S. R. (2008). Neuropsychologic and functional outcome after complicated mild traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(5), 904–911. doi: 10.1016/j.apmr.2007.12.029.PubMedCrossRefGoogle Scholar
  142. Katzman, G. L., Dagher, A. P., & Patronas, N. J. (1999). Incidental findings on brain magnetic resonance imaging from 1000 asymptomatic volunteers. JAMA: Journal of the American Medical Association, 282(1), 36–39.PubMedCrossRefGoogle Scholar
  143. Kempton, M. J., Salvador, Z., Munafo, M. R., Geddes, J. R., Simmons, A., Frangou, S., et al. (2011). Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry, 68(7), 675–690. doi: 10.1001/archgenpsychiatry.2011.60.PubMedCrossRefGoogle Scholar
  144. Kennedy, J. E., Jaffee, M. S., Leskin, G. A., Stokes, J. W., Leal, F. O., & Fitzpatrick, P. J. (2007). Posttraumatic stress disorder and posttraumatic stress disorder-like symptoms and mild traumatic brain injury. Journal of Rehabilitation Research and Development, 44(7), 895–920.PubMedCrossRefGoogle Scholar
  145. Kim, N., Branch, C. A., Kim, M., & Lipton, M. L. (2013). Whole brain approaches for identification of microstructural abnormalities in individual patients: comparison of techniques applied to mild traumatic brain injury. PloS One, 8(3), e59382. doi: 10.1371/journal.pone.0059382.PubMedCrossRefGoogle Scholar
  146. Kirov, I. I., Tal, A., Babb, J. S., Reaume, J., Bushnik, T., Ashman, T., et al. (2013). Proton MR spectroscopy correlates diffuse axonal abnormalities with post-concussive symptoms in mild traumatic brain injury. Journal of Neurotrauma. doi: 10.1089/neu.2012.2696.PubMedGoogle Scholar
  147. Koerte, I. K., Ertl-Wagner, B., Reiser, M., Zafonte, R., & Shenton, M. E. (2012a). White matter integrity in the brains of professional soccer players without a symptomatic concussion. JAMA: Journal of the American Medical Association, 308(18), 1859–1861. doi: 10.1001/jama.2012.13735.PubMedCrossRefGoogle Scholar
  148. Koerte, I. K., Kaufmann, D., Hartl, E., Bouix, S., Pasternak, O., Kubicki, M., et al. (2012b). A prospective study of physician-observed concussion during a varsity university hockey season: white matter integrity in ice hockey players. Part 3 of 4. Neurosurgical Focus, 33(6), 1–7. doi: 10.3171/2012.10.FOCUS12303. E3.PubMedCrossRefGoogle Scholar
  149. Konrad, C., Geburek, A. J., Rist, F., Blumenroth, H., Fischer, B., Husstedt, I., et al. (2011). Long-term cognitive and emotional consequences of mild traumatic brain injury. Psychological Medicine, 44, 1197–1211. doi: 10.1017/S0033291710001728.CrossRefGoogle Scholar
  150. Kou, Z., Wu, Z., Tong, K. A., Holshouser, B., Benson, R. R., Hu, J., et al. (2010). The role of advanced MR imaging findings as biomarkers of traumatic brain injury. The Journal of Head Trauma Rehabilitation, 25(4), 267–282. doi: 10.1097/HTR.0b013e3181e54793.PubMedCrossRefGoogle Scholar
  151. Kubal, W. S. (2012). Updated imaging of traumatic brain injury. Radiologic clinics of North America, 50(1), 15–41. doi: 10.1016/j.rcl.2011.08.010.PubMedCrossRefGoogle Scholar
  152. Kumar, S., Rao, S. L., Chandramouli, B. A., & Pillai, S. (2013). Reduced contribution of executive functions in impaired working memory performance in mild traumatic brain injury patients. Clinical Neurology and Neurosurgery. doi: 10.1016/j.clineuro.2012.12.038. Epub ahead of print.Google Scholar
  153. Kurtzke, J. F. (1961). On the evaluation of disability in multiple sclerosis. Neurology, 11, 686–694.PubMedCrossRefGoogle Scholar
  154. Lafrance, W. C., Jr., Deluca, M., Machan, J. T., & Fava, J. L. (2013). Traumatic brain injury and psychogenic nonepileptic seizures yield worse outcomes. Epilepsia, 54(4), 718–725. doi: 10.1111/epi.12053.PubMedCrossRefGoogle Scholar
  155. Lange, R. T., Brickell, T. A., French, L. M., Merritt, V. C., Bhagwat, A., Pancholi, S., et al. (2012). Neuropsychological outcome from uncomplicated mild, complicated mild, and moderate traumatic brain injury in US military personnel. Archives of Clinical Neuropsychology, 27(5), 480–494. doi: 10.1093/arclin/acs059.PubMedCrossRefGoogle Scholar
  156. Larrabee, G. J., Binder, L. M., Rohling, M. L., & Ploetz, D. M. (2013). Meta-analytic methods and the importance of non-TBI factors related to outcome in mild traumatic brain injury: response to Bigler et al. (2013). The Clinical Neuropsychologist, 27(2), 215–237. doi: 10.1080/13854046.2013.769634.PubMedCrossRefGoogle Scholar
  157. Laughlin, H. P. (1956). The neuroses in clinical practice. Philadelphia: W.B. Saunders Co.Google Scholar
  158. Lee, Y. K., Hou, S. W., Lee, C. C., Hsu, C. Y., Huang, Y. S., & Su, Y. C. (2013). Increased risk of dementia in patients with mild traumatic brain injury: a nationwide cohort study. PLoS One, 8(5), e62422. doi: 10.1371/journal.pone.0062422.PubMedCrossRefGoogle Scholar
  159. Lehman, E. J., Hein, M. J., Baron, S. L., & Gersic, C. M. (2012). Neurodegenerative causes of death among retired National Football League players. Neurology, 79(19), 1970–1974. doi: 10.1212/WNL.0b013e31826daf50.PubMedCrossRefGoogle Scholar
  160. Leker, R. R., Shohami, E., & Constantini, S. (2002). Experimental models of head trauma. Acta Neurochirurgica, 83(Suppl), 49–54.PubMedGoogle Scholar
  161. Levin, H., Li, X., McCauley, S. R., Hanten, G., Wilde, E. A., & Swank, P. R. (2012). Neuropsychological outcome of mTBI: a principal component analysis approach. Journal of Neurotrauma. doi: 10.1089/neu.2012.2627.Google Scholar
  162. Levin, H. S., Amparo, E., Eisenberg, H. M., Williams, D. H., High, W. M., Jr., McArdle, C. B., et al. (1987). Magnetic resonance imaging and computerized tomography in relation to the neurobehavioral sequelae of mild and moderate head injuries. Journal of Neurosurgery, 66(5), 706–713. doi: 10.3171/jns.1987.66.5.0706.PubMedCrossRefGoogle Scholar
  163. Levine, B., Kovacevic, N., Nica, E. I., Cheung, G., Gao, F., Schwartz, M. L., et al. (2008). The Toronto traumatic brain injury study: injury severity and quantified MRI. Neurology, 70(10), 771–778. doi: 10.1212/01.wnl.0000304108.32283.aa.PubMedCrossRefGoogle Scholar
