Neuropsychology Review

, Volume 23, Issue 1, pp 63–80

Efficacy of Cognitive Rehabilitation Therapies for Mild Cognitive Impairment (MCI) in Older Adults: Working Toward a Theoretical Model and Evidence-Based Interventions

  • Marilyn Huckans
  • Lee Hutson
  • Elizabeth Twamley
  • Amy Jak
  • Jeffrey Kaye
  • Daniel Storzbach
Review

Abstract

To evaluate the efficacy of cognitive rehabilitation therapies (CRTs) for mild cognitive impairment (MCI). Our review revealed a need for evidence-based treatments for MCI and a lack of a theoretical rehabilitation model to guide the development and evaluation of these interventions. We have thus proposed a theoretical rehabilitation model of MCI that yields key intervention targets–cognitive compromise, functional compromise, neuropsychiatric symptoms, and modifiable risk and protective factors known to be associated with MCI and dementia. Our model additionally defines specific cognitive rehabilitation approaches that may directly or indirectly target key outcomes–restorative cognitive training, compensatory cognitive training, lifestyle interventions, and psychotherapeutic techniques. Fourteen randomized controlled trials met inclusion criteria and were reviewed. Studies markedly varied in terms of intervention approaches and selected outcome measures and were frequently hampered by design limitations. The bulk of the evidence suggested that CRTs can change targeted behaviors in individuals with MCI and that CRTs are associated with improvements in objective cognitive performance, but the pattern of effects on specific cognitive domains was inconsistent across studies. Other important outcomes (i.e., daily functioning, quality of life, neuropsychiatric symptom severity) were infrequently assessed across studies. Few studies evaluated long-term outcomes or the impact of CRTs on conversion rates from MCI to dementia or normal cognition. Overall, results from trials are promising but inconclusive. Additional well-designed and adequately powered trials are warranted and required before CRTs for MCI can be considered evidence-based.

Keywords

Mild cognitive impairment Cognitive rehabilitation therapy Cognitive training Systematic review Neuropsychological Dementia 

