Neuropsychology Review

, Volume 22, Issue 3, pp 211–228 | Cite as

The Relationship of Appetitive, Reproductive and Posterior Pituitary Hormones to Alcoholism and Craving in Humans

  • George A. Kenna
  • Robert M. Swift
  • Thomas Hillemacher
  • Lorenzo Leggio
Review

Abstract

A significant challenge for understanding alcoholism lies in discovering why some, but not other individuals, become dependent on alcohol. Genetic, environmental, cultural, developmental, and neurobiological influences are recognized as essential factors underlying a person's risk for becoming alcohol dependent (AD); however, the neurobiological processes that trigger this vulnerability are still poorly understood. Hormones are important in the regulation of many functions and several hormones are strongly associated with alcohol use. While medical consequences are important, the primary focus of this review is on the underlying confluence of appetitive/feeding, reproductive and posterior pituitary hormones associated with distinct phases of alcoholism or assessed by alcohol craving in humans. While these hormones are of diverse origin, the involvement with alcoholism by these hormone systems is unmistakable, and demonstrates the complexity of interactions with alcohol and the difficulty of successfully pursuing effective treatments. Whether alcohol associated changes in the activity of certain hormones are the result of alcohol use or are the result of an underlying predisposition for alcoholism, or a combination of both, is currently of great scientific interest. The evidence we present in this review suggests that appetitive hormones may be markers as they appear involved in alcohol dependence and craving, that reproductive hormones provide an example of the consequences of drinking and are affected by alcohol, and that posterior pituitary hormones have potential for being targets for treatment. A better understanding of the nature of these associations may contribute to diagnosing and more comprehensively treating alcoholism. Pharmacotherapies that take advantage of our new understanding of hormones, their receptors, or their potential relationship to craving may shed light on the treatment of this disorder.

Keywords

Hormones Neuroendocrinology Alcohol dependence Alcoholism Appetitive Pituitary Genetics 

References

  1. Addolorato, G., Capristo, E., Leggio, L., Ferrulli, A., Abenavoli, L., Malandrino, N., et al. (2006). Relationship between ghrelin levels, alcohol craving, and nutritional status in current alcoholic patients. Alcoholism: Clinical and Experimental Research., 30, 1933–1937.Google Scholar
  2. Adinoff, B., Junghanns, K., Kiefer, F., & Krishnan-Sarin, S. (2005). Suppression of the HPA axis stress-response: implications for relapse. Alcoholism: Clinical and Experimental Research, 7, 1351–1355.Google Scholar
  3. Ahima, R. S. (2004). Adiponectin acts in the brain to decrease body weight. Nature Medicine., 10, 524–529.PubMedGoogle Scholar
  4. Allen, D. (1996). Are alcoholic women more likely to drink premenstrually? Alcohol Alcoholism., 31, 145–147.Google Scholar
  5. Anacker, M. J., & Ryabinin, A. E. (2010). Biological contribution to social influences on alcohol drinking: evidence from animal models. International Journal Environmental Research Public Health, 7, 473–493.Google Scholar
  6. Anton, R. F., O'Malley, S. S., Ciraulo, D. A., Cisler, R. A., Couper, D., Donovan, D. M., et al. (2006). Combined pharmacotherapies and behavioral interventions for alcohol dependence: the COMBINE study: a randomized controlled trial. Journal of the American Medical Association., 295, 2003–2017.PubMedGoogle Scholar
  7. Antoni, F. A., Hunter, E. F., Lowry, P. J., Noble, J. M., & Seckl, J. R. (1992). Atriopeptin: an endogenous corticotropin-release inhibiting hormone. Endocrinology, 130, 1753–5.PubMedGoogle Scholar
  8. Aragona, B. J., Liu, Y., Curtis, J. T., Stephan, F. K., & Wang, Z. (2003). A critical role for nucleus accumbens dopamine in partner-preference formation in male prairie voles. Journal of Neuroscience., 23, 3483–3490.PubMedGoogle Scholar
  9. Augustyńska, B., Ziółkowski, M., Odrowaz-Sypniewska, G., Kiełpiński, A., Gruszka, M., & Kosmowski, W. (2007). Menstrual cycle in women addicted to alcohol during the first week following drinking cessation–changes of sex hormones levels in relation to selected clinical features. Alcohol Alcoholism, 42, 80–3.Google Scholar
  10. Badaoui, A., De Saeger, C., Duchemin, J., Gihousse, D., de Timary, P., & Stärkel, P. (2008). Alcohol dependence is associated with reduced plasma and fundic ghrelin levels. European Journal of Clinical Investigation, 38, 397–403.PubMedGoogle Scholar
  11. Bancroft, J. (2005). The endocrinology of sexual arousal. Journal of Endocrinology., 186, 411–27.PubMedGoogle Scholar
  12. Baskerville, T. A., & Douglas, A. J. (2010). Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders. CNS Neuroscience & Therapeutics, 16, e92–e123.Google Scholar
  13. Baskerville, T. A., Allard, J., Wayman, C., & Douglas, A. J. (2009). Dopamine–oxytocin interactions in penile erection. European Journal of Neuroscience, 30, 2151.PubMedGoogle Scholar
  14. Baumgartner, A., Rommelspacher, H., Otto, M., Schmidt, L. G., Kürten, I., Gräf, K. J., et al. (1994). Hypothalamic pituitary thyroid (HPT) axis in chronic alcoholism. I. HPT axis in chronic alcoholics during withdrawal and after 3 weeks of abstinence Alcoholism. Clinical and Experimental Research, 18, 284–294.Google Scholar
  15. Belfer, M. L., Shader, R. I., Corroll, M., & Harmatz, J. S. (1971). Alcoholism in women. Archives of General Psychiatry, 25, 540–544.PubMedGoogle Scholar
  16. Bellem, A., Meiyappan, S., Romans, S., & Einstein, G. (2011). Measuring estrogens and progestagens in humans: an overview of methods. General Medicine, 8, 283–99.Google Scholar
  17. Bleich, S., Lenz, B., Ziegenbein, M., Beutler, S., Frieling, H., Kornhuber, J., et al. (2006). Epigenetic DNA hypermethylation of the HERP gene promoter induces down-regulation of its mRNA expression in patients with alcohol dependence. Alcoholism: Clinical and Experimental Research, 30, 587–91.Google Scholar