  164. Lewine, J. D., Davis, J. T., Bigler, E. D., Thoma, R., Hill, D., Funke, M., et al. (2007). Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI. The Journal of Head Trauma Rehabilitation, 22(3), 141–155. doi: 10.1097/01.HTR.0000271115.29954.27.PubMedCrossRefGoogle Scholar
  165. Lezak, M. D., Howieson, D., Bigler, E. D., & Tranel, D. (2012). Neuropsychological assessment. New York: Oxford University Press.Google Scholar
  166. Lifshitz, J., & Lisembee, A. M. (2012). Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury. Brain Structure & Function, 217(1), 49–61. doi: 10.1007/s00429-011-0323-z.CrossRefGoogle Scholar
  167. Ling, J. M., Pena, A., Yeo, R. A., Merideth, F. L., Klimaj, S., Gasparovic, C., et al. (2012). Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: a longitudinal perspective. Brain, 135(Pt 4), 1281–1292. doi: 10.1093/brain/aws073.PubMedCrossRefGoogle Scholar
  168. Lipton, M. L., Kim, N., Park, Y. K., Hulkower, M. B., Gardin, T. M., Shifteh, K., et al. (2012). Robust detection of traumatic axonal injury in individual mild traumatic brain injury patients: intersubject variation, change over time and bidirectional changes in anisotropy. Brain Imaging and Behavior, 6(2), 329–342. doi: 10.1007/s11682-012-9175-2.PubMedCrossRefGoogle Scholar
  169. Lipton, M. L., Kim, N., Zimmerman, M. E., Kim, M., Stewart, W. F., Branch, C. A., et al. (2013). Soccer heading is associated with white matter microstructural and cognitive abnormalities. Radiology. doi: 10.1148/radiol.13130545. Epub ahead of print.PubMedGoogle Scholar
  170. Little, D. M., Kraus, M. F., Joseph, J., Geary, E. K., Susmaras, T., Zhou, X. J., et al. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology, 74(7), 558–564. doi: 10.1212/WNL.0b013e3181cff5d5.PubMedCrossRefGoogle Scholar
  171. Liu, M., Gross, D. W., Wheatley, B. M., Concha, L., & Beaulieu, C. (2013). The acute phase of Wallerian degeneration: longitudinal diffusion tensor imaging of the fornix following temporal lobe surgery. NeuroImage, 74, 128–139. doi: 10.1016/j.neuroimage.2013.01.069.PubMedCrossRefGoogle Scholar
  172. Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878. doi: 10.1038/nature06976.PubMedCrossRefGoogle Scholar
  173. Loov, C., Shevchenko, G., Geeyarpuram Nadadhur, A., Clausen, F., Hillered, L., Wetterhall, M., et al. (2013). Identification of injury specific proteins in a cell culture model of traumatic brain injury. PloS One, 8(2), e55983. doi: 10.1371/journal.pone.0055983.PubMedCrossRefGoogle Scholar
  174. Luoto, T. M., Tenovuo, O., Kataja, A., Brander, A., Ohman, J., & Iverson, G. L. (2012). Who gets recruited in mild traumatic brain injury research? Journal of Neurotrauma, 30(1), 11–16. doi: 10.1089/neu.2012.2611.PubMedCrossRefGoogle Scholar
  175. Mac Donald, C. L., Johnson, A., Cooper, D., Malone, T., Sorrell, J., Shimony, J., et al. (2013). Cerebellar white matter abnormalities following primary blast injury in US military personnel. PloS one, 8(2), e55823. doi: 10.1371/journal.pone.0055823.PubMedCrossRefGoogle Scholar
  176. Mac Donald, C. L., Johnson, A. M., Cooper, D., Nelson, E. C., Werner, N. J., Shimony, J. S., et al. (2011). Detection of blast-related traumatic brain injury in U.S. military personnel. The New England Journal of Medicine, 364(22), 2091–2100. doi: 10.1056/NEJMoa1008069.PubMedCrossRefGoogle Scholar
  177. MacKenzie, J. D., Siddiqi, F., Babb, J. S., Bagley, L. J., Mannon, L. J., Sinson, G. P., et al. (2002). Brain atrophy in mild or moderate traumatic brain injury: a longitudinal quantitative analysis. AJNR. American Journal of Neuroradiology, 23(9), 1509–1515.PubMedGoogle Scholar
  178. Macleod, A. D. (2010). Post concussion syndrome: the attraction of the psychological by the organic. Medical Hypotheses, 74(6), 1033–1035. doi: 10.1016/j.mehy.2010.01.002.CrossRefGoogle Scholar
  179. Malec, J. (1978). Neuropsychological assessment of schizophrenia versus brain damage: a review. The Journal of Nervous and Mental Disease, 166(7), 507–516.PubMedCrossRefGoogle Scholar
  180. Mao, H., Jin, X., Zhang, L., Yang, K. H., Igarashi, T., Noble-Haeusslein, L. J., et al. (2010). Finite element analysis of controlled cortical impact-induced cell loss. Journal of Neurotrauma, 27(5), 877–888. doi: 10.1089/neu.2008.0616.PubMedCrossRefGoogle Scholar
  181. Marquez de la Plata, C., Ardelean, A., Koovakkattu, D., Srinivasan, P., Miller, A., Phuong, V., et al. (2007). Magnetic resonance imaging of diffuse axonal injury: quantitative assessment of white matter lesion volume. Journal of Neurotrauma, 24(4), 591–598. doi: 10.1089/neu.2006.0214.PubMedCrossRefGoogle Scholar
  182. Marrie, R. A., Fisher, E., Miller, D. M., Lee, J. C., & Rudick, R. A. (2005). Association of fatigue and brain atrophy in multiple sclerosis. Journal of the Neurological Sciences, 228(2), 161–166. doi: 10.1016/j.jns.2004.11.046.PubMedCrossRefGoogle Scholar
  183. Masel, B. E., & DeWitt, D. S. (2010). Traumatic brain injury: a disease process, not an event. Journal of Neurotrauma, 27(8), 1529–1540. doi: 10.1089/neu.2010.1358.PubMedCrossRefGoogle Scholar
  184. Matthews, S. C., Spadoni, A. D., Lohr, J. B., Strigo, I. A., & Simmons, A. N. (2012). Diffusion tensor imaging evidence of white matter disruption associated with loss versus alteration of consciousness in warfighters exposed to combat in Operations Enduring and Iraqi Freedom. Psychiatry Research, 204(2–3), 149–154. doi: 10.1016/j.pscychresns.2012.04.018.PubMedCrossRefGoogle Scholar
  185. Matthews, S. C., Strigo, I. A., Simmons, A. N., O’Connell, R. M., Reinhardt, L. E., & Moseley, S. A. (2011). A multimodal imaging study in U.S. veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. NeuroImage, 54(Suppl 1), S69–S75. doi: 10.1016/j.neuroimage.2010.04.269.PubMedCrossRefGoogle Scholar
  186. Maugans, T. A., Farley, C., Altaye, M., Leach, J., & Cecil, K. M. (2012). Pediatric sports-related concussion produces cerebral blood flow alterations. Pediatrics, 129(1), 28–37. doi: 10.1542/peds.2011-2083.PubMedCrossRefGoogle Scholar
  187. Maxwell, W. L. (2013). Damage to myelin and oligodendrocytes: A role in chronic outcomes following traumatic brain injury. Brain Sciences, 3, doi: 10.3390/brainsci30x000x.
