Neuropsychology Review

, Volume 22, Issue 4, pp 313–333 | Cite as

Brain Development During the Preschool Years

  • Timothy T. BrownEmail author
  • Terry L. Jernigan


The preschool years represent a time of expansive mental growth, with the initial expression of many psychological abilities that will continue to be refined into young adulthood. Likewise, brain development during this age is characterized by its “blossoming” nature, showing some of its most dynamic and elaborative anatomical and physiological changes. In this article, we review human brain development during the preschool years, sampling scientific evidence from a variety of sources. First, we cover neurobiological foundations of early postnatal development, explaining some of the primary mechanisms seen at a larger scale within neuroimaging studies. Next, we review evidence from both structural and functional imaging studies, which now accounts for a large portion of our current understanding of typical brain development. Within anatomical imaging, we focus on studies of developing brain morphology and tissue properties, including diffusivity of white matter fiber tracts. We also present new data on changes during the preschool years in cortical area, thickness, and volume. Physiological brain development is then reviewed, touching on influential results from several different functional imaging and recording modalities in the preschool and early school-age years, including positron emission tomography (PET), electroencephalography (EEG) and event-related potentials (ERP), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS). Here, more space is devoted to explaining some of the key methodological factors that are required for interpretation. We end with a section on multimodal and multidimensional imaging approaches, which we believe will be critical for increasing our understanding of brain development and its relationship to cognitive and behavioral growth in the preschool years and beyond.


Human brain development Preschool Developmental cognitive neuroscience Pediatric neuropsychology Functional neuroimaging Structural neuroimaging MRI fMRI MEG PET EEG ERP NIRS DTI 



This research was supported by the National Institute on Drug Abuse and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (RC2DA029475, R01HD061414). Some data used in preparation of this article were obtained from the Pediatric Imaging, Neurocognition, and Genetics Study (PING) database. A complete listing of PING investigators can be found at PING data are disseminated by the PING Coordinating Center at the Center for Human Development, University of California, San Diego.


  1. Allen, P., Stephan, K.E., Mechelli, A., Day, F., Ward, N., Dalton, J., Williams, S.C., & McGuire, P. (2009). Cingulate activity and fronto-temporal connectivity in people with prodromal signs of psychosis. Neuroimage.Google Scholar
  2. Alonso-Solis, A., Corripio, I., de Castro-Manglano, P., Duran-Sindreu, S., Garcia-Garcia, M., Proal, E., Nunez-Marin, F., Soutullo, C., Alvarez, E., Gomez-Anson, B., Kelly, C., & Castellanos, F. X. (2012). Altered default network resting state functional connectivity in patients with a first episode of psychosis. Schizophrenia Research, 139, 13–18.PubMedGoogle Scholar
  3. Bandettini, P. A., Jesmanowicz, A., Wong, E. C., & Hyde, J. S. (1993). Processing strategies for time-course data sets in functional MRI of the human brain. Magnetic Resonance in Medicine, 30, 161–173.PubMedGoogle Scholar
  4. Barkovich, A. J. (2000). Concepts of myelin and myelination in neuroradiology. AJNR. American Journal of Neuroradiology, 21, 1099–1109.PubMedGoogle Scholar
  5. Barkovich, A. J. (2005). Magnetic resonance techniques in the assessment of myelin and myelination. Journal of Inherited Metabolic Disease, 28, 311–343.PubMedGoogle Scholar
  6. Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A., Dant, C. C., & Reiss, A. L. (2005). White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cerebral Cortex, 15, 1848–1854.PubMedGoogle Scholar
  7. Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66, 259–267.PubMedGoogle Scholar
  8. Behen, M. E., Muzik, O., Saporta, A. S., Wilson, B. J., Pai, D., Hua, J., & Chugani, H. T. (2009). Abnormal fronto-striatal connectivity in children with histories of early deprivation: a diffusion tensor imaging study. Brain Imaging and Behavior, 3, 292–297.PubMedGoogle Scholar
  9. Belliveau, J. W. (1990). Functional NMR imaging of the brain. Ph.D. Thesis, Cambridge, MA: Harvard University.Google Scholar
  10. Belliveau, J. W., Cohen, M. S., Weisskoff, R. M., Buchbinder, B. R., & Rosen, B. R. (1991). Functional studies of the human brain using high-speed magnetic resonance imaging. Journal of Neuroimaging, 1, 36–41.PubMedGoogle Scholar
  11. Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., Beckmann, C. F., Adelstein, J. S., Buckner, R. L., Colcombe, S., Dogonowski, A. M., Ernst, M., Fair, D., Hampson, M., Hoptman, M. J., Hyde, J. S., Kiviniemi, V. J., Kotter, R., Li, S. J., Lin, C. P., Lowe, M. J., Mackay, C., Madden, D. J., Madsen, K. H., Margulies, D. S., Mayberg, H. S., McMahon, K., Monk, C. S., Mostofsky, S. H., Nagel, B. J., Pekar, J. J., Peltier, S. J., Petersen, S. E., Riedl, V., Rombouts, S. A., Rypma, B., Schlaggar, B. L., Schmidt, S., Seidler, R. D., Siegle, G. J., Sorg, C., Teng, G. J., Veijola, J., Villringer, A., Walter, M., Wang, L., Weng, X. C., Whitfield-Gabrieli, S., Williamson, P., Windischberger, C., Zang, Y. F., Zhang, H. Y., Castellanos, F. X., & Milham, M. P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107, 4734–4739.Google Scholar
  12. Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2004). Development of brain mechanisms for processing orthographic and phonologic representations. Journal of Cognitive Neuroscience, 16, 1234–1249.PubMedGoogle Scholar
  13. Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Choy, J., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2003). Modality-specific and -independent developmental differences in the neural substrate for lexical processing. Journal of Neurolinguistics, 16, 383–405.PubMedGoogle Scholar
  14. Booth, J. R., Macwhinney, B., Thulborn, K. R., Sacco, K., Voyvodic, J., & Feldman, H. M. (1999). Functional organization of activation patterns in children: whole brain fMRI imaging during three different cognitive tasks. Progress in Neuropsychopharmacology and Biological Psychiatry, 23, 669–682.Google Scholar
  15. Bourgeois, J. P., Goldman-Rakic, P. S., & Rakic, P. (1994). Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex, 4, 78–96.PubMedGoogle Scholar
  16. Bourgeois, J. P., & Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. Journal of Neuroscience, 13, 2801–2820.PubMedGoogle Scholar
  17. Brown, T.T., Kuperman, J.M., Chung, Y., Erhart, M., McCabe, C., Hagler, D.J., Jr., Venkatraman, V.K., Akshoomoff, N., Amaral, D.G., Bloss, C.S., Casey, B.J., Chang, L., Ernst, T.M., Frazier, J.A., Gruen, J.R., Kaufmann, W E., Kenet, T., Kennedy, D.N., Murray, S.S., Sowell, E.R., Jernigan, T.L., & Dale, A.M. (2012). Neuroanatomical assessment of biological maturity. Current Biology, 22, 1–6.