  18. Blum, K., Chen, T. J., Meshkin, B., Downs, B. W., Gordon, C. A., Blum, S., et al. (2007). Genotrim, a DNA-customized nutrigenomic product, targets genetic factors of obesity: hypothesizing a dopamine-glucose correlation demonstrating reward deficiency syndrome (RDS). Medicine Hypotheses, 68, 844–52.Google Scholar
  19. Buijs, R. M. (1983). Vasopressin and oxytocin—their role in neurotransmission. Pharmacology and Therapeutics, 22, 127–141.PubMedGoogle Scholar
  20. Bulik, C. M., Klump, K. L., Thornton, L., Kaplan, A. S., Devlin, B., Fichter, M. M., et al. (2004). Alcohol use disorder comorbidity in eating disorders: a multicenter study. Journal of Clinical Psychiatry, 65, 1000–6.PubMedGoogle Scholar
  21. Calissendorff, J., Danielsson, O., Brismar, K., & Röjdmark, S. (2005). Inhibitory effect of alcohol on ghrelin secretion in normal man. European Journal of Endocrinology, 152, 743–747.PubMedGoogle Scholar
  22. Calissendorff, J., Danielsson, O., Brismar, K., & Röjdmark, S. (2006). Alcohol ingestion does not affect serum levels of peptide YY but decreases both total and octanoylated ghrelin levels in healthy subjects. Metabolism, 55, 1625–1629.PubMedGoogle Scholar
  23. Carmichael, M. S., Humbert, R., Dixen, J., Palmisano, G., Greenleaf, W., & Davidson, J. M. (1987). Plasma oxytocin increases in the human sexual response. Journal of Clinical Endocrinological Metabolism, 64, 27–31.Google Scholar
  24. Castilla-García, A., Santolaria-Fernández, F. J., González-Reimers, C. E., Batista-López, N., González-García, C., Jorge-Hernández, J. A., et al. (1987). Alcohol-induced hypogonadism: reversal after ethanol withdrawal. Drug and Alcohol Dependence, 20, 255–60.PubMedGoogle Scholar
  25. Chamberlain, N. L., Driver, E. D., & Miesfeld, R. L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Research, 22, 3181–6.PubMedGoogle Scholar
  26. Chen, S., Zhou, D., Okubo, T., Kao, Y. C., Eng, E. T., Grube, B., et al. (2002). Prevention and treatment of breast cancer by suppressing aromatase activity and expression. Annals New York Academy of Science, 963, 229–38.Google Scholar
  27. Chen, W. Y., Rosner, B., Hankinson, S. E., Colditz, G. A., & Willett, W. C. (2011). Moderate alcohol consumption during adult life, drinking patterns, and breast cancer risk. Journal of the American Medical Association, 306, 1884–90.PubMedGoogle Scholar
  28. Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Review Endocrinology, 5, 374–81.Google Scholar
  29. Chung, K. W. (1990). Effects of chronic ethanol intake on aromatization of androgens and concentration of estrogen and androgen receptors in rat liver. Toxicology, 62, 285–295.PubMedGoogle Scholar
  30. Ciccocioppo, R., Gehlert, D. R., Ryabinin, A., Kaur, S., Cippitelli, A., Thorsell, A., et al. (2009). Stress-related neuropeptides and alcoholism: CRH, NPY, and beyond. Alcohol, 43, 491–8.PubMedGoogle Scholar
  31. Cobo, E. (1973). Effect of different dose of alcohol on the milk-ejecting reflex in lactating women. American Journal of Obstetrics and Gynecology, 115, 817.PubMedGoogle Scholar
  32. Coiro, V. (1992). Inhibition by ethanol of the oxytocin response to breast stimulation in normal women and the role of endogenous opioids. Acta Endocrinologia, 126, 3–16.Google Scholar
  33. Connelly, D. M., Unwin, J. W., & Taberner, P. V. (1983). The role of the blood glucose level in determining voluntary ethanol consumption in the LACG and diabetogenic C57BL strains of mice. Biochemical Pharmacology, 32, 221–6.PubMedGoogle Scholar
  34. Cooper, D. S., Klibanski, A., & Ridgway, E. C. (1983). Dopaminergic modulation of TSH and its subunits: in vivo and in vitro studies. Clinical Endocrinology, 18, 265–275.PubMedGoogle Scholar
  35. Corl, A. B., Rodan, A. R., & Heberlein, U. (2005). Insulin signaling in the nervous system regulates ethanol intoxication in Drosophila melanogaster. Nature Neuroscience, 8, 18–19.PubMedGoogle Scholar
  36. Delitala, G., Devilla, L., Canessa, A., & D'Asta, F. (1981). On the role of dopamine receptors in the central regulation of human TSH. Acta Endocrinology, 98, 521–527.Google Scholar
  37. Ditzen, B., Schaer, M., Gabriel, B., Bodenmann, G., Ehlert, U., & Heinrichs, M. (2009). Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biological Psychiatry, 65, 728–31.PubMedGoogle Scholar
  38. Domes, G., Heinrichs, M., Gläscher, J., Büchel, C., Braus, D. F., & Herpertz, S. C. (2007). Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biological Psychiatry, 62, 1187–90.PubMedGoogle Scholar
  39. Domes, G., Heinrichs, M., Michel, A., Berger, C., & Herpertz, S. C. (2007). Oxytocin improves “mind-reading” in humans. Biological Psychiatry, 61, 731–3.PubMedGoogle Scholar
  40. Dorgan, J. F., Baer, D. J., Albert, P. S., Judd, J. T., Brown, E. D., Corle, D. K., et al. (2001). Serum hormones and the alcohol-breast cancer association in postmenopausal women. Journal of the National Cancer Institute, 93, 710–5.PubMedGoogle Scholar
  41. Döring, W. K., Herzenstiel, M. N., Krampe, H., Jahn, H., Pralle, L., Sieg, S., et al. (2003). Persistent alterations of vasopressin and N-terminal proatrial natriuretic peptide plasma levels in long-term abstinent alcoholics. Alcoholism: Clinical and Experimental Research, 7, 849–61.Google Scholar
  42. Dumitrescu, R. G., & Shields, P. G. (2005). The etiology of alcohol-induced breast cancer. Alcohol, 35, 213–25.PubMedGoogle Scholar
  43. Ebner, K., Bosch, O. J., Kromer, S. A., Singewald, N., & Neumann, I. D. (2005). Release of oxytocin in the rat central amygdala modulates stress-coping behavior and the release of excitatory amino acids. Neuropsychopharmacology, 30, 223–230.PubMedGoogle Scholar
  44. Edwards, S., Kenna, G. A., Swift, R. M., & Leggio, L. (2011). Current and promising pharmacotherapies, and novel research target areas in the treatment of alcohol dependence: a review. Current Pharmacological Design, 17, 1323–32.Google Scholar
  45. Edwards, S., Guerrero, M., Ghoneim, O. M., Roberts, E., & Koob, G. F. (2012). Evidence that vasopressin V(1b) receptors mediate the transition to excessive drinking in ethanol-dependent rats. Addiction Biology, 17, 76–85.PubMedGoogle Scholar
  46. Ehrenreich, H., tom Dieck, K., Gefeller, O., Kaw, S., Schilling, L., Poser, W., et al. (1997). Sustained elevation of vasopressin plasma levels in healthy young men, but not in abstinent alcoholics, upon expectation of novelty. Psychoneuroendocrinology, 22, 13–24.PubMedGoogle Scholar