References

  1. Akhtar, S., Moulin, C. J. A., & Bowie, P. C. W. (2006). Are people with mild cognitive impairment aware of the benefits of errorless learning? Neuropsychological Rehabilitation, 16(3), 329–346.PubMedCrossRefGoogle Scholar
  2. Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 7(3), 270–279.CrossRefGoogle Scholar
  3. Anttila, T., Helkala, E., Viitanen, M., Kareholt, I., Fratiglioni, L., Winblad, B., et al. (2004). Alcohol drinking in middle age and subsequent risk of mild cognitive impairment and dementia in old age: a prospective population based study. British Medical Journal, 329(7465), 539.PubMedCrossRefGoogle Scholar
  4. Apostolova, L. G., & Cummings, J. L. (2008). Neuropsychiatric manifestations in mild cognitive impairment: a systematic review of the literature. Dementia and Geriatric Cognitive Disorders, 25(2), 115–126.PubMedCrossRefGoogle Scholar
  5. Arnaiz, E., & Almkvist, O. (2003). Neuropsychological features of mild cognitive impairment and preclinical Alzheimer’s disease. Acta Neurologica Scandinavica, 107(s19), 34–41.CrossRefGoogle Scholar
  6. Arntzen, K. A., Schirmer, H., Wilsgaard, T., & Mathiesen, E. B. (2011). Impact of cardiovascular risk factors on cognitive function: the Tromso study. European Journal of Neurology, 18(5), 737–743.PubMedCrossRefGoogle Scholar
  7. Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., et al. (2010). Effects of aerobic exercise on mild cognitive impairment. Archives of Neurology, 67(1), 71–79.PubMedCrossRefGoogle Scholar
  8. Barnes, D. E., Alexopoulos, G. S., Lopez, O. L., Williamson, J. D., & Yaffe, K. (2006). Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the Cardiovascular Health Study. Archives of General Psychiatry, 63(3), 273–279.PubMedCrossRefGoogle Scholar
  9. Barnes, D. E., Yaffe, K., Belfor, N., Jagust, W. J., DeCarli, C., Reed, B. R., et al. (2009). Computer based cognitive training for mild cognitive impairment: results from a pilot randomized, controlled trial. Alzheimer’s Disease & Associated Disorders, 23(3), 205–210.CrossRefGoogle Scholar
  10. Bayer-Carter, J. L., Green, P. S., Montine, T. J., VanFossen, B., Baker, L. D., Watson, S., et al. (2011). Diet intervention and cerebrospinal fluid biomarkers in amnestic mild cognitive impairment. Neurology, 68(6), 743–752.Google Scholar
  11. Beydoun, M. A., Beason-Held, L. L., Kitner-Triolo, M. H., Beydoun, H. A., Ferrucci, L., Resnick, S. M., et al. (2011). Statins and serum cholesterol’s associations with incident dementia and mild cognitive impairment. Journal of Epidemiology and Community Health, 65(11), 949–957.PubMedCrossRefGoogle Scholar
  12. Bickel, H. (2006). Smoking, alcohol consumption, and dementia. Zeitschrift fur Wissenshcaft und Praxis, 52(1), 48–59.CrossRefGoogle Scholar
  13. Bomboi, S., Derambure, P., Pasquier, F., & Monaca, C. (2010). Sleep disorders in aging and dementia. The Journal of Nutrition, Health & Aging, 14(3), 212–217.CrossRefGoogle Scholar
  14. Boot, B. P., Boeve, B. F., Roberts, R. O., Ferman, T. J., Geda, Y. E., Pankratz, V. S., et al. (2012). Probably rapid eye movement sleep behavior disorder increases risk for mild cognitive impairment and Parkinson disease: a population-based study. Annals of Neurology, 71(1), 49–56.PubMedCrossRefGoogle Scholar
  15. Bruscoli, M., & Lovestone, S. (2004). Is MCI really just early dementia? a systematic review of conversion studies. International Psychogeriatrics, 16, 129–140.PubMedCrossRefGoogle Scholar
  16. Buchman, A. S., Tanne, D., Boyle, P. A., Shah, R. C., Leurgans, S. E., & Bennett, D. A. (2009). Kidney function is associated with the rate of cognitive decline in the elderly. Neurology, 73(12), 920–927.PubMedCrossRefGoogle Scholar
  17. Buschert, V. C., Friese, U., Teipel, S. J., Schneider, P., Merensky, W., Rujescu, D., et al. (2011). Effects of a newly developed cognitive intervention in amnestic mild cognitive impairment and mild Alzheimer’s disease: a pilot study. Journal of Alzheimer’s Disease, 25, 679–694.PubMedGoogle Scholar
  18. Ceresini, G., Lauretani, G., Maggio, M., Ceda, G. P., Morganti, S., Usberti, E., et al. (2009). Thyroid function abnormalities and cognitive impairment in elderly people: results of the Invecchiare in Chianti study. Journal of the American Geriatrics Society, 57(1), 89–93.PubMedCrossRefGoogle Scholar
  19. Cheng, G., Huang, C., Deng, H., & Wang, H. (2012). Diabetes as a risk factor for dementia and mild cognitive impairment: a meta analysis. Internal Medicine Journal, 42(5), 484–491.PubMedCrossRefGoogle Scholar
  20. Clarke, R., Birks, J., Nexo, E., Ueland, P. M., Schneede, J., Scott, J., et al. (2007). Low vitamin B-12 status and risk of cognitive decline in older adults. The American Journal of Clinical Nutrition, 86(5), 1384–1391.PubMedGoogle Scholar
  21. Ellison, J. M., Harper, D. G., Berlow, Y., & Zeranski, L. (2008). Beyond the “C” in MCI: noncognitive symptoms in amnesic and non-amnestic mild cognitive impairment. CNS Spectrums, 13(1), 66–72.PubMedGoogle Scholar