  188. Maxwell, W. L., MacKinnon, M. A., Stewart, J. E., & Graham, D. I. (2010). Stereology of cerebral cortex after traumatic brain injury matched to the Glasgow outcome score. Brain, 133(Pt 1), 139–160. doi: 10.1093/brain/awp264.PubMedCrossRefGoogle Scholar
  189. Mayer, A. R., Ling, J. M., Yang, Z., Pena, A., Yeo, R. A., & Klimaj, S. (2012a). Diffusion abnormalities in pediatric mild traumatic brain injury. The Journal of Neuroscience, 32(50), 17961–17969. doi: 10.1523/JNEUROSCI.3379-12.2012.PubMedCrossRefGoogle Scholar
  190. Mayer, A. R., Mannell, M. V., Ling, J., Elgie, R., Gasparovic, C., Phillips, J. P., et al. (2009). Auditory orienting and inhibition of return in mild traumatic brain injury: a fMRI study. Human Brain Mapping, 30(12), 4152–4166. doi: 10.1002/hbm.20836.PubMedCrossRefGoogle Scholar
  191. Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32(11), 1825–1835. doi: 10.1002/hbm.21151.PubMedCrossRefGoogle Scholar
  192. Mayer, A. R., Yang, Z., Yeo, R. A., Pena, A., Ling, J. M., Mannell, M. V., et al. (2012b). A functional MRI study of multimodal selective attention following mild traumatic brain injury. Brain Imaging and Behavior, 6(2), 343–354. doi: 10.1007/s11682-012-9178-z.PubMedCrossRefGoogle Scholar
  193. McAllister, T. W., Ford, J. C., Ji, S., Beckwith, J. G., Flashman, L. A., Paulsen, K., et al. (2012). Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices. Annals of Biomedical Engineering, 40(1), 127–140. doi: 10.1007/s10439-011-0402-6.PubMedCrossRefGoogle Scholar
  194. McCrea, M. A. (2007). Mild traumatic brain injury and postconcussion syndrome: The new evidence base for diagnosis and treatment. New York: Oxford University Press.Google Scholar
  195. McKee, A. C., Gavett, B. E., Stern, R. A., Nowinski, C. J., Cantu, R. C., Kowall, N. W., et al. (2010). TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. Journal of Neuropathology and Experimental Neurology, 69(9), 918–929. doi: 10.1097/NEN.0b013e3181ee7d85.PubMedCrossRefGoogle Scholar
  196. McKee, A. C., Stein, T. D., Nowinski, C. J., Stern, R. A., Daneshvar, D. H., Alvarez, V. E., et al. (2012). The spectrum of disease in chronic traumatic encephalopathy. Brain, 136(pt 1), 43–64. doi: 10.1093/brain/aws307.PubMedGoogle Scholar
  197. McLean, S. A., Kirsch, N. L., Tan-Schriner, C. U., Sen, A., Frederiksen, S., Harris, R. E., et al. (2009). Health status, not head injury, predicts concussion symptoms after minor injury. The American Journal of Emergency Medicine, 27(2), 182–190. doi: 10.1016/j.ajem.2008.01.054.PubMedCrossRefGoogle Scholar
  198. McMillan, T. M., Teasdale, G. M., & Stewart, E. (2012). Disability in young people and adults after head injury: 12–14 year follow-up of a prospective cohort. Journal of Neurology, Neurosurgery, and Psychiatry, 83(11), 1086–1091. doi: 10.1136/jnnp-2012-302746.PubMedCrossRefGoogle Scholar
  199. McNally, K. A., Bangert, B., Dietrich, A., Nuss, K., Rusin, J., Wright, M., et al. (2013). Injury versus noninjury factors as predictors of postconcussive symptoms following mild traumatic brain injury in children. Neuropsychology, 27(1), 1–12. doi: 10.1037/a00313702013-01868-001.PubMedCrossRefGoogle Scholar
  200. Menon, D. K., Schwab, K., Wright, D. W., & Maas, A. I. (2010). Position statement: definition of traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 91(11), 1637–1640. doi: 10.1016/j.apmr.2010.05.017.PubMedCrossRefGoogle Scholar
  201. Messe, A., Caplain, S., Paradot, G., Garrigue, D., Mineo, J. F., Soto Ares, G., et al. (2011). Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Human Brain Mapping, 32(6), 999–1011. doi: 10.1002/hbm.21092.PubMedCrossRefGoogle Scholar
  202. Messe, A., Caplain, S., Pelegrini-Issac, M., Blancho, S., Levy, R., Aghakhani, N., et al. (2013). Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury. PloS one, 8(6), e65470. doi: 10.1371/journal.pone.0065470.PubMedCrossRefGoogle Scholar
  203. Messe, A., Caplain, S., Pelegrini-Issac, M., Blancho, S., Montreuil, M., Levy, R., et al. (2012). Structural integrity and postconcussion syndrome in mild traumatic brain injury patients. Brain Imaging and Behavior, 6(2), 283–292. doi: 10.1007/s11682-012-9159-2.PubMedCrossRefGoogle Scholar
  204. Metting, Z., Cerliani, L., Rodiger, L. A., & van der Naalt, J. (2013). Pathophysiological concepts in mild traumatic brain injury: diffusion tensor imaging related to acute perfusion CT imaging. PloS one, 8(5), e64461. doi: 10.1371/journal.pone.0064461.PubMedCrossRefGoogle Scholar
  205. Metting, Z., Rodiger, L. A., de Jong, B. M., Stewart, R. E., Kremer, B. P., & van der Naalt, J. (2010). Acute cerebral perfusion CT abnormalities associated with posttraumatic amnesia in mild head injury. Journal of Neurotrauma, 27(12), 2183–2189. doi: 10.1089/neu.2010.1395.PubMedCrossRefGoogle Scholar
  206. Metting, Z., Rodiger, L. A., Stewart, R. E., Oudkerk, M., De Keyser, J., & van der Naalt, J. (2009). Perfusion computed tomography in the acute phase of mild head injury: regional dysfunction and prognostic value. Annals of Neurology, 66(6), 809–816. doi: 10.1002/ana.21785.PubMedCrossRefGoogle Scholar
  207. Miller, H. (1961a). Accident neurosis—Lecture I. British Medical Journal, 1(5230), 919–925.PubMedCrossRefGoogle Scholar
  208. Miller, H. (1961b). Accident neurosis—Lecture II. British Medical Journal, 1(5231), 992–998.PubMedCrossRefGoogle Scholar
  209. Miller, H. (1962). Accident neurosis. Proceedings of the Royal Society of Medicine, 55, 509–511.PubMedGoogle Scholar
  210. Miller, H., & Cartlidge, N. (1972). Simulation and malingering after injuries to the brain and spinal cord. Lancet, 1(7750), 580–585.PubMedCrossRefGoogle Scholar
  211. Millis, S. R. (2009). Methodological challenges in assessment of cognition following mild head injury: response to Malojcic et al. 2008. Journal of Neurotrauma, 26(12), 2409–2410. doi: 10.1089/neu.2008.0530.PubMedCrossRefGoogle Scholar
  212. Millis, S. R., Rosenthal, M., Novack, T. A., Sherer, M., Nick, T. G., Kreutzer, J. S., et al. (2001). Long-term neuropsychological outcome after traumatic brain injury. The Journal of Head Trauma Rehabilitation, 16(4), 343–355.PubMedCrossRefGoogle Scholar
  213. Momjian, S., Seghier, M., Seeck, M., & Michel, C. M. (2003). Mapping of the neuronal networks of human cortical brain functions. Advances and Technical Standards in Neurosurgery, 28, 91–142.PubMedCrossRefGoogle Scholar
  214. Moretti, L., Cristofori, I., Weaver, S. M., Chau, A., Portelli, J. N., & Grafman, J. (2012). Cognitive decline in older adults with a history of traumatic brain injury. Lancet Neurology, 11(12), 1103–1112. doi: 10.1016/S1474-4422(12)70226-0.PubMedCrossRefGoogle Scholar
  215. Morey, R. A., Haswell, C. C., Selgrade, E. S., Massoglia, D., Liu, C., Weiner, J., et al. (2012). Effects of chronic mild traumatic brain injury on white matter integrity in Iraq and Afghanistan war veterans. Human Brain Mapping. doi: 10.1002/hbm.22117.PubMedGoogle Scholar
  216. Mori, S., van Zijl, P. C. M., Oishi, K., & Faria, A. V. (2012). MRI atlas of human white matter (2nd ed.). New York: Elsevier.Google Scholar
  217. Mott, T. F., McConnon, M. L., & Rieger, B. P. (2012). Subacute to chronic mild traumatic brain injury. American Family Physician, 86(11), 1045–1051.PubMedGoogle Scholar
  218. Mounce, L. T., Williams, W. H., Jones, J. M., Harris, A., Haslam, S. A., & Jetten, J. (2012). Neurogenic and psychogenic acute postconcussion symptoms can be identified after mild traumatic brain injury. The Journal of Head Trauma Rehabilitation. doi: 10.1097/HTR.0b013e318252dd75. Epub ahead of print.Google Scholar
  219. Nakagawara, J., Kamiyama, K., Takahashi, M., & Nakamura, H. (2013). Cortical neuron loss in post-traumatic higher brain dysfunction using (123)I-iomazenil SPECT. Acta neurochirurgica, 118, 245–250. doi: 10.1007/978-3-7091-1434-6_46.PubMedGoogle Scholar
  220. Nathan, D. E., Wang, B. Q., Wolfowitz, R. D., Liu, W., Yeh, P. H., Graner, J. L., et al. (2012). Examining intrinsic thalamic resting state networks using graph theory analysis: Implications for mTBI detection. Conference Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, 5445–5448, doi: 10.1109/EMBC.2012.6347226.