  18. Brown, T. T., Kuperman, J. M., Erhart, M., White, N. S., Roddey, J. C., Shankaranarayanan, A., Han, E. T., Rettmann, D., & Dale, A. M. (2010). Prospective motion correction of high-resolution magnetic resonance imaging data in children. NeuroImage, 53, 139–145.PubMedGoogle Scholar
  19. Brown, T. T., Lugar, H. M., Coalson, R. S., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2005). Developmental changes in human cerebral functional organization for word generation. Cerebral Cortex, 15, 275–290.PubMedGoogle Scholar
  20. Brown, T. T., Petersen, S. E., & Schlaggar, B. L. (2003). Functional neuroimaging approaches to the study of human brain development. Neurophysiology and Neurogenic Speech and Language Disorders, 13, 3–10.Google Scholar
  21. Brown, T. T., Petersen, S. E., & Schlaggar, B. L. (2006). Does human functional brain organization shift from diffuse to focal with development? Developmental Science, 9, 9–11.PubMedGoogle Scholar
  22. Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. (2002). Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron, 33, 301–311.PubMedGoogle Scholar
  23. Burgund, E. D., Kang, H. C., Kelly, J. E., Buckner, R. L., Snyder, A. Z., Petersen, S. E., & Schlaggar, B. L. (2002). The feasibility of a common stereotactic space for children and adults in fMRI studies of development. NeuroImage, 17, 184–200.PubMedGoogle Scholar
  24. Carp, J. (2012). Optimizing the order of operations for movement scrubbing: comment on Power et al. Neuroimage.Google Scholar
  25. Cascio, C. J., Gerig, G., & Piven, J. (2007). Diffusion tensor imaging: application to the study of the developing brain. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 213–223.PubMedGoogle Scholar
  26. Casey, B. J., Cohen, J. D., Jezzard, P., Turner, R., Noll, D. C., Trainor, R. J., Giedd, J., Kaysen, D., Hertz-Pannier, L., & Rapoport, J. L. (1995). Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI. NeuroImage, 2, 221–229.PubMedGoogle Scholar
  27. Casey, B. J., Cohen, J. D., King, S. W., Franzen, P. L., Nystrom, L. E., Badgaiyan, R. D., Schubert, A. B., & Noll, D. C. (1997). A developmental functional MRI study of cortical activation during a spatial working memory task. NeuroImage, 5, S69.Google Scholar
  28. Casey, B. J., Galvan, A., & Hare, T. A. (2005). Changes in cerebral functional organization during cognitive development. Current Opinion in Neurobiology, 15, 239–244.PubMedGoogle Scholar
  29. Casey, B. J., Trainor, R., Giedd, J., Vauss, Y., Vaituzis, C. K., Hamburger, S., Kozuch, P., & Rapoport, J. L. (1997). The role of the anterior cingulate in automatic and controlled processes: a developmental neuroanatomical study. Developmental Psychobiology, 30, 61–69.PubMedGoogle Scholar
  30. Casey, B. J., Trainor, R., Orendi, J. L., et al. (1997). A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. Journal of Cognitive Neuroscience, 9, 835–847.Google Scholar
  31. Caviness, V.S., Meyer, J., Makris, N., & Kennedy, D.N. (1996). MRI-based topographic parcellation of the human neocortex: an anatomically specified method with estimate of reliability. Journal of Cognitive Neuroscience, 8.Google Scholar
  32. Cayre, M., Canoll, P., & Goldman, J. E. (2009). Cell migration in the normal and pathological postnatal mammalian brain. Progress in Neurobiology, 88, 41–63.PubMedGoogle Scholar
  33. Chapman, R. M., & Bragdon, H. R. (1964). Evoked responses to numerical and non-numerical visual stimuli while problem solving. Nature, 203, 1155–1157.PubMedGoogle Scholar
  34. Cheour, M., Imada, T., Taulu, S., Ahonen, A., Salonen, J., & Kuhl, P. (2004). Magnetoencephalography is feasible for infant assessment of auditory discrimination. Experimental Neurology, 190(Suppl 1), S44–S51.PubMedGoogle Scholar
  35. Chou, T. L., Booth, J. R., Burman, D. D., Bitan, T., Bigio, J. D., Lu, D., & Cone, N. E. (2006). Developmental changes in the neural correlates of semantic processing. NeuroImage, 29, 1141–1149.PubMedGoogle Scholar
  36. Chugani, H. T., Hovda, D. A., Villablanca, J. R., Phelps, M. E., & Xu, W. F. (1991). Metabolic maturation of the brain: a study of local cerebral glucose utilization in the developing cat. Journal of Cerebral Blood Flow and Metabolism, 11, 35–47.PubMedGoogle Scholar
  37. Chugani, H. T., & Phelps, M. E. (1991). Imaging human brain development with positron emission tomography. Journal of Nuclear Medicine, 32, 23–26.PubMedGoogle Scholar
  38. Chugani, H. T., Phelps, M. E., & Mazziotta, J. C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 22, 487–497.PubMedGoogle Scholar
  39. Church, J. A., Fair, D. A., Dosenbach, N. U., Cohen, A. L., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2009). Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain, 132, 225–238.PubMedGoogle Scholar
  40. Church, J. A., Petersen, S. E., & Schlaggar, B. L. (2010). The “Task B problem” and other considerations in developmental functional neuroimaging. Human Brain Mapping, 31, 852–862.PubMedGoogle Scholar
  41. Cohen, D. (1968). Magnetic field measurements of human alpha rhythm. Science, 161, 784–786.PubMedGoogle Scholar
  42. Cohen, D. (1972). Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science, 175, 664–666.PubMedGoogle Scholar
  43. Cohen, D., & Cuffin, B. N. (1983). Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalography and Clinical Neurophysiology, 56, 38–51.PubMedGoogle Scholar
  44. Cohen, D., & Cuffin, B. N. (1991). EEG versus MEG localization accuracy: theory and experiment. Brain Topography, 4, 95–103.PubMedGoogle Scholar