  47. Emanuele, M. A., & Emanuele, N. (2001). Alcohol and the male reproductive system. Alcohol Research and Health, 25, 282–7.PubMedGoogle Scholar
  48. Engelmann, M., Ebner, K., Landgraf, R., Holsboer, F., & Wotjak, C. T. (1999). Emotional stress triggers intrahypothalamic but not peripheral release of oxytocin in male rats. Journal of Neuroendocrinology, 11, 867–872.PubMedGoogle Scholar
  49. Enoch, M. A., Shen, P. H., Ducci, F., Yuan, Q., Liu, J., White, K. V., et al. (2008). Common genetic origins for EEG, alcoholism and anxiety: the role of CRH-BP. PLoS ONE, 3, e3620.PubMedGoogle Scholar
  50. Eriksson, C. J., Kaprio, J., Pulkkinen, L., & Rose, R. J. (2005). Testosterone and alcohol use among adolescent male twins: testing between-family associations in within-family comparisons. Behavioral Genetics, 35, 359–68.Google Scholar
  51. Etique, N., Chardard, D., Chesnel, A., Merlin, J. L., Flament, S., & Grillier-Vuissoz, I. (2004). Ethanol stimulates proliferation, ER alpha and aromatase expression in MCF-7 human breast cancer cells. International Journal of Molecular Medicine, 13, 149–55.PubMedGoogle Scholar
  52. Evans, S. M., & Levin, F. R. (2011). Response to alcohol in women: role of the menstrual cycle and a family history of alcoholism. Drug and Alcohol Dependence, 114, 18–30.PubMedGoogle Scholar
  53. Fernandez, S. V. (2011). Estrogen, alcohol consumption, and breast cancer. Alcoholism: Clinical and Experimental Research, 35, 389–91.Google Scholar
  54. Figlewicz, D. P. (2003). Insulin, food intake, and reward. Sem Clinical Neuropsychiatry, 8, 82–93.Google Scholar
  55. Franko, D. L., Dorer, D. J., Keel, P. K., Jackson, S., Manzo, M. P., & Herzog, D. B. (2008). Interactions between eating disorders and drug abuse. Journal of Nervous and Mental Disease, 196, 556–61.PubMedGoogle Scholar
  56. Frias, J., Torres, J. M., Miranda, M. T., Ruiz, E., & Ortega, E. (2002). Effects of acute alcohol intoxication on pituitary-gonadal axis hormones, pituitary-adrenal axis hormones, beta-endorphin and prolactin in human adults of both sexes. Alcohol Alcoholism, 37, 169–73.Google Scholar
  57. Fuchs, A. R., & Wagner, G. (1963). The effect of ethyl alcohol on the release of oxytocin in rabbits. Acta Endocrinology, 44, 593–605.Google Scholar
  58. Galvão-Teles, A., Burke, C. W., Anderson, D. C., Marshall, J. C., Corker, C. S., Brown, et al. (1973). Biologically active androgens and oestradiol in men with chronic liver disease. Lancet, 27, 173–7.Google Scholar
  59. Gamel-Didelon, K., Corsi, C., Pepeu, G., Jung, H., Gratzl, M., & Mayerhofer, A. (2002). An autocrine role for pituitary GABA: activation of GABA-B receptors and regulation of growth hormone levels. Neuroendocrinology, 76, 170–7.PubMedGoogle Scholar
  60. Gamer, M., & Büchel, C. (2012). Oxytocin specifically enhances valence-dependent parasympathetic responses. Psychoneuroendocrinology, 37, 87–93.PubMedGoogle Scholar
  61. Garbutt, J. C., Mayo, J. P., Little, K. Y., Gillette, G. M., Mason, G. A., Dew, B., et al. (1996). Dose-response studies with thyrotropin-releasing hormone: evidence for differential pituitary responses in men with major depression, alcoholism, or no psychopathology. Alcoholism: Clinical and Experimental Research, 20, 717–722.Google Scholar
  62. Gavaler, J. S. (1988). Effects of moderate consumption of alcoholic beverages on endocrine function in postmenopausal women. Bases for hypotheses. Recent Developments in Alcoholk, 6, 229–51.Google Scholar
  63. Gavaler, J. S. (1998). Alcoholic beverages as a source of estrogens. Alcohol Health Research World, 22, 220–7.Google Scholar
  64. Gavaler, J. S., & Van Thiel, D. H. (1988). Gonadal dysfunction and inadequate sexual performance in alcoholic cirrhotic men. Gastroenterology, 95, 1680–3.PubMedGoogle Scholar
  65. Gavaler, J. S., & Van Thiel, D. H. (1992a). The association between moderate alcoholic beverage consumption and serum estradiol and testosterone levels in normal postmenopausal women: relationship to the literature. Alcoholism: Clinical and Experimental Research, 16, 87–92.Google Scholar
  66. Gavaler, J. S., & Van Thiel, D. H. (1992b). Hormonal status of postmenopausal women with alcohol-induced cirrhosis: Further findings and a review of the literature. Hepatology, 16, 312–319.PubMedGoogle Scholar
  67. Gavaler, J. S., Rosenblum, E. R., Van Thiel, D. H., Eagon, P. K., Pohl, C. R., Campbell, I. M., et al. (1987). Biologically active phytoestrogens are present in bourbon. Alcoholism: Clinical and Experimental Research, 11, 399–406.Google Scholar
  68. Gessa, G. L., Muntoni, F., Collu, M., Vargiu, L., & Mereu, G. (1985). Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Research, 348, 201–3.PubMedGoogle Scholar
  69. Gilman, J. M., Ramchandani, V. A., Davis, M. B., Bjork, J. M., & Hommer, D. W. (2008). Why we like to drink: an fMRI Study of the rewarding and anxiolytic effects of alcohol. Journal of Neuroscience, 28, 4583–4591.PubMedGoogle Scholar
  70. Goodman, H. M. (2003). Basic medical endocrinology (2nd ed.). Burlington: Elsevier.Google Scholar
  71. Gordon, G. G., & Lieber, C. S. (1992). Alcohol, hormones and metabolism. In C. S. Lieber (Ed.), Medical and nutritional complications of alcoholism (pp. 55–90). New York: Plenum.Google Scholar
  72. Gordon, G. G., Southren, A. L., Vittek, J., & Lieber, C. S. (1979). Effect of alcohol ingestion on hepatic aromatase activity and plasma steroid hormones in the rat. Metabolism, 28, 20–24.PubMedGoogle Scholar
  73. Guastella, A. J., Howard, A. L., Dadds, M. R., Mitchell, P., & Carson, D. S. (2009). A randomized controlled trial of intranasal as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology, 34, 917–23.PubMedGoogle Scholar
  74. Hankinson, S. E., Manson, J. E., Spiegelman, D., Willett, W. C., Longcope, C., & Speizer, F. E. (1995). Reproducibility of plasma hormone levels in postmenopausal women over a 2-3-year period. Cancer Epidemiological Biomarkers & Prevention, 4, 649–54.Google Scholar
  75. Heil, S. H., & Subramanian, M. G. (1998). Alcohol and the hormonal control of lactation. Alcohol Health Research World, 22, 178–84.Google Scholar