  221. Nestor, P. G., Kubicki, M., Nakamura, M., Niznikiewicz, M., Levitt, J. J., Shenton, M. E., et al. (2012). Neuropsychological variability, symptoms, and brain imaging in chronic schizophrenia. Brain Imaging and Behavior, 7(1), 68–76. doi: 10.1007/s11682-012-9193-0.CrossRefGoogle Scholar
  222. Niogi, S. N., & Mukherjee, P. (2010). Diffusion tensor imaging of mild traumatic brain injury. The Journal of Head Trauma Rehabilitation, 25(4), 241–255. doi: 10.1097/HTR.0b013e3181e52c2a.PubMedCrossRefGoogle Scholar
  223. Niogi, S. N., Mukherjee, P., Ghajar, J., Johnson, C. E., Kolster, R., Lee, H., et al. (2008). Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain, 131(Pt 12), 3209–3221. doi: 10.1093/brain/awn247.PubMedCrossRefGoogle Scholar
  224. Obermann, M., Keidel, M., & Diener, H. C. (2010). Post-traumatic headache: is it for real? Crossfire debates on headache: Pro. Headache, 50(4), 710–715. doi: 10.1111/j.1526-4610.2010.01644.x.PubMedCrossRefGoogle Scholar
  225. Oehmichen, M., Walter, T., Meissner, C., & Friedrich, H. J. (2003). Time course of cortical hemorrhages after closed traumatic brain injury: statistical analysis of posttraumatic histomorphological alterations. Journal of Neurotrauma, 20(1), 87–103. doi: 10.1089/08977150360517218.PubMedCrossRefGoogle Scholar
  226. Oppenheimer, D. R. (1968). Microscopic lesions in the brain following head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 31(4), 299–306.PubMedCrossRefGoogle Scholar
  227. Orrison, W. W., Hanson, E. H., Alamo, T., Watson, D., Sharma, M., Perkins, T. G., et al. (2009). Traumatic brain injury: a review and high-field MRI findings in 100 unarmed combatants using a literature-based checklist approach. Journal of Neurotrauma, 26(5), 689–701. doi: 10.1089/neu.2008.0636.PubMedCrossRefGoogle Scholar
  228. Palacios, E. M., Sala-Llonch, R., Junque, C., Roig, T., Tormos, J. M., Bargallo, N., et al. (2012). White matter integrity related to functional working memory networks in traumatic brain injury. Neurology, 78(12), 852–860. doi: 10.1212/WNL.0b013e31824c465a.PubMedCrossRefGoogle Scholar
  229. Pandit, A. S., Expert, P., Lambiotte, R., Bonnelle, V., Leech, R., Turkheimer, F. E., et al. (2013). Traumatic brain injury impairs small-world topology. Neurology, 80(20), 1826–1833. doi: 10.1212/WNL.0b013e3182929f38.PubMedCrossRefGoogle Scholar
  230. Park, E., Eisen, R., Kinio, A., & Baker, A. J. (2012). Electrophysiological white matter dysfunction and association with neurobehavioral deficits following low-level primary blast trauma. Neurobiology of Disease. doi: 10.1016/j.nbd.2012.12.002.Google Scholar
  231. Parkinson, D. (1992). Concussion is completely reversible; an hypothesis. Medical Hypotheses, 37(1), 37–39.PubMedCrossRefGoogle Scholar
  232. Parsons, T. D., Courtney, C. G., Arizmendi, B., & Dawson, M. (2011). Virtual reality stroop task for neurocognitive assessment. Studies in Health Technology and Informatics, 163, 433–439.PubMedGoogle Scholar
  233. Peerless, S. J., & Rewcastle, N. B. (1967). Shear injuries of the brain. Canadian Medical Association Journal, 96(10), 577–582.PubMedGoogle Scholar
  234. Pettersen, J. A., Sathiyamoorthy, G., Gao, F. Q., Szilagyi, G., Nadkarni, N. K., St George-Hyslop, P., et al. (2008). Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook dementia study. Archives of Neurology, 65(6), 790–795. doi: 10.1001/archneur.65.6.790.PubMedCrossRefGoogle Scholar
  235. Pomschar, A., Koerte, I., Lee, S., Laubender, R. P., Straube, A., Heinen, F., et al. (2013). MRI evidence for altered venous drainage and intracranial compliance in mild traumatic brain injury. PloS one, 8(2), e55447. doi: 10.1371/journal.pone.0055447.PubMedCrossRefGoogle Scholar
  236. Ponsford, J., Cameron, P., Fitzgerald, M., Grant, M., & Mikocka-Walus, A. (2011). Long-term outcomes after uncomplicated mild traumatic brain injury: a comparison with trauma controls. Journal of Neurotrauma, 28(6), 937–946. doi: 10.1089/neu.2010.1516.PubMedCrossRefGoogle Scholar
  237. Pontifex, M. B., Broglio, S. P., Drollette, E. S., Scudder, M. R., Johnson, C. R., O’Connor, P. M., et al. (2012). The relation of mild traumatic brain injury to chronic lapses of attention. Research Quarterly for Exercise and Sport, 83(4), 553–559.PubMedGoogle Scholar
  238. Potchen, M. J., Kampondeni, S. D., Mallewa, M., Taylor, T. E., & Birbeck, G. L. (2013). Brain imaging in normal kids: a community-based MRI study in Malawian children. Tropical Medicine & International Health, 18(4), 398–402. doi: 10.1111/tmi.12064.CrossRefGoogle Scholar
  239. Prichep, L. S., McCrea, M., Barr, W., Powell, M., & Chabot, R. J. (2012). Time course of clinical and electrophysiological recovery after sport-related concussion. The Journal of Head Trauma Rehabilitation. doi: 10.1097/HTR.0b013e318247b54e. Epub ahead of print.Google Scholar
  240. Prigatano, G. P., & Gale, S. D. (2011). The current status of postconcussion syndrome. Current Opinion in Psychiatry, 24(3), 243–250. doi: 10.1097/YCO.0b013e328344698b.PubMedCrossRefGoogle Scholar
  241. Pula, J. H., & Eggenberger, E. (2008). Posterior reversible encephalopathy syndrome. Current Opinion in Ophthalmology, 19(6), 479–484. doi: 10.1097/ICU.0b013e3283129746.PubMedCrossRefGoogle Scholar
  242. Rao, V., Mielke, M., Xu, X., Smith, G. S., McCann, U. D., Bergey, A., et al. (2012). Diffusion tensor imaging atlas-based analyses in major depression after mild traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 24(3), 309–315. doi: 10.1176/appi.neuropsych.11080188.PubMedCrossRefGoogle Scholar
  243. Rayhan, R. U., Stevens, B. W., Timbol, C. R., Adewuyi, O., Walitt, B., VanMeter, J. W., et al. (2013). Increased brain white matter axial diffusivity associated with fatigue, pain and hyperalgesia in Gulf War illness. PloS one, 8(3), e58493. doi: 10.1371/journal.pone.0058493.PubMedCrossRefGoogle Scholar