  45. Cohen, D., Cuffin, B. N., Yunokuchi, K., Maniewski, R., Purcell, C., Cosgrove, G. R., Ives, J., Kennedy, J. G., & Schomer, D. L. (1990). MEG versus EEG localization test using implanted sources in the human brain. Annals of Neurology, 28, 811–817.PubMedGoogle Scholar
  46. Cohen, M. S., & DuBois, R. M. (1999). Stability, repeatability, and the expression of signal magnitude in functional magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 10, 33–40.PubMedGoogle Scholar
  47. Courchesne, E. (1977). Event-related brain potentials: comparison between children and adults. Science, 197, 589–592.PubMedGoogle Scholar
  48. Courchesne, E. (1978). Neurophysiological correlates of cognitive development: changes in long-latency event-related potentials from childhood to adulthood. Electroencephalography and Clinical Neurophysiology, 45, 468–482.PubMedGoogle Scholar
  49. Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Covington, J., Egaas, B., Harwood, M., Hinds, S., & Press, G. A. (2000). Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology, 216, 672–682.PubMedGoogle Scholar
  50. Crone, E. A., Poldrack, R. A., & Durston, S. (2010). Challenges and methods in developmental neuroimaging. Human Brain Mapping, 31, 835–837.PubMedGoogle Scholar
  51. Cuffin, B. N., & Cohen, D. (1979). Comparison of the magnetoencephalogram and electroencephalogram. Electroencephalography and Clinical Neurophysiology, 47, 132–146.PubMedGoogle Scholar
  52. Cullen, K. R., Gee, D. G., Klimes-Dougan, B., Gabbay, V., Hulvershorn, L., Mueller, B. A., Camchong, J., Bell, C. J., Houri, A., Kumra, S., Lim, K. O., Castellanos, F. X., & Milham, M. P. (2009). A preliminary study of functional connectivity in comorbid adolescent depression. Neuroscience Letters, 460, 227–231.PubMedGoogle Scholar
  53. Dale, A. M., & Halgren, E. (2001). Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Current Opinion in Neurobiology, 11, 202–208.PubMedGoogle Scholar
  54. Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., & Halgren, E. (2000). Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron, 26, 55–67.PubMedGoogle Scholar
  55. Dale, A. M., & Sereno, M. I. (1993). Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. Journal of Cognitive Neuroscience, 5, 162–176.Google Scholar
  56. Davis, K. F., Parker, K. P., & Montgomery, G. L. (2004). Sleep in infants and young children: part one: normal sleep. Journal of Pediatric Health Care, 18, 65–71.PubMedGoogle Scholar
  57. De Martino, F., Valente, G., de Borst, A. W., Esposito, F., Roebroeck, A., Goebel, R., & Formisano, E. (2010). Multimodal imaging: an evaluation of univariate and multivariate methods for simultaneous EEG/fMRI. Magnetic Resonance Imaging, 28, 1104–1112.PubMedGoogle Scholar
  58. Decety, J., Michalska, K. J., & Kinzler, K. D. (2011). The contribution of emotion and cognition to moral sensitivity: a neurodevelopmental study. Cerebral Cortex, 22, 209–220.PubMedGoogle Scholar
  59. Dehaene-Lambertz, G., Dehaene, S., & Hertz-Pannier, L. (2002). Functional neuroimaging of speech perception in infants. Science, 298, 2013–2015.PubMedGoogle Scholar
  60. Devor, A., Ulbert, I., Dunn, A. K., Narayanan, S. N., Jones, S. R., Andermann, M. L., Boas, D. A., & Dale, A. M. (2005). Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proceedings of the National Academy of Sciences, 102, 3822–3827.Google Scholar
  61. DeYoe, E. A., Bandettini, P., Neitz, J., Miller, D., & Winans, P. (1994). Functional magnetic resonance imaging (FMRI) of the human brain. Journal of Neuroscience Methods, 54, 171–187.PubMedGoogle Scholar
  62. Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X. N., Mennes, M., Mairena, M. A., Lord, C., Castellanos, F. X., & Milham, M. P. (2011). Aberrant striatal functional connectivity in children with autism. Biological Psychiatry, 69, 847–856.PubMedGoogle Scholar
  63. Dickstein, D. P., Gorrostieta, C., Ombao, H., Goldberg, L. D., Brazel, A. C., Gable, C. J., Kelly, C., Gee, D. G., Zuo, X. N., Castellanos, F. X., & Milham, M. P. (2010). Fronto-temporal spontaneous resting state functional connectivity in pediatric bipolar disorder. Biological Psychiatry, 68, 839–846.PubMedGoogle Scholar
  64. Dien, J., Spencer, K. M., & Donchin, E. (2003). Localization of the event-related potential novelty response as defined by principal components analysis. Brain Research. Cognitive Brain Research, 17, 637–650.PubMedGoogle Scholar
  65. Dobbing, J., & Sands, J. (1973). Quantitative growth and development of human brain. Archives of Disease in Childhood, 48, 757–767.PubMedGoogle Scholar
  66. Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., Nelson, S. M., Wig, G. S., Vogel, A. C., Lessov-Schlaggar, C. N., Barnes, K. A., Dubis, J. W., Feczko, E., Coalson, R. S., Pruett, J. R., Jr., Barch, D. M., Petersen, S. E., & Schlaggar, B. L. (2010). Prediction of individual brain maturity using fMRI. Science, 329, 1358–1361.PubMedGoogle Scholar
  67. Dumontheil, I., & Klingberg, T. (2011). Brain activity during a visuospatial working memory task predicts arithmetical performance 2 years later. Cerebral Cortex, 22, 1078–1085.PubMedGoogle Scholar
  68. Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., & Casey, B. J. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 1–8.PubMedGoogle Scholar
  69. Fair, D. A., Bathula, D., Mills, K. L., Dias, T. G., Blythe, M. S., Zhang, D., Snyder, A. Z., Raichle, M. E., Stevens, A. A., Nigg, J. T., & Nagel, B. J. (2010). Maturing thalamocortical functional connectivity across development. Frontiers in Systems Neuroscience, 4, 10.PubMedGoogle Scholar
  70. Fair, D. A., Brown, T. T., Petersen, S. E., & Schlaggar, B. L. (2006). A comparison of analysis of variance and correlation methods for investigating cognitive development with functional magnetic resonance imaging. Developmental Neuropsychology, 30, 531–546.PubMedGoogle Scholar