  76. Heilig, M., Goldman, D., Berrettini, W., & O'Brien, C. P. (2011). Pharmacogenetic approaches to the treatment of alcohol addiction. Nature ReviewNeuroscience, 12, 670–84.Google Scholar
  77. Heinrichs, M., Meinlschmidt, G., Wippich, W., Ehlert, U., & Hellhammer, D. H. (2004). Selective amnesic effects of oxytocin on human memory. Physiology and Behavior, 83, 31–8.PubMedGoogle Scholar
  78. Heinz, A., Siessmeier, T., Wrase, J., Hermann, D., Klein, S., Grüsser, S. M., et al. (2004). Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. American Journal of Psychiatry, 161, 1783–1789.PubMedGoogle Scholar
  79. Hermann, D., Heinz, A., & Mann, K. (2002). Dysregulation of the hypothalamic–pituitary–thyroid axis in alcoholism. Addiction, 97, 1369–1381.PubMedGoogle Scholar
  80. Hillemacher, T., Bayerlein, K., Wilhelm, J., Reulbach, U., Frieling, H., Bönsch, D., et al. (2005). Alteration of prolactin serum levels during alcohol withdrawal correlates with craving in female patients. Addiction Biology, 10, 337–43.PubMedGoogle Scholar
  81. Hillemacher, T., Bayerlein, K., Wilhelm, J., Poleo, D., Frieling, H., Ziegenbein, M., et al. (2006). Volume intake and craving in alcohol withdrawal. Alcohol Alcoholism, 41, 61–5.Google Scholar
  82. Hillemacher, T., Bleich, S., Frieling, H., Schanze, A., Wilhelm, J., Sperling, W., et al. (2007). Evidence of an association of leptin serum levels and craving in alcohol dependence. Psychoneuroendocrinology, 32, 87–90.PubMedGoogle Scholar
  83. Hillemacher, T., Kraus, T., Rauh, J., Weiss, J., Schanze, A., Frieling, H., et al. (2007). Role of appetite-regulating peptides in alcohol craving: an analysis in respect to subtypes and different consumption patterns in alcoholism. Alcoholism: Clinical and Experimental Research, 31, 950–4.Google Scholar
  84. Hillemacher, T., Bayerlein, K., Frieling, H., Wilhelm, J., Ziegenbein, M., Kornhuber, J., et al. (2007). Elevated prolactin serum levels and history of alcohol withdrawal seizures. Journal on Psychiatric Research, 41, 702–6.Google Scholar
  85. Hillemacher, T., Frieling, H., Luber, K., Yazici, A., Muschler, M. A., Lenz, B., et al. (2009). Epigenetic regulation and gene expression of vasopressin and atrial natriuretic peptide in alcohol withdrawal. Psychoneuroendocrinology, 34, 555–60.PubMedGoogle Scholar
  86. Hillemacher, T., Weinland, C., Heberlein, A., Gröschl, M., Schanze, A., Frieling, H., et al. (2009). Increased levels of adiponectin and resistin in alcohol dependence-possible link to craving. Drug and Alcohol Dependence, 99, 333–337.PubMedGoogle Scholar
  87. Hillemacher, T., Kahl, K. G., Heberlein, A., Muschler, M. A., Eberlein, C., Frieling, H., et al. (2010). Appetite- and volume-regulating neuropeptides: role in treating alcohol dependence. Current Opinion Investigating Drugs, 11, 1097–106.Google Scholar
  88. Hoge, E. A., Pollack, M. H., Kaufman, R. E., Zak, P. J., & Simon, N. M. (2008). Oxytocin levels in social anxiety disorder. CNS Neuroscience & Therapeutics, 14, 165–170.Google Scholar
  89. Hurlemann, R., Patin, A., Onur, O. A., Cohen, M. X., Baumgartner, T., Metzler, S., et al. (2010). Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. Journal of Neuroscience, 30, 4999–5007.PubMedGoogle Scholar
  90. Hyytia, P., & Koob, G. (1995). GABAA receptor antagonism in the extended amygdala decreases ethanol self-administration in rats. European Journal of Pharmacology, 283, 151–159.PubMedGoogle Scholar
  91. Imperato, A., & Di Chiara, G. (1986). Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. Journal of Pharmacology Experimental Therapy, 239, 219–28.Google Scholar
  92. Inui, A. (1999). Feeding and body-weight regulation by hypothalamic neuropeptides—mediation of the actions of leptin. Trends in Neuroscience, 2, 62–67.Google Scholar
  93. Irvine, R. A., Ma, H., Yu, M. C., Ross, R. K., Stallcup, M. R., & Coetzee, G. A. (2000). Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Human Molecular Genetics, 9, 267–74.PubMedGoogle Scholar
  94. Israel, S., Lerer, E., Shalev, I., Uzefovsky, F., Reibold, M., Bachner-Melman, R., et al. (2008). Molecular genetic studies of the arginine vasopressin 1a receptor (AVPR1a) and the oxytocin receptor (OXTR) in human behaviour: from autism to altruism with some notes in between. Progress in Brain Research, 170, 435–449.PubMedGoogle Scholar
  95. Jahn, H., Döring, W. K., Krampe, H., Sieg, S., Werner, C., Poser, W., et al. (2004). Preserved vasopressin response to osmostimulation despite decreased basal vasopressin levels in long-term abstinent alcoholics. Alcoholism: Clinical and Experimental Research, 28, 1925–30.Google Scholar
  96. Jerlhag, E. (2008). Systemic administration of ghrelin induces conditioned place preference and stimulates accumbal dopamine. Addiction Biology, 13, 358–363.PubMedGoogle Scholar
  97. Jerlhag, E., Egecioglu, E., Dickson, S. L., Douhan, A., Svensson, L., & Engel, J. A. (2007). Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addiction Biology, 12, 6–16.PubMedGoogle Scholar
  98. Jerlhag, E., Egecioglu, E., Dickson, S. L., Svensson, L., & Engel, J. A. (2008). Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors are involved in mediating the ghrelin-induced locomotor stimulation and dopamine overflow in nucleus accumbens. European Neuropsychopharmacology, 18, 508–518.PubMedGoogle Scholar
  99. Jerlhag, E., Egecioglu, E., Landgren, S., Salomé, N., Heilig, M., Moechars, D., et al. (2009). Requirement of central ghrelin signaling for alcohol reward. Procedures of the National Academy of Science, U S A, 106, 11318–23.Google Scholar
  100. Karagiannis, A., & Harsoulis, F. (2005). Gonadal dysfunction in systemic diseases. European Journal of Endocrinology, 152, 501–13.PubMedGoogle Scholar
  101. Kenna, G. A., McGeary, J. E., & Swift, R. M. (2004). Pharmacotherapy, pharmacogenomics and the future of alcohol dependence therapy. American Journal of Health-System Pharmacy, 61(Part 2), 2380–2390.PubMedGoogle Scholar
  102. Kenna, G. A., Hanna-Roder, N., Leggio, L., Zywiak, W. H., Clifford, J., Edwards, S., et al. (2012). The association of the 5-HTT gene-linked promoter region (5-HTTLPR) polymorphism to psychiatry: a review of psychopathology and pharmacotherapy. Pharmacogenomics Personalized Medicine, 5, 19–35.Google Scholar
