Neuropsychology Review

, Volume 22, Issue 3, pp 229–251 | Cite as

The Default Mode Network and Recurrent Depression: A Neurobiological Model of Cognitive Risk Factors

  • Igor MarchettiEmail author
  • Ernst H. W. Koster
  • Edmund J. Sonuga-Barke
  • Rudi De Raedt


A neurobiological account of cognitive vulnerability for recurrent depression is presented based on recent developments of resting state neural networks. We propose that alterations in the interplay between task positive (TP) and task negative (TN) elements of the Default Mode Network (DMN) act as a neurobiological risk factor for recurrent depression mediated by cognitive mechanisms. In the framework, depression is characterized by an imbalance between TN-TP components leading to an overpowering of TP by TN activity. The TN-TP imbalance is associated with a dysfunctional internally-focused cognitive style as well as a failure to attenuate TN activity in the transition from rest to task. Thus we propose the TN-TP imbalance as overarching neural mechanism involved in crucial cognitive risk factors for recurrent depression, namely rumination, impaired attentional control, and cognitive reactivity. During remission the TN-TP imbalance persists predisposing to vulnerability of recurrent depression. Empirical data to support this model is reviewed. Finally, we specify how this framework can guide future research efforts.


Depression Default mode network Vulnerability Rumination Attention Cognitive reactivity 



This research was supported by a Grant of the Special Research Fund (BOF) of Ghent University (BOF 10/2JO/061) awarded to Ernst Koster and Grant BOF10/GOA/014 for a Concerted Research Action of Ghent University (awarded to Rudi De Raedt and Ernst Koster).


  1. Addis, D. R., Moscovitch, M., & McAndrews, M. P. (2007). Consequences of hippocampal damage across the autobiographical memory network in left temporal lobe epilepsy. Brain, 130, 2327–2342.PubMedGoogle Scholar
  2. Aizenstein, H. J., Butters, M. A., Wu, M. J., Mazurkewicz, L. M., Stenger, V. A., Gianaros, P. J., et al. (2009). Altered functioning of the executive control circuit in late-life depression: Episodic and persistent phenomena. American Journal of Geriatric Psychiatry, 17(1), 30–42.PubMedGoogle Scholar
  3. Alexopoulos, G. S., Meyers, B. S., Young, R. C., Campbell, S., Silbersweig, D., & Charlson, M. (1997). ‘Vascular depression’ hypothesis. Archives of General Psychiatry, 54(10), 915–922.PubMedGoogle Scholar
  4. Alloy, L. B., Just, N., & Panzarella, C. (1997). Attributional style, daily life events, and hopelessness depression: Subtype validation by prospective variability and specificity of symptoms. Cognitive Therapy and Research, 21(3), 321–344.Google Scholar
  5. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev. ed.).Google Scholar
  6. Aminoff, E., Gronau, N., & Bar, M. (2007). The parahippocampal cortex mediates spatial and nonspatial associations. Cerebral Cortex, 17(7), 1493–1503.PubMedGoogle Scholar
  7. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4), 550–562.PubMedGoogle Scholar
  8. Antypa, N., Van der Does, A. J. W., & Penninx, B. W. J. H. (2010). Cognitive reactivity: Investigation of a potentially treatable marker of suicide risk in depression. Journal of Affective Disorders, 122(1–2), 46–52.PubMedGoogle Scholar
  9. Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617–629.PubMedGoogle Scholar
  10. Bar, M. (2009a). The proactive brain: Memory for predictions. Philosophical Transactions of the Royal Society B-Biological Sciences, 364(1521), 1235–1243.Google Scholar
  11. Bar, M. (2009b). A cognitive neuroscience hypothesis of mood and depression. Trends in Cognitive Sciences, 13(11), 456–463.PubMedGoogle Scholar
  12. Bar, M., & Aminoff, E. (2003). Cortical analysis of visual context. Neuron, 38(2), 347–358.PubMedGoogle Scholar
  13. Bar, M., Aminoff, E., Mason, M., & Fenske, M. (2007). The units of thought. Hippocampus, 17(6), 420–428.PubMedGoogle Scholar
  14. Barnett, P. A., & Gotlib, I. H. (1990). Cognitive vulnerability to depressive symptoms among men and women. Cognitive Therapy and Research, 14(1), 47–61.Google Scholar
  15. Barnhofer, T., & Chittka, T. (2010). Cognitive reactivity mediates the relationship between neuroticism and depression. Behaviour Research and Therapy, 48(4), 275–281.PubMedGoogle Scholar
  16. Barron, E., Riby, L. M., Greer, J., & Smallwood, J. (2011). Absorbed in thought: The effect of mind wandering on the processing of relevant and irrelevant events. Psychological Science, 22(5), 596–601.PubMedGoogle Scholar
  17. Beck, A. T. (1967). Depression: Clinical, experimental, and theoretical aspects. New York Harper & Row.Google Scholar
  18. Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the beck depression inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
  19. Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B-Biological Sciences, 360(1457), 1001–1013.Google Scholar
  20. Beevers, C. G., & Carver, C. S. (2003). Attentional bias and mood persistence as prospective predictors of dysphoria. Cognitive Therapy and Research, 27(6), 619–637.Google Scholar
  21. Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101.PubMedGoogle Scholar
  22. Berman, M. G., & Jonides, J. (2011). Ruminating on rumination. Biological Psychiatry, 70(4), 310–311.PubMedGoogle Scholar
  23. Berman, M. G., Peltier, S., Nee, D. E., Kross, E., Deldin, P. J., & Jonides, J. (2011). Depression, rumination and the default network. Social Cognitive and Affective Neuroscience, 6(5), 548–555.PubMedGoogle Scholar