  22. Etgen, T., Bronner, M., Sander, D., Bickel, H., Sander, K., & Forstl, H. (2009). Somatic factors in cognitive impairment. Fortschritte der Neurologie-Psychiatrie, 77(2), 72–82.PubMedCrossRefGoogle Scholar
  23. Etgen, T., Sander, D., Bickel, H., & Forstl, H. (2011). Mild cognitive impairment and dementia: the importance of modifiable risk factors. Deutches Arzteblatt International, 108(44), 743–750.Google Scholar
  24. Frank, L., Lenderking, W. R., Howard, K., & Cantillon, M. (2011). Patient self-report for evaluating mild cognitive impairment and prodromal Alzheimer’s disease. Alzheimer’s Research & Therapy, 3(6), 35.CrossRefGoogle Scholar
  25. Ganguli, M., Dodge, H. H., Shen, C., & DeKosky, S. T. (2004). Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology, 63(1), 115.PubMedCrossRefGoogle Scholar
  26. Gardener, S., Gu, Y., Rainey-Smit, S. R., Keogh, J. B., Clifton, P. M., & Mathieson, S. L. (2012). Adherence to a Mediterranean diet and Alzheimer’s disease risk in an Australian population. Translational Psychiatry, 2, e164.PubMedCrossRefGoogle Scholar
  27. Gold, D. A. (2012). An examination of instrumental activities of daily living assessment in older adults and mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 34(1), 11–34.PubMedCrossRefGoogle Scholar
  28. Goldstein, F. C., Levey, A. I., & Steenland, N. K. (2013). High blood pressure and cognitive decline in mild cognitive impairment. Journal of the American Geriatric Society, 61(1), 67–73.CrossRefGoogle Scholar
  29. Gomar, J. J., Bobes-Bascaran, M. T., Conejero-Goldberg, C., Davies, P., & Goldberg, T. E. (2011). Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer’s disease neuroimaging initiative. Archives of General Psychiatry, 68(9), 961–969.PubMedCrossRefGoogle Scholar
  30. Greenaway, M.C., Duncan, N.L., Smith, G.E. (2012). The memory support system for mild cognitive impairment: randomized trial of a cognition rehabilitation intervention. International Journal of Geriatric Psychiatry.Google Scholar
  31. Hai, S., Dong, B., Liu, Y., & Zou, Y. (2012). Occurrence and risk factors of mild cognitive impairment in the older Chinese population: a 3-year follow-up study. International Journal of Geriatric Psychiatry, 27(7), 703–708.PubMedCrossRefGoogle Scholar
  32. Hin, H., Clarke, R., Sherliker, P., Atoyebi, W., Emmens, K., Kirks, J., et al. (2006). Clinical relevance of low serum vitamin B-12 concentrations in older people: the Banbury B12 Study. Age and Ageing, 35(4), 416–422.PubMedCrossRefGoogle Scholar
  33. Jak, A. J. (2012). The impact of physical and mental activity on cognitive aging. Current Topics in Behavioral Neurosciences, 10, 273–291.PubMedCrossRefGoogle Scholar
  34. Jelic, V., Kivipelto, M., & Winblad, B. (2006). Clinical trials in mild cognitive impairment: lessons for the future. Journal of Neurology, Neurosurgery, and Psychiatry, 77, 429–438.PubMedCrossRefGoogle Scholar
  35. Kalmijn, S., Mehta, K. M., Pols, H. A., Hofman, A., Drexhage, H. A., & Breteler, M. M. (2000). Subclinical hyperthyroidism and the risk of dementia: the Rotterdam study. Clinical Endocrinology, 53(6), 733–737.PubMedCrossRefGoogle Scholar
  36. Karakaya, T., Fusser, F., Schroder, J., & Pantel, J. (2013). Pharmacological treatment of mild cognitive impairment as a prodromal syndrome of Alzheimer’s disease. Current Neuropharmacology, 11(1), 102–108.Google Scholar
  37. Khatri, M., Nickolas, T., Moon, Y. P., Paik, M. C., Rundek, T., Elkind, M. S., et al. (2009). CKD associates with cognitive decline. Journal of the American Society of Nephrology, 20(11), 2427–2432.PubMedCrossRefGoogle Scholar
  38. Kinsella, G. J., Mullaly, E., Rand, E., Ong, B., Burton, C., Price, S., et al. (2009). Early intervention for mild cognitive impairment: a randomised controlled trial. Journal of Neurology, Neurosurgery, and Psychiatry, 80, 730–736.PubMedCrossRefGoogle Scholar
  39. Koepsell, T. D., & Monsell, S. E. (2012). Reversion from mild cognitive impairment to normal or near-normal cognition: risk factors and prognosis. Neurology, 79(15), 1591–1598.PubMedCrossRefGoogle Scholar
  40. Kurella, M., Chertow, G. M., Fried, L. F., Cummings, S. R., Harris, T., Simonsick, E., et al. (2005). Chronic kidney disease and cognitive impairment in the elderly: the health, aging, and body composition study. Journal of the American Society of Nephrology, 16(7), 2127–2133.PubMedCrossRefGoogle Scholar
  41. Kwoz, T. C., Bai, X., Kao, H. S., Li, J. C., & Ho, F. K. (2011). Cognitive effects of calligraphy therapy for older people: a randomized controlled trial in Hong Kong. Clinical Interventions in Aging, 6, 269–273.Google Scholar
  42. Lam, L. C. W., Chau, R. C. M., Wong, B. M. L., Fung, A. W. T., Lui, V. W. C., Tam, C. C. W., et al. (2011). Interim follow-up of a randomized controlled trial comparing Chinese style mind body (Tai Chi) and stretching exercises on cognitive function in subjects as risk of progressive cognitive decline. International Journal of Geriatric Psychiatry, 26, 733–740.PubMedCrossRefGoogle Scholar