  71. Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U., Church, J. A., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5, e1000381.PubMedGoogle Scholar
  72. Fair, D. A., Dosenbach, N. U., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., Barch, D. M., Raichle, M. E., Petersen, S. E., & Schlaggar, B. L. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences, 104, 13507–13512.Google Scholar
  73. Fields, R. D., & Burnstock, G. (2006). Purinergic signalling in neuron-glia interactions. Nature Reviews Neuroscience, 7, 423–436.PubMedGoogle Scholar
  74. Friederici, A. D. (2006). The neural basis of language development and its impairment. Neuron, 52, 941–952.PubMedGoogle Scholar
  75. Fuchigami, T., Okubo, O., Ejiri, K., Fujita, Y., Kohira, R., Noguchi, Y., Fuchigami, S., Hiyoshi, K., Nishimura, A., & Harada, K. (1995). Developmental changes in P300 wave elicited during two different experimental conditions. Pediatric Neurology, 13, 25–28.PubMedGoogle Scholar
  76. Fujioka, T., Ross, B., Kakigi, R., Pantev, C., & Trainor, L. J. (2006). One year of musical training affects development of auditory cortical-evoked fields in young children. Brain, 129, 2593–2608.PubMedGoogle Scholar
  77. Gaillard, W. D., Hertz-Pannier, L., Mott, S. H., Barnett, A. S., LeBihan, D., & Theodore, W. H. (2000). Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults. Neurology, 54, 180–185.PubMedGoogle Scholar
  78. Gaillard, W. D., Sachs, B. C., Whitnah, J. R., Ahmad, Z., Balsamo, L. M., Petrella, J. R., Braniecki, S. H., McKinney, C. M., Hunter, K., Xu, B., & Grandin, C. B. (2003). Developmental aspects of language processing: fMRI of verbal fluency in children and adults. Human Brain Mapping, 18, 176–185.PubMedGoogle Scholar
  79. Geisler, M. W., & Murphy, C. (2000). Event-related brain potentials to attended and ignored olfactory and trigeminal stimuli. International Journal of Psychophysiology, 37, 309–315.PubMedGoogle Scholar
  80. Gerstl, F., Windischberger, C., Mitterhauser, M., Wadsak, W., Holik, A., Kletter, K., Moser, E., Kasper, S., & Lanzenberger, R. (2008). Multimodal imaging of human early visual cortex by combining functional and molecular measurements with fMRI and PET. NeuroImage, 41, 204–211.PubMedGoogle Scholar
  81. Ghetti, S., DeMaster, D. M., Yonelinas, A. P., & Bunge, S. A. (2010). Developmental differences in medial temporal lobe function during memory encoding. Journal of Neuroscience, 30, 9548–9556.PubMedGoogle Scholar
  82. Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., Vaituzis, A. C., Vauss, Y. C., Hamburger, S. D., Kaysen, D., & Rapoport, J. L. (1996). Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex, 6, 551–560.PubMedGoogle Scholar
  83. Giedd, J. N., Vaituzis, A. C., Hamburger, S. D., Lange, N., Rajapakse, J. C., Kaysen, D., Vauss, Y. C., & Rapoport, J. L. (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years. The Journal of Comparative Neurology, 366, 223–230.PubMedGoogle Scholar
  84. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent, T. F., 3rd, Herman, D. H., Clasen, L. S., Toga, A. W., Rapoport, J. L., & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 8174–8179.PubMedGoogle Scholar
  85. Gozzo, Y., Vohr, B., Lacadie, C., Hampson, M., Katz, K. H., Maller-Kesselman, J., Schneider, K. C., Peterson, B. S., Rajeevan, N., Makuch, R. W., Constable, R. T., & Ment, L. R. (2009). Alterations in neural connectivity in preterm children at school age. NeuroImage, 48, 458–463.PubMedGoogle Scholar
  86. Hagler, D. J., Jr., Ahmadi, M. E., Kuperman, J., Holland, D., McDonald, C. R., Halgren, E., & Dale, A. M. (2009). Automated white-matter tractography using a probabilistic diffusion tensor atlas: Application to temporal lobe epilepsy. Human Brain Mapping, 30, 1535–1547.PubMedGoogle Scholar
  87. Halgren, E. (2004). How can intracranial recordings assist MEG source localization? Neurology and Clinical Neurophysiology, 2004, 86.PubMedGoogle Scholar
  88. Halgren, E., Baudena, P., Heit, G., Clarke, J. M., Marinkovic, K., Chauvel, P., & Clarke, M. (1994). Spatio-temporal stages in face and word processing. 2. Depth-recorded potentials in the human frontal and Rolandic cortices. Journal of Physiology, Paris, 88, 51–80.PubMedGoogle Scholar
  89. Hämäläinen, M. S., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography - theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65, 413–497.Google Scholar
  90. Hermoye, L., Saint-Martin, C., Cosnard, G., Lee, S. K., Kim, J., Nassogne, M. C., Menten, R., Clapuyt, P., Donohue, P. K., Hua, K., Wakana, S., Jiang, H., van Zijl, P. C., & Mori, S. (2006). Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. NeuroImage, 29, 493–504.PubMedGoogle Scholar
  91. Hertz-Pannier, L., Gaillard, W. D., Mott, S. H., Cuenod, C. A., Bookheimer, S. Y., Weinstein, S., Conry, J., Papero, P. H., Schiff, S. J., Le Bihan, D., & Theodore, W. H. (1997). Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology, 48, 1003–1012.PubMedGoogle Scholar
  92. Hobson, J. A., & McCarley, R. W. (1971). Cortical unit activity in sleep and waking. Electroencephalography and Clinical Neurophysiology, 30, 97–112.PubMedGoogle Scholar
  93. Holland, D., & Dale, A. M. (2011). Nonlinear registration of longitudinal images and measurement of change in regions of interest. Medical Image Analysis, 15, 489–497.PubMedGoogle Scholar
  94. Holland, D., Kuperman, J. M., & Dale, A. M. (2010). Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging. NeuroImage, 50, 175–183.PubMedGoogle Scholar