  24. Bluhm, R., Williamson, P., Lanius, R., Theberge, J., Densmore, M., Bartha, R., et al. (2009). Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: Decreased connectivity with caudate nucleus. Psychiatry and Clinical Neurosciences, 63(6), 754–761.PubMedGoogle Scholar
  25. Borsboom, D., Cramer, A. O. J., Schmittmann, V. D., Epskamp, S., & Waldorp, L. J. (2011). The small world of psychopathology. PLoS ONE, 6(11), e27407.PubMedGoogle Scholar
  26. Bower, G. H. (1981). Mood and memory. American Psychologist, 36(2), 129–148.PubMedGoogle Scholar
  27. Braboszcz, C., & Delorme, A. (2011). Lost in thoughts: neural markers of low alertness during mind wandering. Neuroimage, 54(4), 3040–3047.Google Scholar
  28. Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, E. J. S. (2009). Default-mode brain dysfunction in mental disorders: A systematic review. Neuroscience and Biobehavioral Reviews, 33(3), 279–296.PubMedGoogle Scholar
  29. Buckner, R. L. (2010). The role of the hippocampus in prediction and imagination. Annual Review of Psychology, 61, 27–48.PubMedGoogle Scholar
  30. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.PubMedGoogle Scholar
  31. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.PubMedGoogle Scholar
  32. Butler, L. D., & Nolen-Hoeksema, S. (1994). Gender differences in responses to depressed mood in a college sample. Sex Roles, 30(5–6), 331–346.Google Scholar
  33. Butler, A. C., Hokanson, J. E., & Flynn, H. A. (1994). A comparison of self-esteem lability and low trait self-esteem as vulnerability factors for depression. Journal of Personality and Social Psychology, 66(1), 166–177.PubMedGoogle Scholar
  34. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1–47.PubMedGoogle Scholar
  35. Castellanos, F. X., Sonuga-Barke, E. J. S., Scheres, A., Di Martino, A., Hyde, C., & Walters, J. R. (2005). Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biological Psychiatry, 57(11), 1416–1423.PubMedGoogle Scholar
  36. Cavanna, A. E. (2007). The precuneus and consciousness. Cns Spectrums, 12(7), 545–552.PubMedGoogle Scholar
  37. Chai, X. J., Castanon, A. N., Ongur, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations in resting state networks without global signal regression. NeuroImage, 59(2), 1420–1428.PubMedGoogle Scholar
  38. Chang, C., & Glover, G. H. (2009). Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. NeuroImage, 47(4), 1448–1459.PubMedGoogle Scholar
  39. Chiesa, A., Calati, R., & Serretti, A. (2011). Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clinical Psychology Review, 31(3), 449–464.PubMedGoogle Scholar
  40. Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8719–8724.PubMedGoogle Scholar
  41. Christoff, K., Cosmelli, D., Legrand, D., & Thompson, E. (2011). Specifying the self for cognitive neuroscience. Trends in Cognitive Sciences, 15(3), 104–112.PubMedGoogle Scholar
  42. Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101.PubMedGoogle Scholar
  43. Clark, D. A., Beck, A. T., & Alford, B. A. (1999). Scientific foundations of cognitive theory and therapy of depression. New York: Wiley.Google Scholar
  44. Cole, D. M., Smith, S. M., & Beckmann, C. F. (2010). Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in Systems Neuroscience, 4, 1–15.Google Scholar
  45. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.PubMedGoogle Scholar
  46. Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853.PubMedGoogle Scholar
  47. Dannlowski, U., Ohrmann, P., Konrad, C., Domschke, K., Bauer, J., Kugel, H., et al. (2009). Reduced amygdala-prefrontal coupling in major depression: Association with MAOA genotype and illness severity. International Journal of Neuropsychopharmacology, 12(1), 11–22.PubMedGoogle Scholar
  48. Davidson, R. J., Pizzagalli, D., Nitschke, J. B., & Putnam, K. (2002). Depression: Perspectives from affective neuroscience. Annual Review of Psychology, 53, 545–574.PubMedGoogle Scholar
  49. Davis, R. N., & Nolen-Hoeksema, S. (2000). Cognitive inflexibility among ruminators and nonruminators. Cognitive Therapy and Research, 24(6), 699–711.Google Scholar
  50. De Lissnyder, E., Koster, E. H. W., Derakshan, N., & De Raedt, R. (2010). The association between depressive symptoms and executive control impairments in response to emotional and non-emotional information. Cognition & Emotion, 24(2), 264–280.Google Scholar
  51. De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., & Smith, S. M. (2006). fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage, 29(4), 1359–1367.PubMedGoogle Scholar
  52. De Raedt, R., & Koster, E. H. W. (2010). Understanding vulnerability for depression from a cognitive neuroscience perspective: A reappraisal of attentional factors and a new conceptual framework. Cognitive Affective & Behavioral Neuroscience, 10(1), 50–70.Google Scholar
  53. Delaveau, P., Jabourian, M., Lemogne, C., Guionnet, S., Bergouignan, L., & Fossati, P. (2011). Brain effects of antidepressants in major depression: A meta-analysis of emotional processing studies. Journal of Affective Disorders, 130(1–2), 66–74.PubMedGoogle Scholar
  54. Demeyer, I., De Lissnyder, E., Koster, E. H. W., & De Raedt, R. (2012). Rumination mediates the relationship between impaired cognitive control for emotional information and depressive symptoms: A prospective study in remitted depressed adults. Behaviour Research and Therapy, 50(5), 292–297.PubMedGoogle Scholar
  55. Di Simplicio, M., Norbury, R., & Harmer, C. J. (2011). Short-term antidepressant administration reduces negative self-referential processing in the medial prefrontal cortex in subjects at risk for depression. Molecular Psychiatry. doi: 10.1038/mp.2011.16.