  244. Raz, E., Jensen, J. H., Ge, Y., Babb, J. S., Miles, L., Reaume, J., et al. (2011). Brain iron quantification in mild traumatic brain injury: a magnetic field correlation study. AJNR. American Journal of Neuroradiology, 32(10), 1851–1856. doi: 10.3174/ajnr.A2637.PubMedCrossRefGoogle Scholar
  245. Reeves, D. L., Kane, R., Elsmore, T., Winter, K., & Bleiberg, J. (2002). ANAM 2001 user’s manual: Clinical and research modules. San Diego: National Cognitive Recovery Foundation, Publication SNRF-SF-2002-1.Google Scholar
  246. Reisberg, B., Shulman, M. B., Torossian, C., Leng, L., & Zhu, W. (2010). Outcome over seven years of healthy adults with and without subjective cognitive impairment. Alzheimer's & Dementia, 6(1), 11–24. doi: 10.1016/j.jalz.2009.10.002.CrossRefGoogle Scholar
  247. Rey, A. (1958). L’examen clinique en psychologie [The clinical examination in psychology]. Oxford: Presses Universitaires de France.Google Scholar
  248. Risling, M., Plantman, S., Angeria, M., Rostami, E., Bellander, B. M., Kirkegaard, M., et al. (2011). Mechanisms of blast induced brain injuries, experimental studies in rats. NeuroImage, 54(Suppl 1), S89–S97. doi: 10.1016/j.neuroimage.2010.05.031.PubMedCrossRefGoogle Scholar
  249. Rohling, M. L., Binder, L. M., Demakis, G. J., Larrabee, G. J., Ploetz, D. M., & Langhinrichsen-Rohling, J. (2011). A meta-analysis of neuropsychological outcome after mild traumatic brain injury: re-analyses and reconsiderations of Binder et al. (1997), Frencham et al. (2005), and Pertab et al. (2009). The Clinical Neuropsychologist, 25(4), 608–623. doi: 10.1080/13854046.2011.565076.PubMedCrossRefGoogle Scholar
  250. Rona, R. J. (2012). Long-term consequences of mild traumatic brain injury. The British Journal of Psychiatry, 201(3), 172–174. doi: 10.1192/bjp.bp.112.111492.PubMedCrossRefGoogle Scholar
  251. Rosenbaum, S. B., & Lipton, M. L. (2012). Embracing chaos: the scope and importance of clinical and pathological heterogeneity in mTBI. Brain Imaging and Behavior, 6(2), 255–282. doi: 10.1007/s11682-012-9162-7.PubMedCrossRefGoogle Scholar
  252. Ross, D. E., Ochs, A. L., Seabaugh, J. M., Demark, M. F., Shrader, C. R., Marwitz, J. H., et al. (2012). Progressive brain atrophy in patients with chronic neuropsychiatric symptoms after mild traumatic brain injury: a preliminary study. Brain injury : [BI], 26(12), 1500–1509. doi: 10.3109/02699052.2012.694570.CrossRefGoogle Scholar
  253. Rostami, E., Davidsson, J., Ng, K. C., Lu, J., Gyorgy, A., Walker, J., et al. (2012). A model for mild traumatic brain injury that induces limited transient memory impairment and increased levels of axon related serum biomarkers. Frontiers in Neurology, 3, 115. doi: 10.3389/fneur.2012.00115.PubMedCrossRefGoogle Scholar
  254. Ruff, R. (2009). Best practice guidelines for forensic neuropsychological examinations of patients with traumatic brain injury. The Journal of head trauma rehabilitation, 24(2), 131–140. doi: 10.1097/01.HTR.0000348755.42649.e9.PubMedCrossRefGoogle Scholar
  255. Ruff, R. M. (2011). Mild traumatic brain injury and neural recovery: rethinking the debate. NeuroRehabilitation, 28(3), 167–180. doi: 10.3233/NRE-2011-0646.PubMedGoogle Scholar
  256. Ruff, R. M., Iverson, G. L., Barth, J. T., Bush, S. S., & Broshek, D. K. (2009). Recommendations for diagnosing a mild traumatic brain injury: a National Academy of Neuropsychology education paper. Archives of Clinical Neuropsychology, 24(1), 3–10. doi: 10.1093/arclin/acp006.PubMedCrossRefGoogle Scholar
  257. Saljo, A., Mayorga, M., Bolouri, H., Svensson, B., & Hamberger, A. (2011). Mechanisms and pathophysiology of the low-level blast brain injury in animal models. NeuroImage, 54(Suppl 1), S83–S88. doi: 10.1016/j.neuroimage.2010.05.050.PubMedCrossRefGoogle Scholar
  258. Sangiorgi, S., De Benedictis, A., Protasoni, M., Manelli, A., Reguzzoni, M., Cividini, A., et al. (2013). Early-stage microvascular alterations of a new model of controlled cortical traumatic brain injury: 3D morphological analysis using scanning electron microscopy and corrosion casting. Journal of Neurosurgery, 118(4), 763–774. doi: 10.3171/2012.11.JNS12627.PubMedCrossRefGoogle Scholar
  259. Scheid, R., Walther, K., Guthke, T., Preul, C., & von Cramon, D. Y. (2006). Cognitive sequelae of diffuse axonal injury. Archives of Neurology, 63(3), 418–424. doi: 10.1001/archneur.63.3.418.PubMedCrossRefGoogle Scholar
  260. Schultheis, M. T., Himelstein, J., & Rizzo, A. A. (2002). Virtual reality and neuropsychology: upgrading the current tools. The Journal of Head Trauma Rehabilitation, 17(5), 378–394.PubMedCrossRefGoogle Scholar
  261. Sepulcre, J., Masdeu, J. C., Pastor, M. A., Goni, J., Barbosa, C., Bejarano, B., et al. (2009). Brain pathways of verbal working memory: a lesion-function correlation study. NeuroImage, 47(2), 773–778. doi: 10.1016/j.neuroimage.2009.04.054.PubMedCrossRefGoogle Scholar
  262. Sharp, D. J., Beckmann, C. F., Greenwood, R., Kinnunen, K. M., Bonnelle, V., De Boissezon, X., et al. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134(Pt 8), 2233–2247. doi: 10.1093/brain/awr175.PubMedCrossRefGoogle Scholar
  263. Sharp, D. J., & Ham, T. E. (2011). Investigating white matter injury after mild traumatic brain injury. Current opinion in neurology, 24(6), 558–563. doi: 10.1097/WCO.0b013e32834cd523.PubMedCrossRefGoogle Scholar
  264. Shaw, N. A. (2002). The neurophysiology of concussion. Progress in Neurobiology, 67(4), 281–344.PubMedCrossRefGoogle Scholar
  265. Shenton, M. E., Hamoda, H. M., Schneiderman, J. S., Bouix, S., Pasternak, O., Rathi, Y., et al. (2012). A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging and Behavior, 6(2), 137–192. doi: 10.1007/s11682-012-9156-5.PubMedCrossRefGoogle Scholar
  266. Shumskaya, E., Andriessen, T. M., Norris, D. G., & Vos, P. E. (2012). Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology, 79(2), 175–182. doi: 10.1212/WNL.0b013e31825f04fb.PubMedCrossRefGoogle Scholar