  103. Kiefer, F., Jahn, H., Jaschinski, M., Holzbach, R., Wolf, K., Naber, D., et al. (2001). Leptin: a modulator of alcohol craving? Biological Psychiatry, 49, 782–787.PubMedGoogle Scholar
  104. Kiefer, F., Jahn, H., Wolf, K., Kämpf, P., Knaudt, K., & Wiedemann, K. (2001). Free-choice alcohol consumption in mice after application of the appetite regulating peptide leptin. Alcoholism: Clinical and Experimental Research, 25, 787–789.Google Scholar
  105. Kiefer, F., Andersohn, F., Jahn, H., Wolf, K., Raedler, T. J., & Wiedemann, K. (2002). Involvement of plasma atrial natriuretic peptide in protracted alcohol withdrawal. Acta Psychiatric Scandinavian, 105, 65–70.Google Scholar
  106. Kiefer, F., Jahn, H., Otte, C., Demiralay, C., Wolf, K., & Wiedemann, K. (2005). Increasing leptin precedes craving and relapse during pharmacological abstinence maintenance treatment of alcoholism. Journal of Psychiatric Research, 39, 545–451.PubMedGoogle Scholar
  107. Kim, D. J., Yoon, S. J., Choi, B., Kim, T. S., Woo, Y. S., Kim, W., et al. (2005). Increased fasting plasma ghrelin levels during alcohol abstinence. Alcohol Alcoholism, 40, 76–79.Google Scholar
  108. Kirsch, P., Esslinger, C., Chen, Q., Mier, D., Lis, S., & Siddhanti, S. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25, 11489–11493.PubMedGoogle Scholar
  109. Knott, T. K., Dopico, A. M., Dayanithi, G., Lemos, J., & Treistman, S. N. (2002). Integrated channel plasticity contributes to alcohol tolerance in neurohypophysial terminals. Molecular Pharmacology, 62, 135–142.PubMedGoogle Scholar
  110. Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., & Kangawa, K. (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402, 656–660.PubMedGoogle Scholar
  111. Koob, G. F. (2009). Brain stress systems in the amygdala and addiction. Brain Res., 1293, 61–75.PubMedGoogle Scholar
  112. Koob, G. F., & Le Moal, M. (1997). Drug abuse: hedonic homeostatic dysregulation. Science, 278, 52–8.PubMedGoogle Scholar
  113. Koopmann, A., von der Goltz,C., Grosshans,M., Dinter,C., Vitale,M., Wiedemann, K., et al. (2011). The association of the appetitive peptide acetylated ghrelin with alcohol craving in early abstinent alcohol dependent individuals. Psychoneuroendocrinology, [Epub ahead of print]Google Scholar
  114. Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435, 673–6.PubMedGoogle Scholar
  115. Kostoglou-Athanassiou, I., Treacher, D. F., & Forsling, M. L. (1994). Is oxytocin naturetic in man? J Endocrinology, 143(suppl O), 39.Google Scholar
  116. Kovács, G. L., & Telegdy, G. (1987). Endorphin tolerance is inhibited by oxytocin. Pharmacology Biochemical Behavior, 26, 57–60.Google Scholar
  117. Kovács, G. L., Sarnyai, Z., & Szabó, G. (1998). Oxytocin and addiction: a review. Psychoneuroendocrinology, 23(8), 945–62.PubMedGoogle Scholar
  118. Kranzler, H. R., & Edenberg, H. J. (2010). Pharmacogenetics of alcohol and alcohol dependence treatment. Current Pharmacological Designs, 16, 2141–8.Google Scholar
  119. Kranzler, H. R., Burleson, J. A., Del Boca, F. K., Babor, T. F., Korner, P., Brown, J., et al. (1994). Buspirone treatment of anxious alcoholics. A placebo-controlled trial. Archives of General Psychiatry, 51, 720–31.PubMedGoogle Scholar
  120. Kraus, T., Reulbach, U., Bayerlein, K., Mugele, B., Hillemacher, T., Sperling, W., et al. (2004). Leptin is associated with craving in females with alcoholism. Addiction Biology, 9, 213–219.PubMedGoogle Scholar
  121. Kraus, T., Schanze, A., Gröschl, M., Bayerlein, K., Hillemacher, T., Reulbach, U., et al. (2005). Ghrelin levels are increased in alcoholism. Alcoholism: Clinical and Experimental Research, 29, 2154–2157.Google Scholar
  122. Kumar, S., Porcu, P., Werner, D. F., Matthews, D. B., Diaz-Granados, J. L., Helfand, R. S., et al. (2009). The role of GABAA receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl), 205, 529–564.Google Scholar
  123. La Grange, L., Jones, T. D., Erb, L., & Reyes, E. (1995). Alcohol consumption: biochemical and personality correlates in a college student population. Addiction Behavior, 20, 93–103.Google Scholar
  124. Landgraf, R. (2005). Neuropeptides in anxiety modulation. Handbook Experimental Pharmacology, 169, 335–69.Google Scholar
  125. Landgraf, R., & Neumann, I. D. (2004). Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Frontiers in Neuroendocrinology, 25, 150–176.PubMedGoogle Scholar
  126. Leggio, L. (2009). Understanding and treating alcohol craving and dependence: recent pharmacological and neuroendocrinological findings. Alcohol Alcoholism, 44, 341–352.Google Scholar
  127. Leggio, L. (2010). Role of the ghrelin system in alcoholism: acting on the growth hormone secretagogue receptor (GHS-R) to treat alcohol-related disorders. Drug News Perspect., 23, 157–166.PubMedGoogle Scholar
  128. Leggio, L., Ferrulli, A., Malandrino, N., Miceli, A., Capristo, E., Gasbarrini, G., et al. (2008). Insulin but not insulin growth factor-1 correlates with craving in currently drinking alcohol-dependent patients. Alcoholism: Clinical and Experimental Research, 32, 450–458.Google Scholar
  129. Leggio, L., Ferrulli, A., Cardone, S., Malandrino, N., Mirijello, A., D'Angelo, C., et al. (2008). Relationship between the hypothalamic-pituitary-thyroid axis and alcohol craving in alcohol-dependent patients: a longitudinal study. Alcoholism: Clinical and Experimental Research, 32, 2047–2053.Google Scholar
  130. Leggio, L., Kenna, G. A., Fenton, M., Bonenfant, E., & Swift, R. M. (2009). Typologies of alcohol dependence. From Jellinek to genetics and beyond. Neuropsychology Review., 19, 115–129.PubMedGoogle Scholar
  131. Leggio, L., Ray, L. A., Kenna, G. A., & Swift, R. M. (2009). Blood glucose level, alcohol heavy drinking, and alcohol craving during treatment for alcohol dependence: results from the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) Study. Alcoholism: Clinical and Experimental Research, 33, 1539–1544.Google Scholar
  132. Leggio, L., Ferrulli, A., Cardone, S., Nesci, A., Miceli, A., Malandrino, N., et al. (2011). Ghrelin system in alcohol-dependent subjects: role of plasma ghrelin levels in alcohol drinking and craving. Addict Biol. doi:10.1111/j.1369-1600.2010.00308.x. epub pub ahead of print.