  56. Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12(8), 467–477.PubMedGoogle Scholar
  57. Dosenbach, N. U. F., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. S. C., et al. (2006). A core system for the implementation of task sets. Neuron, 50(5), 799–812.PubMedGoogle Scholar
  58. Dozois, D. J. A., & Dobson, K. S. (2001). A longitudinal investigation of information processing and cognitive organization in clinical depression: Stability of schematic interconnectedness. Journal of Consulting and Clinical Psychology, 69(6), 914–925.PubMedGoogle Scholar
  59. Drevets, W. C., Bogers, W., & Raichle, M. E. (2002). Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. European Neuropsychopharmacology, 12(6), 527–544.PubMedGoogle Scholar
  60. Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23(10), 475–483.PubMedGoogle Scholar
  61. Eichele, T., Debener, S., Calhoun, V. D., Specht, K., Engel, A. K., Hugdahl, K., et al. (2008). Prediction of human errors by maladaptive changes in event-related brain networks. Proceedings of the National Academy of Sciences of the United States of America, 105(16), 6173–6178.PubMedGoogle Scholar
  62. Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1(1), 41–50.PubMedGoogle Scholar
  63. Epstein, J., Perez, D. L., Ervin, K., Pan, H., Kocsis, J. H., Butler, T., et al. (2011). Failure to segregate emotional processing from cognitive and sensorimotor processing in major depression. Psychiatry Research, 193(3), 144–150.PubMedGoogle Scholar
  64. Fales, C. L., Barch, D. M., Rundle, M. M., Mintun, M. A., Snyder, A. Z., Cohen, J. D., et al. (2008). Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biological Psychiatry, 63(4), 377–384.PubMedGoogle Scholar
  65. Fales, C. L., Barch, D. M., Rundle, M. A., Mintun, M. A., Mathews, J., Snyder, A. Z., et al. (2009). Antidepressant treatment normalizes hypoactivity in dorsolateral prefrontal cortex during emotional interference processing in major depression. Journal of Affective Disorders, 112(1–3), 206–211.PubMedGoogle Scholar
  66. Farb, N. A. S., Anderson, A. K., Mayberg, H., Bean, J., McKeon, D., & Segal, Z. V. (2010). Minding one’s emotions: mindfulness training alters the neural expression of sadness. Emotion, 10(1), 25–33.PubMedGoogle Scholar
  67. Farb, N. A. S., Anderson, A. K., Bloch, R. T., & Segal, Z. V. (2011). Mood-linked responses in medial prefrontal cortex predict relapse in patients with recurrent unipolar depression. Biological Psychiatry, 70(4), 366–372.PubMedGoogle Scholar
  68. Fossati, P., Hevenor, S. J., Graham, S. J., Grady, C., Keightley, M. L., Craik, F., et al. (2003). In search of the emotional self: An fMRI study using positive and negative emotional words. American Journal of Psychiatry, 160(11), 1938–1945.PubMedGoogle Scholar
  69. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.PubMedGoogle Scholar
  70. Fox, M. D., Zhang, D. Y., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 3270–3283.PubMedGoogle Scholar
  71. Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26(1), 15–29.PubMedGoogle Scholar
  72. Fransson, P. (2006). How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 44(14), 2836–2845.PubMedGoogle Scholar
  73. Fredrickson, B. L. (2004). The broaden-and-build theory of positive emotions. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 359(1449), 1367–1377.Google Scholar
  74. Garnefski, N., Kraaij, V., & Spinhoven, P. (2001). Negative life events, cognitive emotion regulation and emotional problems. Personality and Individual Differences, 30(8), 1311–1327.Google Scholar
  75. Glover, G. H., Li, T. Q., & Ress, D. (2000). Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine, 44(1), 162–167.PubMedGoogle Scholar
  76. Goeleven, E., De Raedt, R., Baert, S., & Koster, E. H. W. (2006). Deficient inhibition of emotional information in depression. Journal of Affective Disorders, 93(1–3), 149–157.PubMedGoogle Scholar
  77. Goldin, P. R., Mcrae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63(6), 577–586.PubMedGoogle Scholar
  78. Goveas, J., Xie, C. M., Wu, Z. L., Ward, B. D., Li, W. J., Franczak, M. B., et al. (2011). Neural correlates of the interactive relationship between memory deficits and depressive symptoms in nondemented elderly: Resting fMRI study. Behavioural Brain Research, 219(2), 205–212.PubMedGoogle Scholar
  79. Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., et al. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429–437.PubMedGoogle Scholar
  80. Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78.PubMedGoogle Scholar
  81. Grimm, S., Boesiger, P., Beck, J., Schuepbach, D., Bermpohl, F., Walter, M., et al. (2009). Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology, 34(4), 932–943.PubMedGoogle Scholar
  82. Gruberger, M., Ben-Simon, E., Levkovitz, Y., Zangen, A., & Hendler, T. (2011). Towards a neuroscience of mind-wandering. Frontiers in Human Neuroscience, 5.Google Scholar
  83. Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4259–4264.PubMedGoogle Scholar
  84. Gustavsson, A., Svensson, M., Jacobi, F., Allgulander, C., Alonso, J., Beghi, E., et al. (2011). Cost of disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21(10), 718–779.PubMedGoogle Scholar
  85. Halari, R., Simic, M., Pariante, C. M., Papadopoulos, A., Cleare, A., Brammer, M., et al. (2009). Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naive adolescents with depression compared to controls. Journal of Child Psychology and Psychiatry, 50(3), 307–316.PubMedGoogle Scholar
  86. Hamilton, J. P., Chen, G., Thomason, M. E., Schwartz, M. E., & Gotlib, I. H. (2010). Investigating neural primacy in major depression disorder: Multivariate Granger causality analysis of resting-state fMRI time-series data. Molecular Psychiatry, 16(7), 763–772.PubMedGoogle Scholar
  87. Hamilton, J. P., Furman, D. J., Chang, C., Thomason, M. E., Dennis, E., & Gotlib, I. H. (2011a). Default-mode and task-positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination. Biological Psychiatry, 70(4), 327–333.PubMedGoogle Scholar
  88. Hamilton, J. P., Furman, D. J., & Gotlib, I. H. (2011b). The neural foundations of major depression: Classical approaches and new frontiers. In F. F. Lopez-Munoz & C. Alamo (Eds.), Neurobiology of depression (pp. 57–73). Florida: Taylor & Francis Group.Google Scholar
  89. Hamilton, J. P., Chen, M. C., & Gotfib, I. H. (2012). Neural systems approaches to understanding major depressive disorder: An intrinsic functional organization perspective. Neurobiology of Disease. doi: 10.1016/j.nbd.2012.01.015.