  267. Silver, J. M. (2012). Effort, exaggeration and malingering after concussion. Journal of Neurology, Neurosurgery, and Psychiatry, 83(8), 836–841. doi: 10.1136/jnnp-2011-302078.PubMedCrossRefGoogle Scholar
  268. Silver, J. M., McAllister, T. W., & Arciniegas, D. B. (2009). Depression and cognitive complaints following mild traumatic brain injury. The American Journal of Psychiatry, 166(6), 653–661. doi: 10.1176/appi.ajp.2009.08111676.PubMedCrossRefGoogle Scholar
  269. Sims, A. C. (1985). Head injury, neurosis and accident proneness. Advances in Psychosomatic Medicine, 13, 49–70.PubMedGoogle Scholar
  270. Skogar, O., Fall, P. A., Hallgren, G., Bringer, B., Carlsson, M., Lennartsson, U., et al. (2012). Parkinson’s disease patients’ subjective descriptions of characteristics of chronic pain, sleeping patterns and health-related quality of life. Neuropsychiatric Disease and Treatment, 8, 435–442. doi: 10.2147/NDT.S34882.PubMedCrossRefGoogle Scholar
  271. Slobounov, S., Gay, M., Johnson, B., & Zhang, K. (2012). Concussion in athletics: ongoing clinical and brain imaging research controversies. Brain Imaging and Behavior, 6(2), 224–243. doi: 10.1007/s11682-012-9167-2.PubMedCrossRefGoogle Scholar
  272. Slobounov, S., Sebastianelli, W., & Newell, K. M. (2011). Incorporating virtual reality graphics with brain imaging for assessment of sport-related concussions. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2011, 1383–1386, doi: 10.1109/IEMBS.2011.6090325.
  273. Slobounov, S. M., Gay, M., Zhang, K., Johnson, B., Pennell, D., Sebastianelli, W., et al. (2011b). Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. NeuroImage, 55(4), 1716–1727. doi: 10.1016/j.neuroimage.2011.01.024.PubMedCrossRefGoogle Scholar
  274. Smith, A. (1992). Symbol-digit modalities test (Revised). Los Angeles: Western Psychological Services.Google Scholar
  275. Smits, M., Houston, G. C., Dippel, D. W., Wielopolski, P. A., Vernooij, M. W., Koudstaal, P. J., et al. (2011). Microstructural brain injury in post-concussion syndrome after minor head injury. Neuroradiology, 53(8), 553–563. doi: 10.1007/s00234-010-0774-6.PubMedCrossRefGoogle Scholar
  276. Smits, M., Hunink, M. G., Nederkoorn, P. J., Dekker, H. M., Vos, P. E., Kool, D. R., et al. (2007). A history of loss of consciousness or post-traumatic amnesia in minor head injury: “Conditio sine qua non” or one of the risk factors? Journal of Neurology, Neurosurgery, and Psychiatry, 78(12), 1359–1364. doi: 10.1136/jnnp.2007.117143.PubMedCrossRefGoogle Scholar
  277. Snyder, P. J., Jackson, C. E., Petersen, R. C., Khachaturian, A. S., Kaye, J., Albert, M. S., et al. (2011). Assessment of cognition in mild cognitive impairment: a comparative study. Alzheimer's & Dementia, 7(3), 338–355. doi: 10.1016/j.jalz.2011.03.009.CrossRefGoogle Scholar
  278. Sorg, S. F., Delano-Wood, L., Luc, N., Schiehser, D. M., Hanson, K. L., Nation, D. A., et al. (2013). White matter integrity in veterans with mild traumatic brain injury: associations with executive function and loss of consciousness. The Journal of Head Trauma Rehabilitation. doi: 10.1097/HTR.0b013e31828a1aa4.PubMedGoogle Scholar
  279. Spain, A., Daumas, S., Lifshitz, J., Rhodes, J., Andrews, P. J., Horsburgh, K., et al. (2010). Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury. Journal of Neurotrauma, 27(8), 1429–1438. doi: 10.1089/neu.2010.1288.PubMedCrossRefGoogle Scholar
  280. Stevens, M. C., Lovejoy, D., Kim, J., Oakes, H., Kureshi, I., & Witt, S. T. (2012). Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging and Behavior, 6(2), 293–318. doi: 10.1007/s11682-012-9157-4.PubMedCrossRefGoogle Scholar
  281. Strain, J., Didehbani, N., Cullum, C. M., Mansinghani, S., Conover, H., Kraut, M. A., et al. (2013). Depressive symptoms and white matter dysfunction in retired NFL players with concussion history. Neurology. doi: 10.1212/WNL.0b013e318299ccf8. Epub ahead of print.PubMedGoogle Scholar
  282. Strich, S. J. (1956). Diffuse degeneration of the cerebral white matter in severe dementia following head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 19(3), 163–185.PubMedCrossRefGoogle Scholar
  283. Sullivan, S., Friess, S. H., Ralston, J., Smith, C., Propert, K. J., Rapp, P. E., et al. (2013). Behavioral deficits and axonal injury persistence after rotational head injury are direction dependent. Journal of Neurotrauma, 30(7), 538–545. doi: 10.1089/neu.2012.2594.PubMedCrossRefGoogle Scholar
  284. Sundgren, P. C., Dong, Q., Gomez-Hassan, D., Mukherji, S. K., Maly, P., & Welsh, R. (2004). Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology, 46(5), 339–350. doi: 10.1007/s00234-003-1114-x.PubMedCrossRefGoogle Scholar
  285. Talavage, T. M., Nauman, E., Breedlove, E. L., Yoruk, U., Dye, A. E., Morigaki, K., et al. (2013). Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. Journal of Neurotrauma. doi: 10.1089/neu.2010.1512. Epub ahead of print.PubMedGoogle Scholar
  286. Tallus, J., Lioumis, P., Hamalainen, H., Kahkonen, S., & Tenovuo, O. (2013). TMS-EEG responses in recovered and symptomatic mild traumatic brain injury. Journal of Neurotrauma. doi: 10.1089/neu.2012.2760. Epub ahead of print.PubMedGoogle Scholar
  287. Tang, C. Y., Eaves, E., Dams-O’Connor, K., Ho, L., Leung, E., Wong, E., et al. (2012). Diffuse disconnectivity in TBI: a resting state fMRI and DTI study. Translational Neuroscience, 3(1), 9–14. doi: 10.2478/s13380-012-0003-3.PubMedCrossRefGoogle Scholar
  288. Tang, L., Ge, Y., Sodickson, D. K., Miles, L., Zhou, Y., Reaume, J., et al. (2011). Thalamic resting-state functional networks: disruption in patients with mild traumatic brain injury. Radiology, 260(3), 831–840. doi: 10.1148/radiol.11110014.PubMedCrossRefGoogle Scholar
  289. Tate, D. F., Shenton, M. E., & Bigler, E. D. (2012). Introduction to the brain imaging and behavior special issue on neuroimaging findings in mild traumatic brain injury. Brain Imaging and Behavior, 6(2), 103–107. doi: 10.1007/s11682-012-9185-0.PubMedCrossRefGoogle Scholar
