Advertisement

Neuropsychology Review

, Volume 22, Issue 4, pp 414–424 | Cite as

Neuropsychological Assessment of Memory in Preschoolers

  • Patricia J. Bauer
  • Jacqueline S. Leventon
  • Nicole L. Varga
Review

Abstract

Memory is of fundamental importance for cognitive, social, and educational function, making it a target for neuropsychological assessment. The subject of this review is one particular type of memory, namely, episodic memory of unique events and experiences. Episodic memory allows for rapid, even one-trial learning of new information and retention of it for later retrieval. It depends on a particular neural substrate that undergoes a protracted developmental course. The review features discussion of some of the challenges associated with valid assessment of this specific form of memory in the preschool period, as well as a description and critical evaluation of available standardized measures. It also features description of two new approaches to assessment of episodic memory and their sensitivity to memory-specific deficits in the preschool years and in infancy. The review ends with introduction of the NIH Toolbox Picture Sequence Memory Test, designed as a measure of episodic memory in the preschool years and beyond.

Keywords

Memory Preschoolers 

References

  1. Adlam, A.-L. R., Vargha-Khadem, F., Mishkin, M., & de Haan, M. (2005). Deferred imitation of action sequences in developmental amnesia. Journal of Cognitive Neuroscience, 17, 240–248.PubMedCrossRefGoogle Scholar
  2. Alexander, A. I., & Mayfield, J. (2005). Latent factor structure of the Test of Memory and Learning in a pediatric traumatic brain injured sample: Support for a general memory construct. Archives of Clinical Neuropsychology, 20(5), 587–598.PubMedCrossRefGoogle Scholar
  3. Ames, E. (1997). The development of Romanian orphanage children adopted to Canada (Final Report to the National Welfare Grants Program: Human Resources Development Canada). Burnaby: Simon Fraser University.Google Scholar
  4. Arnold, S. E., & Trojanowski, J. Q. (1996). Human fetal hippocampal development: I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. The Journal of Comparative Neurology, 367, 274–292.PubMedCrossRefGoogle Scholar
  5. Barbas, H. (2000). Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Research Bulletin, 52, 319–330.PubMedCrossRefGoogle Scholar
  6. Baron, I. S., Erickson, K., Ahronovich, M. D., Litman, F. R., & Brandt, J. (2010). Spatial location memory discriminates children born at extremely low birth weight and late-preterm at age three. Neuropsychology, 24, 787–794.PubMedCrossRefGoogle Scholar
  7. Baron, I. S., Brandt, J., Ahronovich, M. D., Baker, R., Erickson, K., & Litman, F. R. (2011). Selective deficit in spatial location memory in extremely low birth weight children at age six: The PETIT study. Child Neuropsychology, iFirst, 1–13.Google Scholar
  8. Bauer, P. J. (1992). Holding it all together: how enabling relations facilitate young children’s event recall. Cognitive Development, 7, 1–28.CrossRefGoogle Scholar
  9. Bauer, P. J. (2004). New developments in the study of infant memory. In D. M. Teti (Ed.), Blackwell handbook of research methods in developmental science (pp. 467–488). Oxford: Blackwell Publishing.Google Scholar
  10. Bauer, P. J. (2007). Remembering the times of our lives: Memory in infancy and beyond. Mahwah: Erlbaum.Google Scholar
  11. Bauer, P. J. (Ed.). (2010). Advances in child development and behavior, volume 38. Varieties of early experience: Implications for the development of declarative memory in infancy. London: Elsevier.Google Scholar
  12. Bauer, P. J. (in press). The development of forgetting: Childhood amnesia. To appear in P. J. Bauer & R. Fivush (Eds.). The Wiley-Blackwell handbook on the development of children’s memory. West Sussex, UK: Wiley-Blackwell.Google Scholar
  13. Bauer, P. J., & Travis, L. L. (1993). The fabric of an event: different sources of temporal invariance differentially affect 24-month-olds’ recall. Cognitive Development, 8, 319–341.CrossRefGoogle Scholar
  14. Bauer, P. J., Larkina, M., & Deocampo, J. (2011). Early memory development. In U. Goswami (Ed.), The Wiley-Blackwell handbook of childhood cognitive development (2nd ed., pp. 153–179). Oxford: Wiley-Blackwell Publishers.Google Scholar