  90. Hammen, C., Burge, D., & Adrian, C. (1991). Timing of Mother and Child Depression in a Longitudinal-Study of Children at Risk. Journal of Consulting and Clinical Psychology, 59(2), 341–345.Google Scholar
  91. Hampson, M., Driesen, N., Roth, J. K., Gore, J. C., & Constable, R. T. (2010). Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magnetic Resonance Imaging, 28(8), 1051–1057.PubMedGoogle Scholar
  92. Hankin, B. L., Abramson, L. Y., Miller, N., & Haeffel, G. J. (2004). Cognitive vulnerability-stress theories of depression: Examining affective specificity in the prediction of depression versus anxiety in three prospective studies. Cognitive Therapy and Research, 28(3), 309–345.Google Scholar
  93. Hasler, G., & Northoff, G. (2011). Discovering imaging endophenotypes for major depression. Molecular Psychiatry, 16(6), 604–619.PubMedGoogle Scholar
  94. Hassabis, D., & Maguire, E. A. (2007). Deconstructing episodic memory with construction. Trends in Cognitive Sciences, 11(7), 299–306.PubMedGoogle Scholar
  95. Holmes, A. J., & Pizzagalli, D. A. (2008). Spatiotemporal dynamics of error processing dysfunctions in major depressive disorder. Archives of General Psychiatry, 65(2), 179–188.PubMedGoogle Scholar
  96. Honey, C. J., Thivierge, J. P., & Sporns, O. (2010). Can structure predict function in the human brain? NeuroImage, 52(3), 766–776.PubMedGoogle Scholar
  97. Hooley, J. M., Gruber, S. A., Scott, L. A., Hiller, J. B., & Yurgelun-Todd, D. A. (2005). Activation in dorsolateral prefrontal cortex in response to maternal criticism and praise in recovered depressed and healthy control participants. Biological Psychiatry, 57(7), 809–812.PubMedGoogle Scholar
  98. Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284–291.PubMedGoogle Scholar
  99. Huffziger, S., & Kuehner, C. (2009). Rumination, distraction, and mindful self-focus in depressed patients. Behaviour Research and Therapy, 47(3), 224–230.PubMedGoogle Scholar
  100. Joormann, J. (2004). Attentional bias in dysphoria: The role of inhibitory processes. Cognition & Emotion, 18(1), 125–147.Google Scholar
  101. Joormann, J. (2005). Inhibition, rumination, and mood regulation in depression. In R. W. Engle, G. Sedek, U. von Hecker, & D. N. McIntosh (Eds.), Cognitive limitations in aging and psychopathology: Attention, working memory, and executive functions (pp. 275–312). UK: Cambridge University Press.Google Scholar
  102. Joormann, J., & D’Avanzato, C. (2010). Emotion regulation in depression: Examining the role of cognitive processes. Cognition & Emotion, 24(6), 913–939.Google Scholar
  103. Joormann, J., & Gotlib, I. H. (2008). Updating the contents of working memory in depression: Interference from irrelevant negative material. Journal of Abnormal Psychology, 117(1), 182–192.PubMedGoogle Scholar
  104. Joormann, J., Talbot, L., & Gotlib, I. H. (2007a). Biased processing of emotional information in girls at risk for depression. Journal of Abnormal Psychology, 116(1), 135–143.PubMedGoogle Scholar
  105. Joormann, J., Yoon, K. L., & Zetsche, U. (2007b). Cognitive inhibition in depression. Applied & Preventive Psychology, 12(3), 128–139.Google Scholar
  106. Just, N., & Alloy, L. B. (1997). The response styles theory of depression: Tests and an extension of the theory. Journal of Abnormal Psychology, 106(2), 221–229.PubMedGoogle Scholar
  107. Kaiser, S., Unger, J., Kiefer, M., Markela, J., Mundt, C., & Weisbrod, M. (2003). Executive control deficit in depression: event-related potentials in a Go/Nogo task. Psychiatry Research-Neuroimaging, 122(3), 169–184.Google Scholar
  108. Kaiser, S., Roth, A., Rentrop, M., Friederich, H. C., Bender, S., & Weisbrod, M. (2008). Intra-individual reaction time variability in schizophrenia, depression and borderline personality disorder. Brain and Cognition, 66(1), 73–82.PubMedGoogle Scholar
  109. Keller, M. B. (2003). Past, present, and future directions for defining optimal treatment outcome in depression - Remission and beyond. Jama-Journal of the American Medical Association, 289(23), 3152–3160.Google Scholar
  110. Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39(1), 527–537.PubMedGoogle Scholar
  111. Kendler, K. S., Gatz, M., Gardner, C. O., & Pedersen, N. L. (2006). Personality and major depression - A Swedish longitudinal, population-based twin study. Archives of General Psychiatry, 63(10), 1113–1120.Google Scholar
  112. Kennedy, D. P., & Courchesne, E. (2008). The intrinsic functional organization of the brain is altered in autism. NeuroImage, 39(4), 1877–1885.PubMedGoogle Scholar
  113. Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., et al. (2003). The epidemiology of major depressive disorder - Results from the National Comorbidity Survey Replication (NCS-R). Jama-Journal of the American Medical Association, 289(23), 3095–3105.Google Scholar
  114. King, M. J., MacDougall, A. G., Ferris, S., Herdman, K. A., & McKinnon, M. C. (2011). Episodic simulation of future events is impaired in patients with major depressive disorder. Psychiatry Research, 187(3), 465–467.PubMedGoogle Scholar