  290. Taylor, A. R. (1967). Post-concussional sequelae. British Medical Journal, 3(5557), 67–71.PubMedCrossRefGoogle Scholar
  291. Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet, 2(7872), 81–84.CrossRefGoogle Scholar
  292. Temme, L., Bleiberg, J., Reeves, D., Still, D. L., Levinson, D., & Browning, R. (2013). Uncovering latent deficits due to mild traumatic brain injury by using normobaric hypoxia stress. Frontiers in neurology, 4, 41. doi: 10.3389/fneur.2013.00041.PubMedCrossRefGoogle Scholar
  293. Toth, A., Kovacs, N., Perlaki, G., Orsi, G., Aradi, M., Komaromy, H., et al. (2013). Multi-modal magnetic resonance imaging in the acute and sub-acute phase of mild traumatic brain injury: can we see the difference? Journal of Neurotrauma, 30(1), 2–10. doi: 10.1089/neu.2012.2486.PubMedCrossRefGoogle Scholar
  294. Travers, B. G., Adluru, N., Ennis, C., do Tromp, P. M., Destiche, D., Doran, S., et al. (2012). Diffusion tensor imaging in autism spectrum disorder: a review. Autism Research, 5(5), 289–313. doi: 10.1002/aur.1243.PubMedCrossRefGoogle Scholar
  295. Turtzo, L. C., Budde, M. D., Gold, E. M., Lewis, B. K., Janes, L., Yarnell, A., et al. (2012). The evolution of traumatic brain injury in a rat focal contusion model. NMR in Biomedicine. doi: 10.1002/nbm.2886. Epub ahead of print.PubMedGoogle Scholar
  296. Turner, R. C., Naser, Z. J., Logsdon, A. F., Dipasquale, K. H., Jackson, G. J., Robson, M. J., et al. (2013). Modeling clinically relevant blast parameters based on scaling principles produces functional & histological deficits in rats. Experimental Neurology. doi: 10.1016/j.expneurol.2013.07.008. Epub ahead of print.
  297. Ueda, Y., Walker, S. A., & Povlishock, J. T. (2006). Perivascular nerve damage in the cerebral circulation following traumatic brain injury. Acta Neuropathologica, 112(1), 85–94. doi: 10.1007/s00401-005-0029-5.PubMedCrossRefGoogle Scholar
  298. Van Boven, R. W., Harrington, G. S., Hackney, D. B., Ebel, A., Gauger, G., Bremner, J. D., et al. (2009). Advances in neuroimaging of traumatic brain injury and posttraumatic stress disorder. Journal of Rehabilitation Research and Development, 46(6), 717–757.PubMedCrossRefGoogle Scholar
  299. van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 15775–15786. doi: 10.1523/JNEUROSCI.3539-11.2011.PubMedCrossRefGoogle Scholar
  300. van Veldhoven, L. M., Sander, A. M., Struchen, M. A., Sherer, M., Clark, A. N., Hudnall, G. E., et al. (2011). Predictive ability of preinjury stressful life events and post-traumatic stress symptoms for outcomes following mild traumatic brain injury: analysis in a prospective emergency room sample. Journal of Neurology, Neurosurgery, and Psychiatry, 82(7), 782–787. doi: 10.1136/jnnp.2010.228254.PubMedCrossRefGoogle Scholar
  301. Vasterling, J. J., Brailey, K., Proctor, S. P., Kane, R., Heeren, T., & Franz, M. (2012). Neuropsychological outcomes of mild traumatic brain injury, post-traumatic stress disorder and depression in Iraq-deployed US Army soldiers. The British Journal of Psychiatry, 201(3), 186–192. doi: 10.1192/bjp.bp.111.096461.PubMedCrossRefGoogle Scholar
  302. Vasterling, J. J., & Dikmen, S. (2012). Mild traumatic brain injury and posttraumatic stress disorder: clinical and conceptual complexities. Journal of the International Neuropsychological Society: JINS, 18(3), 390–393. doi: 10.1017/S1355617712000367.PubMedCrossRefGoogle Scholar
  303. Vernooij, M. W., Ikram, M. A., Tanghe, H. L., Vincent, A. J., Hofman, A., Krestin, G. P., et al. (2007). Incidental findings on brain MRI in the general population. The New England Journal of Medicine, 357(18), 1821–1828. doi: 10.1056/NEJMoa070972.PubMedCrossRefGoogle Scholar
  304. Vicente-Rodriguez, G., Rey-Lopez, J. P., Ruiz, J. R., Jimenez-Pavon, D., Bergman, P., Ciarapica, D., et al. (2011). Interrater reliability and time measurement validity of speed-agility field tests in adolescents. Journal of Strength and Conditioning Research, 25(7), 2059–2063. doi: 10.1519/JSC.0b013e3181e742fe.PubMedCrossRefGoogle Scholar
  305. Victoroff, J. (2013). Traumatic encephalopathy: review and provisional research diagnostic criteria. NeuroRehabilitation, 32(2), 211–224. doi: 10.3233/NRE-130839.PubMedGoogle Scholar
  306. Virji-Babul, N., Borich, M. R., Makan, N., Moore, T., Frew, K., Emery, C. A., et al. (2013). Diffusion tensor imaging of sports-related concussion in adolescents. Pediatric Neurology, 48(1), 24–29. doi: 10.1016/j.pediatrneurol.2012.09.005.PubMedCrossRefGoogle Scholar
  307. Voelbel, G. T., Genova, H. M., Chiaravalotti, N. D., & Hoptman, M. J. (2012). Diffusion tensor imaging of traumatic brain injury review: implications for neurorehabilitation. NeuroRehabilitation, 31(3), 281–293. doi: 10.3233/NRE-2012-0796.PubMedGoogle Scholar
  308. Wada, T., Asano, Y., & Shinoda, J. (2012). Decreased fractional anisotropy evaluated using tract-based spatial statistics and correlated with cognitive dysfunction in patients with mild traumatic brain injury in the chronic stage. AJNR. American Journal of Neuroradiology, 33(11), 2117–2122. doi: 10.3174/ajnr.A3141.PubMedCrossRefGoogle Scholar
  309. Waldstein, S. R., & Wendell, C. R. (2010). Neurocognitive function and cardiovascular disease. Journal of Alzheimer's Disease, 20(3), 833–842. doi: 10.3233/JAD-2010-091591.PubMedGoogle Scholar
  310. Walker, K. R., & Tesco, G. (2013). Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Frontiers In Aging Neuroscience, 5, 29. doi: 10.3389/fnagi.2013.00029.PubMedCrossRefGoogle Scholar
  311. Wall, S. E., Williams, W. H., Cartwright-Hatton, S., Kelly, T. P., Murray, J., Murray, M., et al. (2006). Neuropsychological dysfunction following repeat concussions in jockeys. Journal of Neurology, Neurosurgery, and Psychiatry, 77(4), 518–520. doi: 10.1136/jnnp.2004.061044.PubMedCrossRefGoogle Scholar