  15. Bauer, P. J., Burch, M. M., & Schwade, J. A. (in press a). Hearing the signal through the noise: Assessing the stability of individual differences in declarative memory in the second and third years of life. In P. J. Bauer (Ed.), Advances in child development and behavior, volume 38. Varieties of early experience: Implications for the development of declarative memory in infancy (pp. 49–72). London: Elsevier.Google Scholar
  16. Bauer, P. J., Dikmen, S., Heaton, R., Mungas, D., Slotkin, J., & Beaumont, J. L. (in press b). NIH toolbox cognition battery (NIHTB-CB): Measuring episodic memory. To appear In P. Zelazo & P. J. Bauer (Eds.), National Institutes of Health Toolbox—Cognition Battery (NIH Toolbox CFB): Validation for Children between 3 and 15 years. Monographs of the Society for Research in Child Development.Google Scholar
  17. Benes, F. M. (2001). The development of prefrontal cortex: The maturation of neurotransmitter systems and their interaction. In C. A. Nelson & M. Luciana (Eds.), Handbook of developmental cognitive neuroscience (pp. 79–92). Cambridge: The MIT Press.Google Scholar
  18. Benes, F. M., Turtle, M., Khan, Y., & Farol, P. (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Archives of General Psychiatry, 51, 477–484.PubMedCrossRefGoogle Scholar
  19. Bjorklund, D. F., Dukes, C., & Brown, R. D. (2009). The development of memory strategies. In M. L. Courage & N. Cowan (Eds.), The development of memory in infancy and childhood (pp. 145–175). New York: Taylor & Francis.Google Scholar
  20. Brandt, J. (2003). The Hopkins board: Professional manual. Unpublished manuscript, Baltimore.Google Scholar
  21. Burch, M. M., Schwade, J. A., & Bauer, P. J. (2010). Finding the right fit: Examining developmentally appropriate levels of challenge in elicited imitation studies. In P. J. Bauer (Ed.), Advances in Child development and behavior, volume 38. Varieties of early experience: Implications for the development of declarative memory in infancy (pp. 29–48). London: Elsevier.Google Scholar
  22. Cheatham, C. L., Sesma, H. W., Bauer, P. J., & Georgieff, M. K. (2010). The development of declarative memory in infants born preterm. In P. J. Bauer (Ed.), Advances in child development and behavior, volume 38. Varieties of early experience: Implications for the development of declarative memory in infancy (pp. 112–137). London: Elsevier.Google Scholar
  23. Churchill, J. D., Stanis, J. J., Press, C., Kushelev, M., & Greenough, W. T. (2003). Is procedural memory relatively spared from age effects? Neurobiology of Aging, 24, 883–892.PubMedCrossRefGoogle Scholar
  24. Corkin, S. (2002). What’s new with the amnesic patient H. M.? Nature Reviews, 3, 153–160.PubMedCrossRefGoogle Scholar
  25. de Haan, M., Bauer, P. J., Georgieff, M. K., & Nelson, C. A. (2000). Explicit memory in low-risk infants aged 19 months born between 27 and 42 weeks of gestation. Developmental Medicine and Child Neurology, 42, 304–312.PubMedCrossRefGoogle Scholar
  26. Eichenbaum, H., & Cohen, N. J. (2001). From conditioning to conscious recollection: Memory systems of the brain. New York: Oxford University Press.Google Scholar
  27. Elliott, C. D. (1990). Differential Ability Scales: Introductory and technical handbook. Google Scholar
  28. Fuster, J. M. (2002). Frontal lobe and cognitive development. Journal of Neurocytology, 31, 373–385.PubMedCrossRefGoogle Scholar
  29. Gadian, D. G., Aicardi, J., Watkins, K. E., Porter, D. A., Moshkin, M., & Vargha-Khadem, F. (2000). Developmental amnesia associated with early hypoxic-ischaemic injury. Brain, 123, 499–507.PubMedCrossRefGoogle Scholar
  30. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. PNAS, 101, 8174–8179.PubMedCrossRefGoogle Scholar
  31. Gunnar, M. R. (2000). Early adversity and the development of stress reactivity and regulation. In C. A. Nelson (Ed.), The effects of adversity on neurobehavioral development: Minnesota symposia on child psychology, 31 (pp. 163–200). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  32. Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex: developmental changes and effects of aging. Brain Research, 163, 195–205.PubMedCrossRefGoogle Scholar