  115. Koster, E. H. W., De Raedt, R., Goeleven, E., Franck, E., & Crombez, G. (2005). Mood-congruent attentional bias in dysphoria: Maintained attention to and impaired disengagement from negative information. Emotion, 5(4), 446–455.PubMedGoogle Scholar
  116. Koster, E. H. W., De Lissnyder, E., Derakshan, N., & De Raedt, R. (2011). Understanding depressive rumination from a cognitive science perspective: The impaired disengagement hypothesis. Clinical Psychology Review, 31(1), 138–145.PubMedGoogle Scholar
  117. Kuehner, C., & Weber, I. (1999). Responses to depression in unipolar depressed patients: An investigation of Nolen-Hoeksema’s response styles theory. Psychological Medicine, 29(6), 1323–1333.PubMedGoogle Scholar
  118. Kuyken, W., Watkins, E., Holden, E., White, K., Taylor, R. S., Byford, S., et al. (2010). How does mindfulness-based cognitive therapy work? Behaviour Research and Therapy, 48(11), 1105–1112.PubMedGoogle Scholar
  119. Lau, M. A., Christensen, B. K., Hawley, L. L., Gemar, M. S., & Segal, Z. V. (2007). Inhibitory deficits for negative information in persons with major depressive disorder. Psychological Medicine, 37(9), 1249–1259.PubMedGoogle Scholar
  120. Levens, S. M., & Gotlib, I. H. (2010). Updating positive and negative stimuli in working memory in depression. Journal of Experimental Psychology-General, 139(4), 654–664.PubMedGoogle Scholar
  121. Lewinsohn, P. M., Steinmetz, J. L., Larson, D. W., & Franklin, J. (1981). Depression-related cognitions - antecedent or consequence. Journal of Abnormal Psychology, 90(3), 213–219.PubMedGoogle Scholar
  122. Leyman, L., De Raedt, R., Schacht, R., & Koster, E. H. W. (2007). Attentional biases for angry faces in unipolar depression. Psychological Medicine, 37(3), 393–402.PubMedGoogle Scholar
  123. Leyman, L., De Raedt, R., Vanderhasselt, M. A., & Baeken, C. (2009). Influence of high-frequency repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex on the inhibition of emotional information in healthy volunteers. Psychological Medicine, 39(6), 1019–1028.PubMedGoogle Scholar
  124. Leyman, L., De Raedt, R., Vanderhasselt, M. A., & Baeken, C. (2011). Effects of repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex on the attentional processing of emotional information in major depression: A pilot study. Psychiatry Research, 185(1–2), 102–107.PubMedGoogle Scholar
  125. Li, C. S. R., Yan, P., Bergquist, K. L., & Sinha, R. (2007). Greater activation of the “default” brain regions predicts stop signal errors. NeuroImage, 38(3), 640–648.PubMedGoogle Scholar
  126. Liang, Z., King, J., & Zhang, N. (2012). Anticorrelated resting-state functional connectivity in awake rat brain. NeuroImage, 59(2), 1190–1199.PubMedGoogle Scholar
  127. Liu, H. H., Kaneko, Y., Ouyang, X., Li, L., Hao, Y. H., Chen, E. Y. H., et al. (2012). Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network. Schizophrenia Bulletin, 38(2), 285–294.PubMedGoogle Scholar
  128. Lui, S., Wu, Q. Z., Qiu, L. H., Yang, X., Kuang, W. H., Chan, R. C. K., et al. (2011). Resting-state functional connectivity in treatment-resistant depression. American Journal of Psychiatry, 168(6), 642–648.PubMedGoogle Scholar
  129. Lyubomirsky, S., & Nolen-Hoeksema, S. (1995). Effects of self-focused rumination on negative thinking and interpersonal problem solving. Journal of Personality and Social Psychology, 69(1), 176–190.PubMedGoogle Scholar
  130. Ma, S. H., & Teasdale, J. D. (2004). Mindfulness-based cognitive therapy for depression: Replication and exploration of differential relapse prevention effects. Journal of Consulting and Clinical Psychology, 72(1), 31–40.PubMedGoogle Scholar
  131. MacLean, K. A., Aichele, S. R., Bridwell, D. A., Mangun, G. P., Wojciulik, E., & Saron, C. D. (2009). Interactions between endogenous and exogenous attention during vigilance. Attention Perception & Psychophysics, 71(5), 1042–1058.Google Scholar
  132. Macleod, C., & Hagan, R. (1992). Individual-differences in the selective processing of threatening information, and emotional responses to a stressful life event. Behaviour Research and Therapy, 30(2), 151–161.PubMedGoogle Scholar
  133. Margulies, D. S., Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2007). Mapping the functional connectivity of anterior cingulate cortex. Neuroimage, 37(2), 579–588.PubMedGoogle Scholar
  134. Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315(5810), 393–395.PubMedGoogle Scholar
  135. Masten, C. L., Esenberger, N. I., Borofsky, L. A., McNealy, K., Pfeifer, J. H., & Dapretto, M. (2011). Subgenual anterior cingulate responses to peer rejection: A marker of adolescents’ risk for depression. Development and Psychopathology, 23(1), 283–292.PubMedGoogle Scholar
  136. Mayberg, H. S. (1997). Limbic-cortical dysregulation: A proposed model of depression. Journal of Neuropsychiatry and Clinical Neurosciences, 9(3), 471–481.PubMedGoogle Scholar