  95. Holland, S. K., Vannest, J., Mecoli, M., Jacola, L. M., Tillema, J. M., Karunanayaka, P. R., Schmithorst, V. J., Yuan, W., Plante, E., & Byars, A. W. (2007). Functional MRI of language lateralization during development in children. International Journal of Audiology, 46, 533–551.PubMedGoogle Scholar
  96. Hoshi, Y. (2003). Functional near-infrared optical imaging: utility and limitations in human brain mapping. Psychophysiology, 40, 511–520.PubMedGoogle Scholar
  97. Houde, O., Pineau, A., Leroux, G., Poirel, N., Perchey, G., Lanoe, C., Lubin, A., Turbelin, M. R., Rossi, S., Simon, G., Delcroix, N., Lamberton, F., Vigneau, M., Wisniewski, G., Vicet, J. R., & Mazoyer, B. (2011). Functional magnetic resonance imaging study of Piaget’s conservation-of-number task in preschool and school-age children: a neo-Piagetian approach. Journal of Experimental Child Psychology, 110, 332–346.PubMedGoogle Scholar
  98. Hua, J. Y., & Smith, S. J. (2004). Neural activity and the dynamics of central nervous system development. Nature Neuroscience, 7, 327–332.PubMedGoogle Scholar
  99. Huppi, P. S., & Dubois, J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal and Neonatal Medicine, 11, 489–497.PubMedGoogle Scholar
  100. Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387, 167–178.PubMedGoogle Scholar
  101. Huttenlocher, P. R., & de Courten, C. (1987). The development of synapses in striate cortex of man. Human Neurobiology, 6, 1–9.PubMedGoogle Scholar
  102. Imada, T., Zhang, Y., Cheour, M., Taulu, S., Ahonen, A., & Kuhl, P. K. (2006). Infant speech perception activates Broca’s area: a developmental magnetoencephalography study. Neuroreport, 17, 957–962.PubMedGoogle Scholar
  103. Innocenti, G. M., & Price, D. J. (2005). Exuberance in the development of cortical networks. Nature Reviews Neuroscience, 6, 955–965.PubMedGoogle Scholar
  104. Iwasaki, N., Hamano, K., Okada, Y., Horigome, Y., Nakayama, J., Takeya, T., Takita, H., & Nose, T. (1997). Volumetric quantification of brain development using MRI. Neuroradiology, 39, 841–846.PubMedGoogle Scholar
  105. Jernigan, T. L., & Tallal, P. (1990). Late childhood changes in brain morphology observable with MRI. Developmental Medicine and Child Neurology, 32, 379–385.PubMedGoogle Scholar
  106. Jernigan, T. L., Trauner, D. A., Hesselink, J. R., & Tallal, P. A. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain, 114(Pt 5), 2037–2049.PubMedGoogle Scholar
  107. Jobsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198, 1264–1267.PubMedGoogle Scholar
  108. Johnson, M. H. (2000). Functional brain development in infants: elements of an interactive specialization framework. Child Development, 71, 75–81.PubMedGoogle Scholar
  109. Johnson, M. H. (2011). Interactive specialization: a domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1, 7–21.PubMedGoogle Scholar
  110. Kang, H. C., Burgund, E. D., Lugar, H. M., Petersen, S. E., & Schlaggar, B. L. (2003). Comparison of functional activation foci in children and adults using a common stereotactic space. NeuroImage, 19, 16–28.PubMedGoogle Scholar
  111. Kawakubo, Y., Kono, T., Takizawa, R., Kuwabara, H., Ishii-Takahashi, A., & Kasai, K. (2011). Developmental changes of prefrontal activation in humans: a near-infrared spectroscopy study of preschool children and adults. PLoS One, 6, e25944.PubMedGoogle Scholar
  112. Kennedy, H., & Dehay, C. (2001). Gradients and boundaries: limits of modularity and its influence on the isocortex. Developmental Science, 4, 147–148 [Commentary].Google Scholar
  113. Kennedy, D. N., Makris, N., Herbert, M. R., Takahashi, T., & Caviness, V. S., Jr. (2002). Basic principles of MRI and morphometry studies of human brain development. Developmental Science, 5, 268–278.Google Scholar
  114. Kikuchi, M., Shitamichi, K., Yoshimura, Y., Ueno, S., Remijn, G. B., Hirosawa, T., Munesue, T., Tsubokawa, T., Haruta, Y., Oi, M., Higashida, H., & Minabe, Y. (2011). Lateralized theta wave connectivity and language performance in 2- to 5-year-old children. Journal of Neuroscience, 31, 14984–14988.PubMedGoogle Scholar
  115. Kotsoni, E., Byrd, D., & Casey, B. J. (2006). Special considerations for functional magnetic resonance imaging of pediatric populations. Journal of Magnetic Resonance Imaging, 23, 877–886.PubMedGoogle Scholar
  116. Kuperman, J.M., Brown, T.T., Ahmadi, M.E., Erhart, M.J., White, N.S., Roddey, J.C., Shankaranarayanan, A., Han, E.T., Rettmann, D., & Dale, A.M. (2011). Prospective motion correction improves diagnostic utility of pediatric MRI scans. Pediatric Radiology.Google Scholar
  117. Lebel, C., & Beaulieu, C. (2011). Longitudinal development of human brain wiring continues from childhood into adulthood. Journal of Neuroscience, 31, 10937–10947.PubMedGoogle Scholar
  118. Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Microstructural maturation of the human brain from childhood to adulthood. NeuroImage, 40, 1044–1055.PubMedGoogle Scholar
  119. Lee, P. S., Yerys, B. E., Della Rosa, A., Foss-Feig, J., Barnes, K. A., James, J. D., VanMeter, J., Vaidya, C. J., Gaillard, W. D., & Kenworthy, L. E. (2009). Functional connectivity of the inferior frontal cortex changes with age in children with autism spectrum disorders: a fcMRI study of response inhibition. Cerebral Cortex, 19, 1787–1794.PubMedGoogle Scholar
  120. Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neuroscience and Biobehavioral Reviews, 30, 718–729.PubMedGoogle Scholar
  121. Lin, S. C., & Bergles, D. E. (2004). Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nature Neuroscience, 7, 24–32.PubMedGoogle Scholar
  122. Logothetis, N. K., & Wandell, B. A. (2004). Interpreting the BOLD signal. Annual Review of Physiology, 66, 735–769.PubMedGoogle Scholar