  43. Larrieu, S., Letenneur, L., Orgogozo, J. M., Fabriquole, C., Amieva, H., Le Carret, N., et al. (2002). Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology, 59(10), 1594–1599.PubMedCrossRefGoogle Scholar
  44. Lee, H. B., Richardson, A. K., Black, B. S., Shore, A. D., Kasper, J. D., & Rabins, P. V. (2012). Race and cognitive decline among community-dwelling elders with mild cognitive impairment: findings from the Memory and Medical Care Study. Aging & Mental Health, 16(3), 372–377.CrossRefGoogle Scholar
  45. Li, J., Wang, Y. J., Zhang, M., Xu, Z. Q., Gao, C. Y., Fang, C. Q., et al. (2011). Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology, 76(17), 1485–1491.PubMedCrossRefGoogle Scholar
  46. Li, H., Li, J., Li, N., Li, B., Wang, P., & Ting, Z. (2011). Cognitive interventions for persons with mild cognitive impairment: a meta-analysis. Ageing Research Reviews, 10, 285–296.PubMedCrossRefGoogle Scholar
  47. Lopez, O. L., Jagust, W. J., Dulberg, C., Becker, J. T., DeKosky, S. T., Fitzpatrick, A., et al. (2003). Risk factors for mild cognitive impairment in the Cardiovascular Health Study Cognition Study: part 2. Archives of Neurology, 60(10), 1394–1399.PubMedCrossRefGoogle Scholar
  48. Luck, T., Luppa, M., Briel, S., Matschinger, H., Konig, H. H., Bleich, S., et al. (2010). Mild cognitive impairment: incidence and risk factors: results of the Leipzig Longitudinal Study of the aged. Journal of American Geriatrics Society, 58(10), 1903–1910.CrossRefGoogle Scholar
  49. Luck, T., Luppa, M., Briel, S., & Riedel-Heller, S. G. (2010). Incidence of mild cognitive impairment: a systematic review. Dementia and Geriatric Cognitive Disorder, 29(2), 164–175.CrossRefGoogle Scholar
  50. Manly, J. J., Tang, M. X., Schupf, N., Stern, Y., Ronsattel, J. P., & Mayeux, R. (2008). Frequency and course of mild cognitive impairment in a multiethnic community. Annals of Neurology, 63(4), 494–506.PubMedCrossRefGoogle Scholar
  51. Mariani, E., Monastero, R., & Mecocci, P. (2007). Mild cognitive impairment: a systematic review. Journal of Alzheimer’s Disease, 12, 23–35.PubMedGoogle Scholar
  52. Monastero, R., Palmer, K., Qiu, C., Winblad, B., & Fratiglioni, L. (2007). Heterogeneity in risk factors for cognitive impairment, no dementia: population-based longitudinal study from the Kungsholmen Project. The American Journal of Geriatric Psychiatry, 15(1), 60–69.PubMedCrossRefGoogle Scholar
  53. Monastero, R., Mangialasche, F., Camarda, C., Ercolani, S., & Camarda, R. (2009). A systematic review of neuropsychiatric symptoms in mild cognitive impairment. Journal of Alzheimer’s Disease, 18(1), 11–30.PubMedGoogle Scholar
  54. Nagamatsu, L. S., Handy, T. C., Hsu, C. L., Voss, M., & Liu-Ambrose, T. (2012). Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Archives of Internal Medicine, 172(8), 666–668.PubMedCrossRefGoogle Scholar
  55. Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183–194.PubMedCrossRefGoogle Scholar
  56. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.PubMedCrossRefGoogle Scholar
  57. Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985–1992.PubMedCrossRefGoogle Scholar
  58. Petersen, R. C., Knopman, D. S., Boeve, B. F., Geda, Y. E., Ivnik, R. J., Smith, G. E., et al. (2009). Mild cognitive impairment: 10 years later. Archives of Neurology, 66(120), 1447–1455.PubMedCrossRefGoogle Scholar
  59. Popp, J., & Arlt, S. (2011). Pharmacological treatment of dementia and mild cognitive impairment due to Alzheimer’s disease. Current Opinion in Psychiatry, 24(6), 556–561.PubMedGoogle Scholar
  60. Rapp, S., Brenes, G., & Marsh, A. P. (2002). Memory enhancement training for older adults with mild cognitive impairment: a preliminary study. Aging & Mental Health, 6(2), 5–11.CrossRefGoogle Scholar
  61. Ravaglia, G., Forti, P., Lucicesare, A., Rietti, E., Pisacane, N., Mariani, E., et al. (2008). Prevalent depressive symptoms as a risk factor for conversion to mild cognitive impairment in an elderly Italian cohort. The American Journal of Geriatric Psychiatry, 16(10), 834–843.PubMedCrossRefGoogle Scholar
  62. Roberts, R. O., Geda, Y. E., Knopman, D. S., et al. (2008). The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics. Neuroepidemiology, 30(1), 58–69.PubMedCrossRefGoogle Scholar
  63. Sachdev, P. S., Lipnicki, D. M., Crawford, J., Reppermund, S., Kochan, N. A., Trollor, J. N., et al. (2012). Risk profiles of subtypes of mild cognitive impairment: the Sydney Memory and Ageing Study. Journal of the American Geriatric Society, 60(1), 24–33.CrossRefGoogle Scholar
  64. Scarmeas, N., Stern, Y., Mayeux, R., Mannly, J. J., Schupf, N., & Luchsinger, J. A. (2009). Mediterranean diet and mild cognitive impairment. Archives of Neurology, 66(2), 216–225.PubMedCrossRefGoogle Scholar