  133. Leggio, L., Addolorato, G., Cippitelli, A., Jerlhag, E., Kampov-Polevoy, A. B., & Swift, R. M. (2011). Role of feeding-related pathways in alcohol dependence: a focus on sweet preference, NPY, and ghrelin. Alcoholism: Clinical and Experimental Research, 35, 194–202.Google Scholar
  134. Leggio, L., Kenna, G., Zywiak, W., Edwards, S., Fricchione, S., & Tavares, T. (2011). Baclofen as a novel pharmacotherapy for alcohol dependence: preliminary findings from a human laboratory double-blind placebo-controlled randomized study. Neuropsychopharmacology, 36(Supplement 1s), S428.Google Scholar
  135. Lenz, B., Jacob, C., Frieling, H., Jacobi, A., Hillemacher, T., Muschler, M., et al. (2009). Polymorphism of the long polyglutamine tract in the human androgen receptor influences craving of men in alcohol withdrawal. Psychoneuroendocrinology, 34, 968–71.PubMedGoogle Scholar
  136. Lenz, B., Frieling, H., Jacob, C., Heberlein, A., Kornhuber, J., Bleich, S., et al. (2010). The modulating effect of the androgen receptor on craving in alcohol withdrawal of men is partially mediated by leptin. Pharmacogenomics Journal., 10, 226–31.PubMedGoogle Scholar
  137. Lenz, B., Muller, C. P., Stoessel, C., Sperling, W., Biermann, T., Hillemacher, T., et al. (2012). Sex hormone activity in alcohol addiction: integrating organizational and activational effects. Progress in Neurobiology, 96, 136–163.PubMedGoogle Scholar
  138. Lesch, O. M., Kefer, J., Lentner, S., Mader, R., Marx, B., Musalek, M., et al. (1990). Diagnosis of chronic alcoholism–classificatory problems. Psychopathology, 23, 88–96.PubMedGoogle Scholar
  139. Longcope, C. (1999). The endocrinology of the menopause. In R. A. Lobo (Ed.), Treatment of the postmenopausal woman: basic and clinical aspects (2nd ed., pp. 35–40). Philadelphia: Lippincott.Google Scholar
  140. Marchesi, C., Chiodera, P., Brusamonti, E., Volpi, R., & Cioro, V. (1997). Abnormal plasma oxytocin and beta-endorphin levels in alcoholics after short and long term abstinence. Prog Neuro-Psychopharmacol & Biol Psychiatry, 21, 797–807.Google Scholar
  141. McGregor, I. S., Callaghan, P. D., & Hunt, G. E. (2008). From ultrasocial to antisocial: a role for oxytocin in the acute reinforcing effects and long-term adverse consequences of drug use? Br J Pharmacology, 154, 358–68.Google Scholar
  142. Melis, M. R., Melis, T., Cocco, C., Succu, S., Sanna, F., Pillolla, G., et al. (2007). Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats. European Journal of Neuroscience., 26, 1026–1035.PubMedGoogle Scholar
  143. Mendelson, J. H., & Mello, N. K. (1988). Chronic alcohol effects on anterior pituitary and ovarian hormones in healthy women. Journal of Pharmacology and Experimental Therapeautics, 245, 407–12.Google Scholar
  144. Mennella, J. A., Pepino, M. Y., & Teff, K. L. (2005). Acute alcohol consumption disrupts the hormonal milieu of lactating women. Journal of Clinical Endocrinological Metabolism, 90, 1979–85.Google Scholar
  145. Merikangas, K. R., Mehta, R. L., Molnar, B. E., Walters, E. E., Swendsen, J. D., Aguilar-Gaziola, S., et al. (1998). Comorbidity of substance use disorders with mood and anxiety disorders: results of the International Consortium in Psychiatric Epidemiology. Addiction Behavior, 23, 893–907.Google Scholar
  146. Messini, C. I., Dafopoulos, K., Chalvatzas, N., Georgoulias, P., Anifandis, G., & Messinis, I. E. (2010a). Effect of ghrelin and thyrotropin-releasing hormone on prolactin secretion in normal women. Hormones and Metabolism Research, 42, 204–8.Google Scholar
  147. Messini, C. I., Dafopoulos, K., Chalvatzas, N., Georgoulias, P., Anifandis, G., & Messinis, I. E. (2010b). Blockage of ghrelin-induced prolactin secretion in women by bromocriptine. Fertil Steril, 94, 1478–81.PubMedGoogle Scholar
  148. Miller, F., Barasch, A., Sacks, M., Levitan, J., & Ashcroft, L. (1986). Serum prolactin correlates with depressed mood during alcohol withdrawal. Drug and Alcohol Dependence, 17, 331–338.PubMedGoogle Scholar
  149. Monti, P. M., Gulliver, S. B., & Myers, M. G. (1994). Social skills training for alcoholics: assessment and treatment. Alcohol and Alcoholism, 29, 627–637.PubMedGoogle Scholar
  150. Murphy, V. E., Smith, R., Giles, W. B., & Clifton, V. L. (2006). Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocrinology Review, 27, 141–69.Google Scholar
  151. Nahta, R., Shabaya, S., Ozbay, T., & Rowe, D. L. (2009). Personalizing HER2-targeted therapy in metastatic breast cancer beyond HER2 status: what we have learned from clinical specimens. Current Pharmacogenomics and Personalized Medicine, 7, 263–274.PubMedGoogle Scholar
  152. Neumann, I. D. (2007). Stimuli and consequences of dendritic release of oxytocin within the brain. Biochem Soc Trans, 35, 1252–1257.PubMedGoogle Scholar
  153. Nicolás, J. M., Fernández-Solà, J., Fatjó, F., Casamitjana, R., Bataller, R., Sacanella, E., et al. (2001). Increased circulating leptin levels in chronic alcoholism. Alcoholism: Clinical and Experimental Research, 25, 83–8.Google Scholar
  154. Ohashi, M., Fujio, N., Nawata, H., Kato, K., Matsubayashi, S., Tamai, H., et al. (1988). Human atrial natriuretic polypeptide in plasma of patients with anorexia nervosa. Hormone Metabolism Research, 20, 705–8.Google Scholar
  155. Oscar-Berman, M., & Marinković, K. (2007). Alcohol: effects on neurobehavioral functions and the brain. Neuropsychology Review, 17, 239–57.PubMedGoogle Scholar
  156. Ott, I., & Scott, J. C. (2010). The action of infundibulin upon the mammary secretion. Proceeds of the Society on Experimental and Biological Medicine, 8, 48–49.Google Scholar
  157. Ozsoy, S., Esel, E., Turan, T., & Kula, M. (2007). Growth hormone response to the GABA-B agonist baclofen in 3-week abstinent alcoholics. Alcohol, 41, 551–6.PubMedGoogle Scholar
  158. Pandey, S. C., Zhang, H., Roy, A., & Xu, T. (2005). Deficits in amygdaloid cAMP-responsive element–binding protein signaling may play a role in genetic predisposition to anxiety and alcoholism. Journal Clinical Investigation., 115, 2762–2773.Google Scholar
  159. Perry, B. L., Miles, D., Burruss, K., & Svikis, D. S. (2004). Premenstrual symptomatology and alcohol consumption in college women. Journal of Studies on Alcohol, 65, 464–8.PubMedGoogle Scholar
  160. Pijl, H., de Meijer, P. H., Langius, J., Coenegracht, C. I., van den Berk, A. H., Chandie Shaw, P. K., et al. (2001). Food choice in hyperthyroidism: potential influence of the autonomic nervous system and brain serotonin precursor availability. Journal of Clinical Endocrinology & Metabolism, 86, 5848–5853.Google Scholar