  123. Lyytinen, H., Blomberg, A. P., & Naatanen, R. (1992). Event-related potentials and autonomic responses to a change in unattended auditory stimuli. Psychophysiology, 29, 523–534.PubMedGoogle Scholar
  124. Mankinen, K., Jalovaara, P., Paakki, J. J., Harila, M., Rytky, S., Tervonen, O., Nikkinen, J., Starck, T., Remes, J., Rantala, H., & Kiviniemi, V. (2012). Connectivity disruptions in resting-state functional brain networks in children with temporal lobe epilepsy. Epilepsy Research, 100, 168–178.PubMedGoogle Scholar
  125. McCarthy, G., & Donchin, E. (1981). A metric for thought: a comparison of P300 latency and reaction time. Science, 211, 77–80.PubMedGoogle Scholar
  126. McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., & Smith, L. B. (2010). Letting structure emerge: connectionist and dynamical systems approaches to cognition. Trends in Cognitive Science, 14, 348–356.Google Scholar
  127. McDonald, C. R., Thesen, T., Carlson, C., Blumberg, M., Girard, H. M., Trongnetrpunya, A., Sherfey, J. S., Devinsky, O., Kuzniecky, R., Dolye, W. K., Cash, S. S., Leonard, M. K., Hagler, D. J., Jr., Dale, A. M., & Halgren, E. (2010). Multimodal imaging of repetition priming: using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing. NeuroImage, 53, 707–717.PubMedGoogle Scholar
  128. McRae, K., Gross, J. J., Weber, J., Robertson, E. R., Sokol-Hessner, P., Ray, R. D., Gabrieli, J. D., & Ochsner, K. N. (2012). The development of emotion regulation: an fMRI study of cognitive reappraisal in children, adolescents and young adults. Social Cognitive and Affective Neuroscience, 7, 11–22.PubMedGoogle Scholar
  129. McTigue, D. M., & Tripathi, R. B. (2008). The life, death, and replacement of oligodendrocytes in the adult CNS. Journal of Neurochemistry, 107, 1–19.PubMedGoogle Scholar
  130. Mennes, M., Vega Potler, N., Kelly, C., Di Martino, A., Castellanos, F. X., & Milham, M. P. (2011). Resting state functional connectivity correlates of inhibitory control in children with attention-deficit/hyperactivity disorder. Frontiers in Psychiatry, 2, 83.PubMedGoogle Scholar
  131. Meyer-Lindenberg, A. (1996). The evolution of complexity in human brain development: an EEG study. Electroencephalography and Clinical Neurophysiology, 99, 405–411.PubMedGoogle Scholar
  132. Mori, S., & van Zijl, P. C. (1995). Diffusion weighting by the trace of the diffusion tensor within a single scan. Magnetic Resonance in Medicine, 33, 41–52.PubMedGoogle Scholar
  133. Morr, M. L., Shafer, V. L., Kreuzer, J. A., & Kurtzberg, D. (2002). Maturation of mismatch negativity in typically developing infants and preschool children. Ear and Hearing, 23, 118–136.PubMedGoogle Scholar
  134. Mukherjee, P., & McKinstry, R. C. (2006). Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clinics of North America, 16, 19–43.PubMedGoogle Scholar
  135. Murphy, K., & Garavan, H. (2004a). An empirical investigation into the number of subjects required for an event-related fMRI study. NeuroImage, 22, 879–885.PubMedGoogle Scholar
  136. Murphy, K., & Garavan, H. (2004b). Artifactual fMRI group and condition differences driven by performance confounds. NeuroImage, 21, 219–228.PubMedGoogle Scholar
  137. Naatanen, R., & Alho, K. (1995a). Generators of electrical and magnetic mismatch responses in humans. Brain Topography, 7, 315–320.PubMedGoogle Scholar
  138. Naatanen, R., & Alho, K. (1995b). Mismatch negativity–a unique measure of sensory processing in audition. International Journal of Neuroscience, 80, 317–337.PubMedGoogle Scholar
  139. Nelson, C. A., 3rd, & McCleery, J. P. (2008). Use of event-related potentials in the study of typical and atypical development. Journal of the American Academy of Child and Adolescent Psychiatry, 47, 1252–1261.PubMedGoogle Scholar
  140. Nelson, C. A., Monk, C. S., Lin, J., Carver, L. J., Thomas, K. M., & Truwit, C. L. (2000). Functional neuroanatomy of spatial working memory in children. Developmental Psychology, 36, 109–116.PubMedGoogle Scholar
  141. Nunez, P. L. (1981). Electric fields of the brain. New York: Oxford University Press.Google Scholar
  142. Ostby, Y., Tamnes, C. K., Fjell, A. M., Westlye, L. T., Due-Tonnessen, P., & Walhovd, K. B. (2009). Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30 years. Journal of Neuroscience, 29, 11772–11782.PubMedGoogle Scholar
  143. Oun, W., Numenmaa, A., Hamalainen, M., & Golland, P. (2009). Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation. Information Processing in Medical Imaging, 21, 88–100.PubMedGoogle Scholar
  144. Palmer, E. D., Brown, T. T., Petersen, S. E., & Schlaggar, B. L. (2004). Investigation of the functional neuroanatomy of single word reading and its development. Scientific Studies of Reading, 8, 203–223.Google Scholar
  145. Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, M., Jacobson, K., Lyons, M. J., Grant, M. D., Franz, C. E., Xian, H., Tsuang, M., Fischl, B., Seidman, L., Dale, A., & Kremen, W. S. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19, 2728–2735.PubMedGoogle Scholar
  146. Pascual-Marqui, R. D., & Biscay-Lirio, R. (1993). Spatial resolution of neuronal generators based on EEG and MEG measurements. International Journal of Neuroscience, 68, 93–105.PubMedGoogle Scholar
  147. Paus, T., Collins, D. L., Evans, A. C., Leonard, G., Pike, B., & Zijdenbos, A. (2001). Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Research Bulletin, 54, 255–266.PubMedGoogle Scholar
  148. Pearce, J. W., Crowell, D. H., Tokioka, A., & Pacheco, G. P. (1989). Childhood developmental changes in the auditory P300. Journal of Child Neurology, 4, 100–106.PubMedGoogle Scholar