  137. McCabe, C., Mishor, Z., Filippini, N., Cowen, P. J., Taylor, M. J., & Harmer, C. J. (2011). SSRI administration reduces resting state functional connectivity in dorso-medial prefrontal cortex. Molecular Psychiatry, 16(6), 592–594.Google Scholar
  138. McKiernan, K. A., Kaufman, J. N., Kucera-Thompson, J., & Binder, J. R. (2003). A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. Journal of Cognitive Neuroscience, 15(3), 394–408.PubMedGoogle Scholar
  139. Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506.PubMedGoogle Scholar
  140. Mitchell, J. P., Banaji, M. R., & Macrae, C. N. (2005). The link between social cognition and self-referential thought in the medial prefrontal cortex. Journal of Cognitive Neuroscience, 17(8), 1306–1315.PubMedGoogle Scholar
  141. Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2006). Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50(4), 655–663.PubMedGoogle Scholar
  142. Mitterschiffthaler, M. T., Williams, S. C. R., Walsh, N. D., Cleare, A. J., Donaldson, C., Scott, J., et al. (2008). Neural basis of the emotional Stroop interference effect in major depression. Psychological Medicine, 38(2), 247–256.PubMedGoogle Scholar
  143. Monroe, S. M., & Harkness, K. L. (2005). Life stress, the “Kindling” hypothesis, and the recurrence of depression: Considerations from a life stress perspective. Psychological Review, 112(2), 417–445.PubMedGoogle Scholar
  144. Monroe, S. M., & Harkness, K. L. (2011). Recurrence in major depression: A conceptual analysis. Psychological Review, 118(4), 655–674.PubMedGoogle Scholar
  145. Morrow, J., & Nolen-Hoeksema, S. (1990). Effects of responses to depression on the remediation of depressive affect. Journal of Personality and Social Psychology, 58(3), 519–527.PubMedGoogle Scholar
  146. Moulds, M. L., Kandris, E., Williams, A. D., Lang, T., Yap, C., & Hoffmeister, K. (2008). An investigation of the relationship between cognitive reactivity and rumination. Behavior Therapy, 39(1), 65–71.PubMedGoogle Scholar
  147. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? NeuroImage, 44(3), 893–905.PubMedGoogle Scholar
  148. Nolen-Hoeksema, S. (1991). Responses to depression and their effects on the duration of depressive episodes. Journal of Abnormal Psychology, 100(4), 569–582.PubMedGoogle Scholar
  149. Nolen-Hoeksema, S. (2000). The role of rumination in depressive disorders and mixed anxiety/depressive symptoms. Journal of Abnormal Psychology, 109(3), 504–511.PubMedGoogle Scholar
  150. Nolen-Hoeksema, S., & Morrow, J. (1991). A prospective-study of depression and posttraumatic stress symptoms after a natural disaster - the 1989 Loma-Prieta Earthquake. Journal of Personality and Social Psychology, 61(1), 115–121.PubMedGoogle Scholar
  151. Norbury, R., Mannie, Z., & Cowen, P. J. (2011). Imaging vulnerability for depression. Molecular Psychiatry, 16(11), 1067–1068.PubMedGoogle Scholar
  152. Northoff, G., & Qin, P. M. (2011). How can the brain’s resting state activity generate hallucinations? A ‘resting state hypothesis’ of auditory verbal hallucinations. Schizophrenia Research, 127(1–3), 202–214.PubMedGoogle Scholar
  153. Northoff, G., Qin, P. M., & Nakao, T. (2010). Rest-stimulus interaction in the brain: a review. Trends in Neurosciences, 33(6), 277–284.PubMedGoogle Scholar
  154. Northoff, G., Wiebking, C., Feinberg, T., & Panksepp, J. (2011). The ‘resting-state hypothesis’ of major depressive disorder-A translational subcortical-cortical framework for a system disorder. Neuroscience and Biobehavioral Reviews, 35(9), 1929–1945.PubMedGoogle Scholar
  155. Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002). Rethinking feelings: An fMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14(8), 1215–1229.PubMedGoogle Scholar
  156. Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D. E., et al. (2004). For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. NeuroImage, 23(2), 483–499.PubMedGoogle Scholar
  157. Ochsner, K. N., Beer, J. S., Robertson, E. R., Cooper, J. C., Gabrieli, J. D. E., Kihsltrom, J. F., et al. (2005). The neural correlates of direct and reflected self-knowledge. NeuroImage, 28(4), 797–814.PubMedGoogle Scholar
  158. Perry, D., Hendler, T., & Shamay-Tsoory, S. G. (2011). Projecting memories: The role of the hippocampus in emotional mentalizing. NeuroImage, 54(2), 1669–1676.PubMedGoogle Scholar
  159. Phan, K. L., Wager, T. D., Taylor, S. F., & Liberzon, I. (2004). Functional neuroimaging studies of human emotions. Cns Spectrums, 9(4), 258–266.PubMedGoogle Scholar
  160. Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003). Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biological Psychiatry, 54(5), 515–528.PubMedGoogle Scholar
  161. Phillips, W. J., Hine, D. W., & Thorsteinsson, E. B. (2010). Implicit cognition and depression: A meta-analysis. Clinical Psychology Review, 30(6), 691–709.PubMedGoogle Scholar
  162. Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression: Toward biomarkers of treatment response. Neuropsychopharmacology, 36(1), 183–206.PubMedGoogle Scholar