  161. Pristupa, Z. B., Wilson, J. M., Hoffman, B. J., Kish, S. J., & Niznik, H. B. (1994). Pharmacological heterogeneity of the cloned and native human dopamine transporter: disassociation of [3 H] WIN 35,428 and [3 H] GBR 12,935 binding. Molecular Pharmacology, 45, 125–135.PubMedGoogle Scholar
  162. Qi, Y., Takahashi, N., Hileman, S. M., Patel, H. R., Berg, A. H., Pajvani, U. B., et al. (2004). Adiponectin acts in the brain to decrease body weight. Nature Medicine, 10, 524–529.PubMedGoogle Scholar
  163. Raggenbass, M. (2008). Overview of cellular electrophysiological actions of vasopressin. European Journal of Pharmacology, 583, 243–54.PubMedGoogle Scholar
  164. Ring, R. H. (2011). A complicated picture of oxytocin action in the central nervous system revealed. Biological Psychiatry, 69, 818–819.PubMedGoogle Scholar
  165. Rosenblum, E. R., Van Thiel, D. H., Campbell, I. M., & Gavaler, J. S. (1991). Quantitation of beta-sitosterol in bourbon. Alcoholism: Clinical and Experimental Research, 15, 205–6.Google Scholar
  166. Ross, H. E., Freeman, S. M., Spiegel, L. L., Ren, X., Terwillige, E. F., & Young, L. J. (2009). Variation in oxytocin receptor density in the nucleus accumbens has differential effects on affiliative behaviors in monogamous and polygamous voles. Journal of Neuroscience, 29, 1312–1318.PubMedGoogle Scholar
  167. Ruusa, J., Bergman, B., & Sundell, M. L. (1997). Sex hormones during alcohol withdrawal: a longitudinal study of 29 male alcoholics during detoxification. Alcohol Alcoholism, 32, 591–7.Google Scholar
  168. Sakharkar, A. J., Zhang, H., Tang, L., Shi, G., & Pandey, S. C. (2011). Histone Deacetylases (HDAC)-induced histone modifications in the amygdala: a role in rapid tolerance to the anxiolytic effects of ethanol alcoholism. Clinical and Experimental Research, 35, 1–11.Google Scholar
  169. Salvante, K. G., Brindle, E., McConnell, D., O'connor, K., & Nepomnaschy, P. A. (2012). Validation of a new multiplex assay against individual immunoassays for the quantification of reproductive, stress, and energetic metabolism biomarkers in urine specimens. American Journal of Human Biology, 24, 81–6.PubMedGoogle Scholar
  170. Santolaria, F., Perez-Cejas, A., Aleman, M. R., González-Reimers, E., Milena, A., de la Vega, M. J., et al. (2003). Low serum leptin levels and malnutrition in chronic alcohol misusers hospitalized by somatic complications. Alcohol Alcoholism, 38, 60–66.Google Scholar
  171. Sarkola, T., Mäkisalo, H., Fukunaga, T., & Eriksson, C. J. (1999). Acute effect of alcohol on estradiol, estrone, progesterone, prolactin, cortisol, and luteinizing hormone in premenopausal women. Alcoholism: Clinical and Experimental Research, 23, 976–82.Google Scholar
  172. Sarnyai, Z., & Kovács, G. L. (1994). Role of oxytocin in the neuroadaptation to drugs of abuse. Psychoneuroendocrinology, 19, 85–117.PubMedGoogle Scholar
  173. Scantamburlo, G., Hansenne, M., Fuchs, S., Pitchot, W., Marechal, P., Pequeux, C., et al. (2007). Plasma oxytocin levels and anxiety in patients with major depression. Psychoneuroendocrinology, 32, 407–410.PubMedGoogle Scholar
  174. Schuckit, M. A. (1994). Low level of response to alcohol as a predictor of future alcoholism. American Journal of Psychiatry, 151, 184–189.PubMedGoogle Scholar
  175. Schuckit, M. A. (1996). Alcohol, anxiety and depressive disorders. Alcohol Health Res World., 20, 81–85.Google Scholar
  176. Schuckit, M. A., Gold, E., & Risch, C. (1987). Serum prolactin levels in sons of alcoholics and control subjects. American Journal of Psychiatry, 144, 854–9.PubMedGoogle Scholar
  177. Seidman, S. N., Araujo, A. B., Roose, S. P., & McKinlay, J. B. (2001). Testosterone level, androgen receptor polymorphism, and depressive symptoms in middle-aged men. Biological Psychiatry, 50, 371–6.PubMedGoogle Scholar
  178. Shahrokh, D. K., Zhang, T. Y., Diorio, J., Gratton, A., & Meaney, M. J. (2010). Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology, 151, 2276–86.PubMedGoogle Scholar
  179. Short, R. V. (1984). Breastfeeding. Scientific American., 250, 35–41.PubMedGoogle Scholar
  180. Silva, S. M., Madeira, M. D., Ruela, C., & Paula-Barbosa, M. M. (2002). Prolonged alcohol intake leads to irreversible loss of vasopressin and oxytocin neurons in the paraventricular nucleus of the hypothalamus. Brain Research, 925, 76–88.PubMedGoogle Scholar
  181. Singletary, K. W., & Gapstur, S. M. (2001). Alcohol and breast cancer: review of epidemiologic and experimental evidence and potential mechanisms. Journal of the American Medical Association., 286, 2143–51.PubMedGoogle Scholar
  182. Smith, J. J. (1950). The treatment of acute alcoholic states with ACTH and adrenocortical hormones. Quarterly Journal of Studies on Alcohol., 11, 190–8.PubMedGoogle Scholar
  183. Smith-Warner, S. A., Spiegelman, D., Yaun, S. S., van den Brandt, P. A., Folsom, A. R., Goldbohm, R. A., et al. (1998). Alcohol and breast cancer in women: a pooled analysis of cohort studies. Journal of the American Medical Association., 279, 535–40.PubMedGoogle Scholar
  184. Ströhle, A., & Holsboer, F. (2003). Stress responsive neurohormones in depression and anxiety. Pharmacopsychiatry, 36(Suppl 3), S207–14.PubMedGoogle Scholar
  185. Ströhle, A., Feller, C., Strasburger, C. J., Heinz, A., & Dimeo, F. (2006). Anxiety modulation by the heart? Aerobic exercise and atrial natriuretic peptide. Psychoneuroendocrinology, 31, 1127–30.PubMedGoogle Scholar
  186. Sturgess, J. E., George, T. P., Kennedy, J. L., Heinz, A., & Müller, D. J. (2011). Pharmacogenetics of alcohol, nicotine and drug addiction treatments. Addiction Biology, 16, 357–76.PubMedGoogle Scholar
  187. Sullivan, E. V. (2007). Alcohol and drug dependence: brain mechanisms and behavioral impact. Neuropsychology Review, 17, 235–8.PubMedGoogle Scholar
  188. Surget, A., & Belzung, C. (2008). Involvement of vasopressin in affective disorders. European Journal Pharmacology, 583, 340–9.Google Scholar
  189. Suzuki, R., Allen, N. E., Appleby, P. N., Key, T. J., Dossus, L., Tjønneland, A., et al. (2009). Lifestyle factors and serum androgens among 636 middle aged men from seven countries in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Causes Control., 20, 811–21.PubMedGoogle Scholar
  190. Suzuki, K., Jayasena, C. N., & Bloom, S. R. (2011). The gut hormones in appetite regulation. Journal of Obesity, 2011, 528401.PubMedGoogle Scholar
  191. Svikis, D. S., Miles, D. R., Haug, N. A., Perry, B., Hoehn-Saric, R., & McLeod, D. (2006). Premenstrual symptomatology, alcohol consumption, and family history of alcoholism in women with premenstrual syndrome. Journal of Studies on Alcohol., 67, 833–6.PubMedGoogle Scholar