  149. Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874–887.PubMedGoogle Scholar
  150. Pfeifer, J. H., Masten, C. L., Borofsky, L. A., Dapretto, M., Fuligni, A. J., & Lieberman, M. D. (2009). Neural correlates of direct and reflected self-appraisals in adolescents and adults: when social perspective-taking informs self-perception. Child Development, 80, 1016–1038.PubMedGoogle Scholar
  151. Phelps, M. E., & Mazziotta, J. C. (1985). Positron emission tomography: human brain function and biochemistry. Science, 228, 799–809.PubMedGoogle Scholar
  152. Pihko, E., Kujala, T., Mickos, A., Antell, H., Alku, P., Byring, R., & Korkman, M. (2005). Magnetic fields evoked by speech sounds in preschool children. Clinical Neurophysiology, 116, 112–119.PubMedGoogle Scholar
  153. Plunkett, K., Karmiloff-Smith, A., Bates, E., Elman, J. L., & Johnson, M. H. (1997). Connectionism and developmental psychology. Journal of Child Psycholology and Psychiatry, 38, 53–80.Google Scholar
  154. Poldrack, R. A. (2010). Interpreting developmental changes in neuroimaging signals. Human Brain Mapping, 31, 872–878.PubMedGoogle Scholar
  155. Polich, J. (1993). Cognitive brain potentials. Current Directions in Psychological Science, 2, 175–179.Google Scholar
  156. Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148.PubMedGoogle Scholar
  157. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2011). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59, 2142–2154.PubMedGoogle Scholar
  158. Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., & Petersen, S.E. (2012). Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. Neuroimage.Google Scholar
  159. Power, J. D., Fair, D. A., Schlaggar, B. L., & Petersen, S. E. (2010). The development of human functional brain networks. Neuron, 67, 735–748.PubMedGoogle Scholar
  160. Quartz, S. R., & Sejnowski, T. J. (1997). The neural basis of cognitive development: a constructivist manifesto. The Behavioral and Brain Sciences, 20, 537–556. discussion 556–596.PubMedGoogle Scholar
  161. Reiss, A. L., Abrams, M. T., Singer, H. S., & Ross, J. L. (1996). Brain development, gender and IQ in children: a volumetric imaging study. Brain, 119, 1763–1774.PubMedGoogle Scholar
  162. Remijn, G. B., Kikuchi, M., Yoshimura, Y., Shitamichi, K., Ueno, S., Nagao, K., Munesue, T., Kojima, H., & Minabe, Y. (2011). Hemodynamic responses to visual stimuli in cortex of adults and 3- to 4-year-old children. Brain Research, 1383, 242–251.PubMedGoogle Scholar
  163. Ressel, V., Wilke, M., Lidzba, K., Lutzenberger, W., & Krageloh-Mann, I. (2008). Increases in language lateralization in normal children as observed using magnetoencephalography. Brain and Language, 106, 167–176.PubMedGoogle Scholar
  164. Rossion, B., Kung, C. C., & Tarr, M. J. (2004). Visual expertise with nonface objects leads to competition with the early perceptual processing of faces in the human occipitotemporal cortex. Proceedings of the National Academy of Sciences, 101, 14521–14526.Google Scholar
  165. Schlaggar, B. L., Brown, T. T., Lugar, H. M., Visscher, K. M., Miezin, F. M., & Petersen, S. E. (2002). Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science, 296, 1476–1479.PubMedGoogle Scholar
  166. Schneider, J. F., Il’yasov, K. A., Hennig, J., & Martin, E. (2004). Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology, 46, 258–266.PubMedGoogle Scholar
  167. Shehzad, Z., Kelly, A. M., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin, L. Q., Lee, S. H., Margulies, D. S., Roy, A. K., Biswal, B. B., Petkova, E., Castellanos, F. X., & Milham, M. P. (2009). The resting brain: unconstrained yet reliable. Cerebral Cortex, 19, 2209–2229.PubMedGoogle Scholar
  168. Snook, L., Paulson, L. A., Roy, D., Phillips, L., & Beaulieu, C. (2005). Diffusion tensor imaging of neurodevelopment in children and young adults. NeuroImage, 26, 1164–1173.PubMedGoogle Scholar
  169. Snyder, A. Z., & Raichle, M. E. (2012). A brief history of the resting state: the Washington University perspective. NeuroImage, 62, 902–910.PubMedGoogle Scholar
  170. Somerville, L. H., Hare, T., & Casey, B. J. (2010). Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents. Journal of Cognitive Neuroscience, 23, 2123–2134.PubMedGoogle Scholar
  171. Sowell, E. R., Thompson, P. M., Holmes, C. J., Batth, R., Jernigan, T. L., & Toga, A. W. (1999). Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. NeuroImage, 9, 587–597.PubMedGoogle Scholar
  172. Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2, 859–861.PubMedGoogle Scholar
  173. Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. Journal of Neuroscience, 24, 8223–8231.PubMedGoogle Scholar
  174. Sowell, E. R., Trauner, D. A., Gamst, A., & Jernigan, T. L. (2002). Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Developmental Medicine and Child Neurology, 44, 4–16.PubMedGoogle Scholar
  175. Stanfield, B.B., & O’Leary, D.D. (1985). The transient corticospinal projection from the occipital cortex during the postnatal development of the rat. Journal of Comparative Neurology, 238.Google Scholar
  176. Stanfield, B.B., O’Leary, D.D., & Fricks, C. (1982). Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature, 298.Google Scholar
  177. Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. Journal of Neurophysiology, 85, 1969–1985.PubMedGoogle Scholar
  178. Sullivan, E. V., Pfefferbaum, A., Rohlfing, T., Baker, F. C., Padilla, M. L., & Colrain, I. M. (2011). Developmental change in regional brain structure over 7 months in early adolescence: comparison of approaches for longitudinal atlas-based parcellation. NeuroImage, 57, 214–224.PubMedGoogle Scholar