  65. Scherder, E. J. A., Van Paaschen, J., Deijen, J. B., Van Der Knokke, S., Orlebeke, K., Burgers, I., et al. (2005). Physical activity and executive functions in the elderly with mild cognitive impairment. Aging & Mental Health, 9(3), 272–280.CrossRefGoogle Scholar
  66. Schmand, B., Eikelenboom, P., & van Gool, W. A. (2012). Value of diagnostic tests to predict conversion to Alzheimer’s disease in young and old patients with amnestic mild cognitive impairment. Journal of Alzheimer’s Disease, 29(3), 641–648.PubMedGoogle Scholar
  67. Scholzel-Dorenbos, C. J., van der Steen, M. J., Engels, L. K., & Olde Rikkert, M. G. (2007). Assessment of quality of life as outcome in dementia and MCI intervention trials: a systematic review. Alzheimer’s Disease & Associated Disorders, 21(2), 172–178.CrossRefGoogle Scholar
  68. Schonknecht, P. (2011). Neurobiological and psychological aspects of mild cognitive impairment – bridging the gap. GeroPsych, 24(2), 63–64.Google Scholar
  69. Schreiber, M., & Schneider, R. (2007). Cognitive plasticity in people at risk for dementia: optimising the testing the-limits-approach. Aging & Mental Health, 11(1), 75–81.CrossRefGoogle Scholar
  70. Sofi, F., Valecchi, D., Bacci, D., Abbate, R., Gensini, G. F., Casini, A., et al. (2011). Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. Journal of Internal Medicine, 269(1), 107–117.PubMedCrossRefGoogle Scholar
  71. Steenland, K., Karnes, C., Seals, R., Carnevale, C., Hermida, A., & Levey, A. (2012). Late-life depression as a risk factor for mild cognitive impairment or Alzheimer’s disease in 30 US Alzheimer’s disease centers. Journal of Alzheimer’s Disease, 31(2), 265–275.PubMedGoogle Scholar
  72. Teng, E., Tassniyom, K., & Lu, P. H. (2012). Reduced quality of life ratings in mild cognitive impairment: analyses of subject and informant responses. The American Journal of Geriatric Psychiatry, 20(12), 1016–1025.PubMedCrossRefGoogle Scholar
  73. Troyer, A. K., Murphy, K. J., Anderson, N. D., Moscovitch, M., & Craik, F. I. M. (2008). Changing everyday memory behavior in amnestic mild cognitive impairment: a randomised controlled trial. Neuropsychological Rehabilitation: An International Journal, 18(1), 65–88.CrossRefGoogle Scholar
  74. Tschanz, J. T., Welsh-Bohmer, K. A., Lyketsos, C. G., Corcoran, C., Green, R. C., Hayden, K., et al. (2006). Conversion to dementia from mild cognitive disorder: the Cache County Study. Neurology, 67(2), 229–234.PubMedCrossRefGoogle Scholar
  75. Tsolaki, M., Kounti, F., Agogiatou, C., Popsti, E., Bakoglidou, E., Zafeiropoulou, M., et al. (2011). Effectiveness of nonpharmacological approaches in patients with mild cognitive impairment. Neurodegenerative Diseases, 8, 138–145.PubMedCrossRefGoogle Scholar
  76. Unverzagt, F. W., Ogunniyi, A., Taler, V., Gao, S., Lane, K. A., Baiyewu, O., et al. (2011). Incidence and risk factors for cognitive impairment no dementia and mild cognitive impairment in African Americans. Alzheimer’s Disease and Associated Disorders, 25(1), 4–10.CrossRefGoogle Scholar
  77. van Uffelen, J. G. Z., Chinapaw, M. J. M., van Mechelen, W., & Hopman-Rock, M. (2008). Walking or vitamin B for cognition in older adults with mild cognitive impairment? a randomised controlled trial. British Journal of Sports Medicine, 42, 344–351.PubMedCrossRefGoogle Scholar
  78. Verghese, J., LeValley, A., Derby, C., Kuslansky, G., Katz, M., Hall, C., et al. (2006). Neurology, 66(6), 821–827.PubMedCrossRefGoogle Scholar
  79. Ward, A., Arrighi, H. M., Michels, S., & Cedarbaum, J. M. (2012). Mild cognitive impairment: disparity of incidence and prevalence estimates. Alzheimer’s & Dementia, 8(1), 14–21.CrossRefGoogle Scholar
  80. Wilson, R. S., Mendes De Leon, C. F., Barnes, L. L., Schneider, J. A., Bienias, J. L., Evans, D. A., et al. (2002). Participation in cognitive stimulating activities and risk of incident Alzheimer disease. Journal of the American Medical Association, 287(6), 742–748.PubMedCrossRefGoogle Scholar
  81. Wilson, R. S., Scherr, P. A., Schneider, J. A., Tang, Y., & Bennett, D. A. (2007). Relation of cognitive activity to risk of developing Alzheimer disease. Neurology, 69(20), 1911–1920.PubMedCrossRefGoogle Scholar
  82. Wilson, R. S., Segawa, E., Boyle, P. A., & Bennett, D. A. (2012). Influence of late-life cognitive activity on cognitive health. Neurology, 78(15), 1123–1129.PubMedCrossRefGoogle Scholar
  83. Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., et al. (2004). Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on mild cognitive impairment. Journal of Internal Medicine, 256, 240–246.PubMedCrossRefGoogle Scholar
  84. Yu, P., Dean, R. A., Hall, S. D., Qi, Y., Sethuraman, G., Willis, B. A., et al. (2012). Enriching amnestic mild cognitive impairment populations for clinical trials: optimal combination of biomarkers to predict conversion to dementia. Journal of Alzheimer’s Disease, 32(2), 373–385.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2013