  192. Szabó, G., Kovács, G. L., Székeli, S., & Telegdy, G. (1985). The effects of neurohypophyseal hormones on tolerance to the hypothermic effect of ethanol. Alcohol., 2, 567–674.PubMedGoogle Scholar
  193. Tabakoff, B., & Hoffman, P. L. (1988). Tolerance and the etiology of alcoholism: hypothesis and mechanism. Alcoholism: Clinical and Experimental Research, 12, 184–186.Google Scholar
  194. Tan, G. H., Choo, W. Y., Taib, N. A., & Yip, C. H. (2009). Factors associated with HER2 overexpression in breast cancer: experience in an Asian developing country. Asian Pacific Journal Cancer Prevention, 10, 837–40.Google Scholar
  195. Tessner, K. D., & Hill, S. Y. (2010). Neural circuitry associated with risk for alcohol use disorders. Neuropsychology Review, 20, 1–20.PubMedGoogle Scholar
  196. Tut, T. G., Ghadessy, F. J., Trifiro, M. A., Pinsky, L., & Yong, E. L. (1997). Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. Journal of Clinical Endocrinology & Metabolism, 82, 3777–82.Google Scholar
  197. Uvnäs-Moberg, K. (1996). Neuroendocrinology of the mother-child interaction. Trends Endocrinological Metabolism, 7, 126–131.Google Scholar
  198. Välimäki, M., Pelkonen, R., Härkönen, M., & Ylikahri, R. (1984). Hormonal changes in noncirrhotic male alcoholics during ethanol withdrawal. Alcohol Alcoholism, 19, 235–242.Google Scholar
  199. Van Thiel, D. H., Galvao-Teles, A., Monteiro, E., Rosenblum, E., & Gavaler, J. S. (1991). The phytoestrogens present in de-ethanolized bourbon are biologically active: a preliminary study in a postmenopausal woman. Alcoholism: Clinical and Experimental Research, 15, 822–3.Google Scholar
  200. Vassaf, E. G., & Hall, V. R. (1946). The tonic effects of insulin in acute alcoholism. New England Journal of Medicine, 235, 190–3.PubMedGoogle Scholar
  201. Vatsalya, V., Issa, J. E., Hommer, D. W., & Ramchandani, V. A. (2012). Pharmacodynamic effects of intravenous alcohol on hepatic and gonadal hormones: influence of age and sex. Alcoholism: Clinical and Experimental Research, 36, 207–13.Google Scholar
  202. Veening, J. G., de Jong, T., & Barendregt, H. P. (2010). Oxytocin-messages via the cerebrospinal fluid: behavioral effects; a review. Physiology & Behavior, 101, 193–210.Google Scholar
  203. Vescovi, P. P., & Coiro, V. (2001). Different control of GH secretion by gamma-amino- and gamma-hydroxy-butyric acid in 4-year abstinent alcoholics. Drug and Alcohol Dependence., 61, 217–21.PubMedGoogle Scholar
  204. Vescovi, P. P., Volpi, R., & Coiro, V. (1998). Alcoholism abolishes the gamma-aminobutyric acid (GABA)ergic control of GH secretion in humans. Alcohol, 16, 325–8.PubMedGoogle Scholar
  205. Volkow, N. D., & Wise, R. A. (2005). How can drug addiction help us understand obesity? Nature Neuroscience, 8, 555–560.PubMedGoogle Scholar
  206. Volkow, N. D., Wang, G. J., Maynard, L., Fowler, J. S., Jayne, B., Telang, F., et al. (2002). Effects of alcohol detoxification on dopamine D2 receptors in alcoholics: a preliminary study. Psychiatry Research, 116, 163–72.PubMedGoogle Scholar
  207. Volkow, N. D., Wang, G. J., Fowler, J. S., & Tomasi, D. (2012). Addiction circuitry in the human brain. Annual Review of Pharmacology and Toxicology, 52, 321–36.PubMedGoogle Scholar
  208. Volpi, R., Chiodera, P., Gramellini, D., Cigarini, C., Papadia, C., Caffarri, G., et al. (1994). Endogenous opioid mediation of the inhibitory effect of ethanol on the prolactin response to breast stimulation in normal women. Life Science, 54, 739–44.Google Scholar
  209. Weiss, F., Lorang, M.T., Bloom, F. E., Koob, G. F. (1993). Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. Journal of Pharmacology and Experimental Therapeutics, 267, 250–8.PubMedGoogle Scholar
  210. Westberg, L., Baghaei, F., Rosmond, R., Hellstrand, M., Landén, M., Jansson, M., et al. (2001). Polymorphisms of the androgen receptor gene and the estrogen receptor beta gene are associated with androgen levels in women. Journal of Clinical Endocrinological Metabolism, 86, 2562–8.Google Scholar
  211. Wilhelm, J., Heberlein, A., Karagülle, D., Gröschl, M., Kornhuber, J., Riera, R., et al. (2011). Prolactin serum levels during alcohol withdrawal are associated with the severity of alcohol dependence and withdrawal symptoms. Alcoholism: Clinical and Experimental Research, 35, 235–9.Google Scholar
  212. Willinger, U., Lenzinger, E., & Hornik, K. (2002). Anxiety as a predictor of relapse in detoxified alcohol-dependent patients. Alcohol Alcoholism, 37, 609–612.Google Scholar
  213. Wong, A. W., Dunlap, S. M., Holcomb, V. B., & Nunez, N. P. (2011). Alcohol promotes mammary tumor development via the estrogen pathway in estrogen receptor alpha-negative HER2/neu mice. Alcoholism: Clinical and Experimental Research. doi:10.1111/j.1530-0277.2011.01654.x.
  214. Wurst, F. M., Rasmussen, D. D., Hillemacher, T., Kraus, T., Ramskogler, K., Lesch, O., et al. (2007). Alcoholism, craving, and hormones: the role of leptin, ghrelin, prolactin, and the pro-opiomelanocortin system in modulating ethanol intake. Alcoholism: Clinical and Experimental Research, 31, 1963–7.Google Scholar
  215. Zak, P. J., Stanton, A. A., & Ahmadi, S. (2007). Oxytocin increases generosity in humans. PLoS ONE, 2, e1128.PubMedGoogle Scholar
  216. Zhang, S. M., Lee, I. M., Manson, J. E., Cook, N. R., Willett, W. C., & Buring, J. E. (2007). Alcohol consumption and breast cancer risk in the Women’s Health Study. American Journal of Epidemiology, 165, 667–76.PubMedGoogle Scholar
  217. Zimmermann, U. S., Buchmann, A., Steffin, B., Dieterle, C., & Uhr, M. (2007). Alcohol administration acutely inhibits ghrelin secretion in an experiment involving psychosocial stress. Addiction Biology, 12, 17–21.PubMedGoogle Scholar
  218. Zito, K. A., Vickers, G., Telford, L., & Roberts, D. C. (1984). Experimentally induced glucose intolerance increases oral ethanol intake in rats. Alcohol, 1, 257–61.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • George A. Kenna
    • 1
  • Robert M. Swift
    • 1
  • Thomas Hillemacher
    • 2
  • Lorenzo Leggio
    • 1
    • 3
    • 4
  1. 1.Center for Alcohol and Addiction Studies, Department of Psychiatry and Human BehaviorBrown UniversityProvidenceUSA
  2. 2.Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
  3. 3.Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaUSA
  4. 4.Intramural Research Program, National Institute on Drug AbuseNational Institutes of HealthBaltimoreUSA

Personalised recommendations