  33. Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387, 167–178.PubMedCrossRefGoogle Scholar
  34. Kaufman, A. S., & Kaufman, N. L. (2004). Kaufman assessment battery for children (2nd ed.). Circle Pines: AGS.Google Scholar
  35. Korkman, M., Kirk, U., & Kemp, S. (2007). NEPSY-II: A developmental neuropsychological assessment. San Antonio: The Psychological Corporation.Google Scholar
  36. Kroupina, M. G., Bauer, P. J., Gunnar, M. R., & Johnson, D. E. (2010). Institutional care as a risk for declarative memory development. In P. J. Bauer (Ed.), Advances in child development and behavior, volume 38. Varieties of early experience: implications for the development of declarative memory in infancy (pp. 2138–2160). London: Elsevier.Google Scholar
  37. Lloyd, M. E., & Newcombe, N. S. (2009). Implicit memory in childhood: Reassessing developmental invariance. In M. L. Courage & N. Cowan (Eds.), The development of memory in infancy and childhood (pp. 93–113). New York: Taylor & Francis.Google Scholar
  38. Maguire, E. A. (2001). Neuroimaging studies of autobiographical event memory. Philosophical Transactions of Royal Society of London, 356, 1441–1451.CrossRefGoogle Scholar
  39. McGaugh, J. L. (2000). Memory—A century of consolidation. Science, 287, 248–251.PubMedCrossRefGoogle Scholar
  40. McGrew, K. S. (2005). The Cattell-Horn-Carroll (CHC) theory of cognitive abilities. Past, present, and future. In D. Flanagan & Harrison (Eds.), Contemporary intellectual assessment. Theories, tests, and issues (pp. 136–202). New York: Guilford Press.Google Scholar
  41. Meltzoff, A. N. (1985). Immediate and deferred imitation in fourteen- and twenty-four-month-old infants. Child Development, 56, 62–72.Google Scholar
  42. Meltzoff, A. N. (1988). Infant imitation and memory: nine-month-olds in immediate and deferred tests. Child Development, 59, 217–225.PubMedCrossRefGoogle Scholar
  43. Menon, V., Boyett-Anderson, J. M., & Reiss, A. L. (2005). Maturation of medial temporal lobe response and connectivity during memory encoding. Cognitive Brain Research, 25, 379–385.PubMedCrossRefGoogle Scholar
  44. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychology, 41, 49–100.PubMedCrossRefGoogle Scholar
  45. Ofen, N., Kao, Y.-C., Sokol-Hessner, P., Kim, H., Whitfield-Gabrieli, S., & Gabrieli, J. D. E. (2007). Development of the declarative memory system in the human brain. Nature Neuroscience, 10, 1198–1205.PubMedCrossRefGoogle Scholar
  46. Olesen, P. J., Nagy, Z., Westerberg, H., & Klingberg, T. (2003). Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network. Cognitive Brain Research, 18, 48–57.PubMedCrossRefGoogle Scholar
  47. Petrides, M. (1995). Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in monkeys. Journal of Neuroscience, 15, 359–375.PubMedGoogle Scholar
  48. Pfluger, T., Weil, S., Wies, S., Vollmar, C., Heiss, D., Egger, J., Scheck, R., & Hahn, K. (1999). Normative volumetric data of the developing hippocampus in children based on magnetic resonance imaging. Epilepsia, 40, 414–423.PubMedCrossRefGoogle Scholar
  49. Ratner, H. H., Smith, B. S., & Dion, S. A. (1986). Development of memory for events. Journal of Experimental Child Psychology, 41, 411–428.CrossRefGoogle Scholar
  50. Reber, P. J., Martinez, L. A., & Weintraub, S. (2003). Artificial grammar learning in Alzheimer’s disease. Cognitive, Affective, & Behavioral Neuroscience, 3, 145–153.CrossRefGoogle Scholar
  51. Reed, J. M., & Squire, L. R. (1998). Retrograde amnesia for facts and events: findings from four new cases. Journal of Neuroscience, 18, 3943–3954.PubMedGoogle Scholar
  52. Riggins, T., Miller, N. C., Bauer, P. J., Georgieff, M. K., & Nelson, C. A. (2009). Electrophysiological indices of memory for temporal order in early childhood: implications for the development of recollection. Developmental Science, 12, 209–219 (Ms. ID# NIHMS162018).PubMedCrossRefGoogle Scholar
  53. Riggins, T., Bauer, P. J., Georgieff, M. K., & Nelson, C. A. (2010). Declarative memory performance in infants of diabetic mothers. In P. J. Bauer (Ed.), Advances in child development and behavior, volume 38. Varieties of early experience: Implications for the development of declarative memory in infancy (pp. 73–111). London: Elsevier.CrossRefGoogle Scholar