  163. Polli, F. E., Barton, J. J. S., Cain, M. S., Thakkar, K. N., Rauch, S. L., & Manoach, D. S. (2005). Rostral and dorsal anterior cingulate cortex make dissociable contributions during antisaccade error commission. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15700–15705.PubMedGoogle Scholar
  164. Prado, J., & Weissman, D. H. (2011). Heightened interactions between a key default-mode region and a key task-positive region are linked to suboptimal current performance but to enhanced future performance. NeuroImage, 56(4), 2276–2282.PubMedGoogle Scholar
  165. Price, J. L., & Drevets, W. C. (2012). Neural circuits underlying the pathophysiology of mood disorders. Trends in Cognitive Sciences, 16(1), 61–71.PubMedGoogle Scholar
  166. Raes, F., Dewulf, D., Van Heeringen, C., & Williams, J. M. G. (2009). Mindfulness and reduced cognitive reactivity to sad mood: Evidence from a correlational study and a non-randomized waiting list controlled study. Behaviour Research and Therapy, 47(7), 623–627.PubMedGoogle Scholar
  167. Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. NeuroImage, 37(4), 1083–1090. discussion 1097–1089.PubMedGoogle Scholar
  168. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.PubMedGoogle Scholar
  169. Rude, S. S., Maestas, K. L., & Neff, K. (2007). Paying attention to distress: What’s wrong with rumination? Cognition & Emotion, 21(4), 843–864.Google Scholar
  170. Scher, C. D., Ingram, R. E., & Segal, Z. V. (2005). Cognitive reactivity and vulnerability: Empirical evaluation of construct activation and cognitive diatheses in unipolar depression. Clinical Psychology Review, 25(4), 487–510.PubMedGoogle Scholar
  171. Schmaling, K. B., Dimidjian, S., Katon, W., & Sullivan, M. (2002). Response styles among patients with minor depression and dysthymia in primary care. Journal of Abnormal Psychology, 111(2), 350–356.PubMedGoogle Scholar
  172. Schmitz, T. W., & Johnson, S. C. (2007). Relevance to self: A brief review and framework of neural systems underlying appraisal. Neuroscience and Biobehavioral Reviews, 31(4), 585–596.PubMedGoogle Scholar
  173. Seeds, P. M., & Dozois, D. J. A. (2010). Prospective evaluation of a cognitive vulnerability-stress model for depression: The interaction of schema self-structures and negative life events. Journal of Clinical Psychology, 66(12), 1307–1323.PubMedGoogle Scholar
  174. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356.PubMedGoogle Scholar
  175. Segal, Z. V., Williams, J. M., & Teasdale, J. (2002). Mindfulness-based cognitive therapy for depression: A new approach to preventing relapse. New York: Guilford Press.Google Scholar
  176. Segal, Z. V., Kennedy, S., Gemar, M., Hood, K., Pedersen, R., & Buis, T. (2006). Cognitive reactivity to sad mood provocation and the prediction of depressive relapse. Archives of General Psychiatry, 63(7), 749–755.PubMedGoogle Scholar
  177. Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., et al. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1942–1947.PubMedGoogle Scholar
  178. Sheline, Y. I., Price, J. L., Yan, Z. Z., & Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11020–11025.PubMedGoogle Scholar
  179. Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., et al. (1997). Common blood flow changes across visual tasks .2. Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9(5), 648–663.Google Scholar
  180. Siegle, G. J., Carter, C. S., & Thase, M. E. (2006). Use of fMRI to predict recovery from unipolar depression with cognitive behavior therapy. American Journal of Psychiatry, 163(4), U731–U735.Google Scholar
  181. Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., & Thase, M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: Related and independent features. Biological Psychiatry, 61(2), 198–209.PubMedGoogle Scholar
  182. Singh, K. D., & Fawcett, I. P. (2008). Transient and linearly graded deactivation of the human default-mode network by a visual detection task. NeuroImage, 41(1), 100–112.PubMedGoogle Scholar
  183. Smallwood, J., & Schooler, J. W. (2006). The restless mind. Psychological Bulletin, 132(6), 946–958.PubMedGoogle Scholar
  184. Sonuga-Barke, E. J. S., & Castellanos, F. X. (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neuroscience and Biobehavioral Reviews, 31(7), 977–986.PubMedGoogle Scholar
  185. Sonuga-Barke, E. J. S., & Fairchild, G. (2012). Neuroeconomics of attention-deficit/hyperactivity disorder: Differential influences of medial, dorsal and ventral prefrontal brain networks on sub-optimal decision-making. Biological Psychiatry, in press.Google Scholar
  186. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12569–12574.PubMedGoogle Scholar
  187. Taylor, J. G., & Fragopanagos, N. F. (2005). The interaction of attention and emotion. Neural Networks, 18(4), 353–369.PubMedGoogle Scholar
  188. Teasdale, J. D. (1988). Cognitive vulnerability to persistent depression. Cognition & Emotion, 2, 247–274.Google Scholar
  189. Teasdale, J. D., & Barnard, P. J. (1995). Affect, cognition and change: Remodelling depressive thought. Hove: Lawrence Erlbaum Associates.Google Scholar