  312. Watanabe, R., Katsuhara, T., Miyazaki, H., Kitagawa, Y., & Yasuki, T. (2012). Research of the relationship of pedestrian injury to collision speed, car-type, impact location and pedestrian sizes using human FE model (THUMS Version 4). Stapp Car Crash Journal, 56, 269–321.PubMedGoogle Scholar
  313. Weber, J. T. (2007). Experimental models of repetitive brain injuries. Progress in Brain Research, 161, 253–261. doi: 10.1016/S0079-6123(06)61018-2.PubMedCrossRefGoogle Scholar
  314. Weighill, V. E. (1983). ‘Compensation neurosis’: a review of the literature. Journal of Psychosomatic Research, 27(2), 97–104.PubMedCrossRefGoogle Scholar
  315. Wilde, E. A., Bigler, E. D., Pedroza, C., & Ryser, D. K. (2006). Post-traumatic amnesia predicts long-term cerebral atrophy in traumatic brain injury. Brain Injury, 20(7), 695–699. doi: 10.1080/02699050600744079.PubMedCrossRefGoogle Scholar
  316. Wilde, E. A., Hunter, & Bigler, E. D. (2012). Pediatric traumatic brain injury: neuroimaging and neurorehabilitation outcome. NeuroRehabilitation, 31(3), 245–260. doi: 10.3233/NRE-2012-0794.PubMedGoogle Scholar
  317. Wilde, E. A., McCauley, S. R., Hunter, J. V., Bigler, E. D., Chu, Z., Wang, Z. J., et al. (2008). Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology, 70(12), 948–955. doi: 10.1212/01.wnl.0000305961.68029.54.PubMedCrossRefGoogle Scholar
  318. Williams, W. H., Potter, S., & Ryland, H. (2010). Mild traumatic brain injury and postconcussion syndrome: a neuropsychological perspective. Journal of Neurology, Neurosurgery, and Psychiatry, 81(10), 1116–1122. doi: 10.1136/jnnp.2008.171298.PubMedCrossRefGoogle Scholar
  319. Willmott, C., Ponsford, J., Hocking, C., & Schonberger, M. (2009). Factors contributing to attentional impairments after traumatic brain injury. Neuropsychology, 23(4), 424–432. doi: 10.1037/a0015058.PubMedCrossRefGoogle Scholar
  320. Wilson, R. S., Arnold, S. E., Schneider, J. A., Li, Y., & Bennett, D. A. (2007). Chronic distress, age-related neuropathology, and late-life dementia. Psychosomatic Medicine, 69(1), 47–53. doi: 10.1097/01.psy.0000250264.25017.21.PubMedCrossRefGoogle Scholar
  321. Wrightson, P., & Gronwall, D. (1999). Mild head injury: A guide to management. Oxford: New York.Google Scholar
  322. Wu, T. C., Allen, M. D., Goodrich-Hunsaker, N. J., Hopkins, R. O., & Bigler, E. D. (2010a). Functional neuroimaging of symptom validity testing in traumatic brain injury. Psychological Injury and Law, 3, 50–62.CrossRefGoogle Scholar
  323. Wu, T. C., Wilde, E. A., Bigler, E. D., Yallampalli, R., McCauley, S. R., Troyanskaya, M., et al. (2010b). Evaluating the relationship between memory functioning and cingulum bundles in acute mild traumatic brain injury using diffusion tensor imaging. Journal of Neurotrauma, 27(2), 303–307. doi: 10.1089/neu.2009.1110.PubMedCrossRefGoogle Scholar
  324. Wycoco, V., Shroff, M., Sudhakar, S., & Lee, W. (2013). White matter anatomy: what the radiologist needs to know. Neuroimaging Clinics of North America, 23(2), 197–216. doi: 10.1016/j.nic.2012.12.002.PubMedCrossRefGoogle Scholar
  325. Yang, Z., Yeo, R. A., Pena, A., Ling, J. M., Klimaj, S., Campbell, R., et al. (2012). An FMRI study of auditory orienting and inhibition of return in pediatric mild traumatic brain injury. Journal of Neurotrauma, 29(12), 2124–2136. doi: 10.1089/neu.2012.2395.PubMedCrossRefGoogle Scholar
  326. Yokobori, S., Watanabe, A., Matsumoto, G., Onda, H., Masuno, T., Fuse, A., et al. (2011). Time course of recovery from cerebral vulnerability after severe traumatic brain injury: a microdialysis study. The Journal of Trauma, 71(5), 1235–1240. doi: 10.1097/TA.0b013e3182140dd7.PubMedCrossRefGoogle Scholar
  327. Yuh, E. L., Mukherjee, P., Lingsma, H. F., Yue, J. K., Ferguson, A. R., Gordon, W. A., et al. (2012). Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Annals of Neurology. doi: 10.1002/ana.23783.PubMedGoogle Scholar
  328. Zappala, G., Thiebaut de Schotten, M., & Eslinger, P. J. (2012). Traumatic brain injury and the frontal lobes: what can we gain with diffusion tensor imaging? Cortex, 48(2), 156–165. doi: 10.1016/j.cortex.2011.06.020.PubMedCrossRefGoogle Scholar
  329. Zetterberg, H., Smith, D. H., & Blennow, K. (2013). Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nature Reviews. Neurology. doi: 10.1038/nrneurol.2013.9.PubMedGoogle Scholar
  330. Zhang, K., Johnson, B., Gay, M., Horovitz, S. G., Hallett, M., Sebastianelli, W., et al. (2012). Default mode network in concussed individuals in response to the YMCA physical stress test. Journal of Neurotrauma, 29(5), 756–765. doi: 10.1089/neu.2011.2125.PubMedCrossRefGoogle Scholar
  331. Zhou, Y., Kierans, A., Kenul, D., Ge, Y., Rath, J., Reaume, J., et al. (2013). Mild traumatic brain injury: longitudinal regional brain volume changes. Radiology, 267(3), 880–890. doi: 10.1148/radiol.13122542.PubMedCrossRefGoogle Scholar
  332. Zhou, Y., & Lui, Y. W. (2013). Changes in brain organization after TBI: evidence from functional MRI findings. Neurology, 80(20), 1822–1823. doi: 10.1212/WNL.0b013e318292a37d.PubMedCrossRefGoogle Scholar
  333. Zhou, Y., Milham, M. P., Lui, Y. W., Miles, L., Reaume, J., Sodickson, D. K., et al. (2012). Default-mode network disruption in mild traumatic brain injury. Radiology, 265(3), 882–892. doi: 10.1148/radiol.12120748.PubMedCrossRefGoogle Scholar
  334. Zhuo, J., Xu, S., Proctor, J. L., Mullins, R. J., Simon, J. Z., Fiskum, G., et al. (2012). Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. NeuroImage, 59(1), 467–477. doi: 10.1016/j.neuroimage.2011.07.050.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PsychologyBrigham Young UniversityProvoUSA
  2. 2.Neuroscience CenterBrigham Young UniversityProvoUSA
  3. 3.Magnetic Resonance Imaging Research FacilityBrigham Young UniversityProvoUSA
  4. 4.Department of PsychiatryUniversity of UtahSalt Lake CityUSA
  5. 5.The Brain Institute of UtahUniversity of UtahSalt Lake CityUSA

Personalised recommendations