  54. Riggins, T., Cheatham, C., Stark, E., & Bauer, P. J. (2012) Elicited imitation performance at 20 months predicts memory abilities in school age children. Journal of Cognition and Development.Google Scholar
  55. Riggins, T., Miller, N. C., Bauer, P. J., Georgieff, M. K., & Nelson, C. A. (2009). Consequences of low neonatal iron status due to maternal diabetes mellitus on explicit memory performance in childhood. Developmental Neuropsychology. doi: 10.1080/87565640903265145
  56. Rose, S. A., Feldman, J. F., Jankowski, J. J., & Van Rossem, R. (2005). Pathways from prematurity and infant abilities to later cognition. Child Development, 76(6), 1172–1184.PubMedCrossRefGoogle Scholar
  57. Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2009). Information processing in toddlers: continuity from infancy and persistence of preterm deficits. Intelligence, 37(3), 311–320.PubMedCrossRefGoogle Scholar
  58. Rose, S. A., Feldman, J. F., Jankowski, J. J., & Van Rossem, R. (2011). The structure of memory in infants and toddlers: an SEM study with full-terms and preterms. Developmental Science, 14(1), 83–91.PubMedCrossRefGoogle Scholar
  59. Rose, S. A., Feldman, J. F., & Jankowski, J. J. (in press). Memory in at-risk populations: Infants born prior to term. To appear in P. J. Bauer & R. Fivush (Eds.), Wiley-Blackwell Handbook on the Development of Children’s Memory. Oxford, UK: Wiley-Blackwell.Google Scholar
  60. Rutter, M. L. (1981). Maternal deprivation reassessed. New York: Penguin.Google Scholar
  61. Rutter, M. L., & the E.R.A. Study Team. (1998). Developmental catch-up and deficit following adoption after severe global early privation. Journal of Child Psychology and Psychiatry, 39, 465–476.PubMedCrossRefGoogle Scholar
  62. Schneider, W. (1998). Performance prediction in young children: effects of skill, metacognition, and wishful thinking. Developmental Science, 1, 291–297.CrossRefGoogle Scholar
  63. Schneider, J. F. L., Il’yasov, K. A., Hennig, J., & Martin, E. (2004). Fast quantitative difusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology, 46, 258–266.PubMedCrossRefGoogle Scholar
  64. Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurological and Neurosurgical Psychiatry, 20, 11–12.CrossRefGoogle Scholar
  65. Shimamura, A. P., Janowsky, J. S., & Squire, L. R. (1990). Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia, 28, 803–813.PubMedCrossRefGoogle Scholar
  66. Sowell, E. R., Delis, D., Stiles, J., & Jernigan, T. L. (2001). Improved memory functioning and frontal lobe maturation between childhood and adolescence: a structural MRI study. Journal of International Neuropsychological Society, 7, 312–322.CrossRefGoogle Scholar
  67. Squire, L. R., Knowlton, B., & Musen, G. (1993). The structure and organization of memory. Annual Review of Psychology, 44, 453–495.PubMedCrossRefGoogle Scholar
  68. Thorp, J. A., Jones, P. G., Clark, R. H., Knox, E., & Peabody, J. L. (2001). Perinatal factors associated with sever intracranial hemorrhage. American Journal of Obstetrics and Gynecology, 185, 859–882.PubMedCrossRefGoogle Scholar
  69. Tulving, E. (2000). Concepts of memory. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 33–42). New York: Oxford University Press.Google Scholar
  70. Utsunomiya, H., Takano, K., Okazaki, M., & Mistudome, A. (1999). Development of the tempral lobe in infants and children: analysis by MR-based volumetry. American Journal of Neuroradiology, 20, 717–723.PubMedGoogle Scholar
  71. Vaupel, C.A. (2001). Test Reviews: Cohen, M.J. (1997). Children’s memory scale. San Antonio, TX: The Psychological Corporation. Journal of Psychoeducational Assessment, 19, 392400.Google Scholar
  72. Weintraub, S., Dikmen, S. S., Heaton, R. K., Tulsky, D. S., Zelazo, P. D., Bauer, P. J., et al. (in press). NIH Toolbox for the assessment of behavioral and neurological function: cognition domain instruments. Neurology.Google Scholar
  73. Zola, S. M., & Squire, L. R. (2000). The medial temporal lobe and the hippocampus. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 485–500). New York: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Patricia J. Bauer
    • 1
  • Jacqueline S. Leventon
    • 1
  • Nicole L. Varga
    • 1
  1. 1.Department of Psychology, 36 Eagle RowEmory UniversityAtlantaUSA

Personalised recommendations