Authors and Affiliations

  • Marilyn Huckans
    • 1
    • 2
    • 3
    • 11
  • Lee Hutson
    • 2
  • Elizabeth Twamley
    • 4
    • 5
    • 6
  • Amy Jak
    • 7
  • Jeffrey Kaye
    • 8
    • 9
    • 10
  • Daniel Storzbach
    • 1
    • 2
    • 3
  1. 1.Research & Development Service, Portland VA Medical CenterPortlandUSA
  2. 2.Behavioral Health and Clinical Neurosciences Division, Portland VA Medical CenterPortlandUSA
  3. 3.Department of PsychiatryOregon Health & Science UniversityPortlandUSA
  4. 4.Department of PsychiatryUniversity of California San DiegoSan DiegoUSA
  5. 5.Stein Institute for Research on AgingUniversity of California San DiegoSan DiegoUSA
  6. 6.Center of Excellence for Stress and Mental Health, VA San Diego Healthcare SystemSan DiegoUSA
  7. 7.Department of Psychology ServiceVA San Diego Healthcare SystemSan DiegoUSA
  8. 8.Department of NeurologyPortland VA Medical CenterPortlandUSA
  9. 9.Layton Aging and Alzheimer’s Disease CenterOregon Health & Science UniversityPortlandUSA
  10. 10.Oregon Center for Aging and Technology (ORATECH)Oregon Health & Science UniversityPortlandUSA
  11. 11.Portland VA Medical Center (MHN)PortlandUSA

Personalised recommendations