  190. Treynor, W., Gonzalez, R., & Nolen-Hoeksema, S. (2003). Rumination reconsidered: A psychometric analysis. Cognitive Therapy and Research, 27(3), 247–259.Google Scholar
  191. Uddin, L. Q., Kelly, A. M. C., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2009). Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Human Brain Mapping, 30(2), 625–637.PubMedGoogle Scholar
  192. Van der Does, W. (2002). Cognitive reactivity to sad mood: Structure and validity of a new measure. Behaviour Research and Therapy, 40(1), 105–120.PubMedGoogle Scholar
  193. Van Dijk, K. R., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. Journal of Neurophysiology, 103(1), 297–321.PubMedGoogle Scholar
  194. Vanderhasselt, M. A., & De Raedt, R. (2009). Impairments in cognitive control persist during remission from depression and are related to the number of past episodes: An event related potentials study. Biological Psychology, 81(3), 169–176.PubMedGoogle Scholar
  195. Vanderhasselt, M. A., De Raedt, R., Baeken, C., Leyman, L., & D’Haenen, H. (2009). A single session of rTMS over the left dorsolateral prefrontal cortex influences attentional control in depressed patients. World Journal of Biological Psychiatry, 10(1), 34–42.PubMedGoogle Scholar
  196. Vanderhasselt, M. A., Kuhn, S., & De Raedt, R. (2011). Healthy brooders employ more attentional resources when disengaging from the negative: An event-related fMRI study. Cognitive Affective & Behavioral Neuroscience, 11(2), 207–216.Google Scholar
  197. Vanhaudenhuyse, A., Demertzi, A., Schabus, M., Noirhomme, Q., Bredart, S., Boly, M., et al. (2011). Two distinct neuronal networks mediate the awareness of environment and of self. Journal of Cognitive Neuroscience, 23(3), 570–578.PubMedGoogle Scholar
  198. Way, B. M., Creswell, J. D., Eisenberger, N. I., & Lieberman, M. D. (2010). Dispositional mindfulness and depressive symptomatology: correlations with limbic and self-referential neural activity during rest. Emotion, 10(1), 12–24.PubMedGoogle Scholar
  199. Weissenbacher, A., Kasess, C., Gerstl, F., Lanzenberger, R., Moser, E., & Windischberger, C. (2009). Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies. NeuroImage, 47(4), 1408–1416.PubMedGoogle Scholar
  200. Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971–978.PubMedGoogle Scholar
  201. Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8, 49–76.PubMedGoogle Scholar
  202. Wichers, M., Geschwind, N., van Os, J., & Peeters, F. (2010). Scars in depression: is a conceptual shift necessary to solve the puzzle? Psychological Medicine, 40(3), 359–365.Google Scholar
  203. Wiebking, C., de Greck, M., Duncan, N. W., Heinzel, A., Tempelmann, C., & Northoff, G. (2011). Are emotions associated with activity during rest or interoception? An exploratory fMRI study in healthy subjects. Neuroscience Letters, 491(1), 87–92.PubMedGoogle Scholar
  204. Williams, J. M. G., Van der Does, A. J. W., Barnhofer, T., Crane, C., & Segal, Z. S. (2008). Cognitive reactivity, suicidal ideation and future fluency: Preliminary investigation of a differential activation theory of hopelessness/suicidality. Cognitive Therapy and Research, 32(1), 83–104.Google Scholar
  205. Wu, M., Andreescu, C., Butters, M. A., Tamburo, R., Reynolds, C. F., 3rd, & Aizenstein, H. (2011). Default-mode network connectivity and white matter burden in late-life depression. Psychiatry Research, 194(1), 39–46.PubMedGoogle Scholar
  206. Yacubian, J., Glascher, J., Schroeder, K., Sommer, T., Braus, D. F., & Buchel, C. (2006). Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. Journal of Neuroscience, 26(37), 9530–9537.PubMedGoogle Scholar
  207. Zhang, J. R., Wang, J. H., Wu, Q. Z., Kuang, W. H., Huang, X. Q., He, Y., et al. (2011). Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biological Psychiatry, 70(4), 334–342.PubMedGoogle Scholar
  208. Zhou, Y., Liang, M., Jiang, T. Z., Tian, L. X., Liu, Y., Liu, Z. N., et al. (2007). Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neuroscience Letters, 417(3), 297–302.PubMedGoogle Scholar
  209. Zhou, Y., Yu, C. S., Zheng, H., Liu, Y., Song, M., Qin, W., et al. (2010). Increased neural resources recruitment in the intrinsic organization in major depression. Journal of Affective Disorders, 121(3), 220–230.PubMedGoogle Scholar
  210. Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., et al. (2011). Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode. Treatment-Naive Major Depression Patients. Biological Psychiatry. doi: 10.1016/j.biopsych.2011.10.035.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Igor Marchetti
    • 1
    Email author
  • Ernst H. W. Koster
    • 1
  • Edmund J. Sonuga-Barke
    • 1
    • 2
  • Rudi De Raedt
    • 1
  1. 1.Department of Experimental-Clinical and Health PsychologyGhent UniversityGhentBelgium
  2. 2.Institute for Disorders of Impulse and Attention, Developmental Brain-Behaviour Laboratory, School of PsychologyUniversity of SouthamptonSouthamptonUK

Personalised recommendations