  179. Supekar, K., Uddin, L. Q., Prater, K., Amin, H., Greicius, M. D., & Menon, V. (2010). Development of functional and structural connectivity within the default mode network in young children. NeuroImage, 52, 290–301.PubMedGoogle Scholar
  180. Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150, 1187–1188.PubMedGoogle Scholar
  181. Sutton, S., Tueting, P., Zubin, J., & John, E. R. (1967). Information delivery and the sensory evoked potential. Science, 155, 1436–1439.PubMedGoogle Scholar
  182. Suzuki, Y., Matsuzawa, H., Kwee, I. L., & Nakada, T. (2003). Absolute eigenvalue diffusion tensor analysis for human brain maturation. NMR in Biomedicine, 16, 257–260.PubMedGoogle Scholar
  183. Taylor, M. J., Batty, M., & Itier, R. J. (2004). The faces of development: a review of early face processing over childhood. Journal of Cognitive Neuroscience, 16, 1426–1442.PubMedGoogle Scholar
  184. Thatcher, R. (1992). Cyclic cortical reorganization during early childhood. Brain and Cognition, 20, 24–50.PubMedGoogle Scholar
  185. Thatcher, R., Walker, R., & Giudice, S. (1987). Human cerebral hemispheres develop at different rates and ages. Science, 236, 1110–1113.PubMedGoogle Scholar
  186. Thomas, K. M., Hunt, R. H., Vizueta, N., Sommer, T., Durston, S., Yang, Y., & Worden, M. S. (2004). Evidence of developmental differences in implicit sequence learning: an fMRI study of children and adults. Journal of Cognitive Neuroscience, 16, 1339–1351.PubMedGoogle Scholar
  187. Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. Trends in Neurosciences, 29, 148–159.PubMedGoogle Scholar
  188. Travis, K. E., Leonard, M. K., Brown, T. T., Hagler, D. J., Jr., Curran, M., Dale, A. M., Elman, J. L., & Halgren, E. (2011). Spatiotemporal neural dynamics of word understanding in 12- to 18-month-old-infants. Cerebral Cortex, 21, 1832–1839.PubMedGoogle Scholar
  189. Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. (2003). Development of neural mechanisms for reading. Nature Neuroscience, 6, 767–773.PubMedGoogle Scholar
  190. Uddin, L. Q., Supekar, K., Amin, H., Rykhlevskaia, E., Nguyen, D. A., Greicius, M. D., & Menon, V. (2010). Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cerebral Cortex, 20, 2636–2646.PubMedGoogle Scholar
  191. Uddin, L. Q., Supekar, K., & Menon, V. (2010). Typical and atypical development of functional human brain networks: insights from resting-state FMRI. Frontiers in Systems Neuroscience, 4, 21.PubMedGoogle Scholar
  192. Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. Journal of Neuroscience, 31, 18578–18589.PubMedGoogle Scholar
  193. Vaidya, C. J., Foss-Feig, J., Shook, D., Kaplan, L., Kenworthy, L., & Gaillard, W. D. (2011). Controlling attention to gaze and arrows in childhood: an fMRI study of typical development and Autism Spectrum Disorders. Developmental Science, 14, 911–924.PubMedGoogle Scholar
  194. Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2011). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59, 431–438.PubMedGoogle Scholar
  195. Velanova, K., Wheeler, M. E., & Luna, B. (2008). Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cerebral Cortex, 18, 2505–2522.PubMedGoogle Scholar
  196. Wendelken, C., Baym, C. L., Gazzaley, A., & Bunge, S. A. (2011). Neural indices of improved attentional modulation over middle childhood. Developmental Cognitive Neuroscience, 1, 175–186.PubMedGoogle Scholar
  197. Wendelken, C., O’Hare, E. D., Whitaker, K. J., Ferrer, E., & Bunge, S. A. (2011). Increased functional selectivity over development in rostrolateral prefrontal cortex. Journal of Neuroscience, 31, 17260–17268.PubMedGoogle Scholar
  198. White, N., Roddey, C., Shankaranarayanan, A., Han, E., Rettmann, D., Santos, J., Kuperman, J., & Dale, A. (2010). PROMO: real-time prospective motion correction in MRI using image-based tracking. Magnetic Resonance in Medicine, 63, 91–105.PubMedGoogle Scholar
  199. White, T., Schmidt, M., Kim, D. I., & Calhoun, V. D. (2010). Disrupted functional brain connectivity during verbal working memory in children and adolescents with schizophrenia. Cerebral Cortex, 21, 510–518.PubMedGoogle Scholar
  200. Winkler, I., Karmos, G., & Naatanen, R. (1996). Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential. Brain Research, 742, 239–252.PubMedGoogle Scholar
  201. Wozniak, J. R., Mueller, B. A., Muetzel, R. L., Bell, C. J., Hoecker, H. L., Nelson, M. L., Chang, P. N., & Lim, K. O. (2011). Inter-hemispheric functional connectivity disruption in children with prenatal alcohol exposure. Alcohol: Clinical and Experimental Research, 35, 849–861.Google Scholar
  202. Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life (pp. 3–70). Oxford: Blackwell Scientific.Google Scholar
  203. Yamaguchi, S., & Knight, R. T. (1991). P300 generation by novel somatosensory stimuli. Electroencephalography and Clinical Neurophysiology, 78, 50–55.PubMedGoogle Scholar
  204. Zecevic, N., Bourgeois, J. P., & Rakic, P. (1989). Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Brain Research. Developmental Brain Research, 50, 11–32.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Multimodal Imaging LaboratoryUniversity of California—San DiegoLa JollaUSA
  2. 2.Department of Neurosciences, School of MedicineUniversity of California—San DiegoLa JollaUSA
  3. 3.Center for Human DevelopmentUniversity of California—San DiegoLa JollaUSA
  4. 4.Department of Cognitive ScienceUniversity of California—San DiegoLa JollaUSA
  5. 5.Department of Psychiatry, School of MedicineUniversity of California—San DiegoLa JollaUSA
  6. 6.Department of Radiology, School of MedicineUniversity of California—San DiegoLa JollaUSA

Personalised recommendations