Neuropsychology Review

, Volume 21, Issue 2, pp 186–203 | Cite as

The Effects of Prenatal Alcohol Exposure on Behavior: Rodent and Primate Studies

  • Mary L. Schneider
  • Colleen F. Moore
  • Miriam M. Adkins


The use of alcohol by women during pregnancy is a continuing problem. In this review the behavioral effects of prenatal alcohol from animal models are described and related to studies of children and adults with FASD. Studies with monkeys and rodents show that prenatal alcohol exposure adversely affects neonatal orienting, attention and motor maturity, as well as activity level, executive function, response inhibition, and sensory processing later in life. The primate moderate dose behavioral findings fill an important gap between human correlational data and rodent mechanistic research. These animal findings are directly translatable to human findings. Moreover, primate studies that manipulated prenatal alcohol exposure and prenatal stress independently show that prenatal stress exacerbates prenatal alcohol-induced behavioral impairments, underscoring the need to consider stress-induced effects in fetal alcohol research. Studies in rodents and primates show long-term effects of prenatal and developmental alcohol exposure on dopamine system functioning, which could underpin the behavioral effects.


Prenatal alcohol exposure Executive function Behavior Sensory processing Gene x environment Prenatal stress 



This study was supported by AA10079 and AA12277 from the National Institute of Alcoholism and Alcohol Abuse to M. L. Schneider.


  1. Abel, E. L. (1982). In utero alcohol exposure and developmental delay of response inhibition. Alcoholism, Clinical and Experimental Research, 6(3), 369–376.PubMedCrossRefGoogle Scholar
  2. Abel, E. L., & Berman, R. F. (1994). Long-term behavioral effects of prenatal alcohol exposure in rats. Neurotoxicology and Teratology, 16(5), 467–470.PubMedCrossRefGoogle Scholar
  3. Abel, E. L., & Hannigan, J. H. (1995). Maternal risk factors in fetal alcohol syndrome: provocative and permissive influences. Neurotoxicology and Teratology, 17(4), 445–462.PubMedCrossRefGoogle Scholar
  4. Als, H. (1986). A synactive model of neonatal behavioral organization. Physical & Occupational Therapy in Pediatrics, 6(3), 3–53.CrossRefGoogle Scholar
  5. Altshuler, H. L., & Shippenberg, T. S. (1981). A subhuman primate model for fetal alcohol syndrome research. Neurobehavioral Toxicology and Teratology, 3(2), 121–126.PubMedGoogle Scholar
  6. Astley, S. J., Weinberger, E., Shaw, D. W., Richards, T. L., & Clarren, S. K. (1995). Magnetic resonance imaging and spectroscopy in fetal ethanol exposed Macaca nemestrina. Neurotoxicology and Teratology, 17(5), 523–530.PubMedCrossRefGoogle Scholar
  7. Astley, S. J., Aylward, E. H., Olson, H. C., Kerns, K., Brooks, A., Coggins, T. E., et al. (2009). Magnetic resonance imaging outcomes from a comprehensive magnetic resonance study of children with fetal alcohol spectrum disorders. Alcoholism, Clinical and Experimental Research, 33(10), 1671–1689.PubMedCrossRefGoogle Scholar
  8. Ayres, A. J. (1972). Sensory integration and learning disorders. Los Angeles: Western Psychological Services.Google Scholar
  9. Ayres, A. J. (1989). Sensory integration and praxis tests manual. Los Angeles: Western Psychology Services.Google Scholar
  10. Baranek, G. T., & Berkson, G. (1994). Tactile defensiveness in children with developmental disabilities: Responsiveness and habituation. Journal of Autism and Developmental Disorders, 24(4), 457–471.PubMedCrossRefGoogle Scholar
  11. Barnes, D. E., & Walker, D. W. (1981). Prenatal ethanol exposure permanently reduces the number of pyramidal neurons in rat hippocampus. Brain Research, 227(3), 333–340.PubMedGoogle Scholar
  12. Barron, S., & Riley, E. P. (1990). Passive avoidance performance following neonatal alcohol exposure. Neurotoxicology and Teratology, 12(2), 135–138.PubMedCrossRefGoogle Scholar
  13. Barron, S., & Riley, E. P. (1992). The effects of prenatal alcohol exposure on behavioral and neuroanatomical components of olfaction. Neurotoxicology and Teratology, 14(4), 291–297.PubMedCrossRefGoogle Scholar
  14. Barron, S., Kelly, S. J., & Riley, E. P. (1991). Neonatal alcohol exposure alters suckling behavior in neonatal rat pups. Pharmacology, Biochemistry and Behavior, 39(2), 423–427.CrossRefGoogle Scholar
  15. Barron, S., Segar, T. M., Yahr, J. S., Baseheart, B. J., & Willford, J. A. (2000). The effect of neonatal ethanol and/or cocaine exposure on isolation-induced ultrasonic vocalizations. Pharmacology, Biochemistry and Behavior, 67(1), 1–9.CrossRefGoogle Scholar
  16. Beijers, R., Jansen, J., Riksen-Walraven, M., & de Weerth, C. (2010). Maternal prenatal anxiety and stress predict infant illnesses and health complaints. Pediatrics, 126(2), 401–409.CrossRefGoogle Scholar
  17. Boehm, S. L., Lundahl, K. R., Caldwell, J., & Gilliam, D. M. (1997). Ethanol teratogenesis in the C57BL/6J, DBA/2J. and A/J inbred mouse strains. Alcohol, 14(4), 389–395.PubMedCrossRefGoogle Scholar
  18. Bond, N. W. (1981). Prenatal alcohol exposure in rodents: A review of its effects on offspring activity and learning ability. Australian Journal of Psychology, 33(3), 331–344.CrossRefGoogle Scholar
  19. Bond, N. W. (1984). Behavioural teratology: Fetal alcohol exposure and hyperactivity. In N. W. Bond (Ed.), Animal models in psychopathology. Sydney: Academic.Google Scholar
  20. Bonthius, D. J., Bonthius, N. E., Napper, R. M., & West, J. R. (1992). Early postnatal alcohol exposure acutely and permanently reduces the number of granule cells and mitral cells in the rat olfactory bulb: A stereological study. The Journal of Comparative Neurology, 324(4), 557–566.PubMedCrossRefGoogle Scholar
  21. Bonthius, D. J., Bonthius, N. E., Napper, R. M., Astley, S. J., Clarren, S. K., & West, J. R. (1996). Purkinje cell deficits in nonhuman primates following weekly exposure to ethanol during gestation. Teratology, 53(4), 230–236.PubMedCrossRefGoogle Scholar
  22. Bourgeois, J. P., & Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. The Journal of Neuroscience, 13(7), 2801–2820.PubMedGoogle Scholar
  23. Boyce, W. T. (2007). A biology of misfortune: Stress reactivity, social context, and the ontogeny of psychopathology in early life. In A. Masten (Ed.), Multilevel dynamics in developmental psychopathology: Pathways to the future (34th ed., pp. 45–82). Minneapolis: University of Minnesota.Google Scholar
  24. Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity. Developmental Psychopathology, 17(2), 271–301.CrossRefGoogle Scholar
  25. Brazelton, T. B. (1973). Assessment of the infant at risk. Clinical Obstetrics and Gynecology, 16(1), 361–375.PubMedCrossRefGoogle Scholar
  26. Brickson, M., & Bachevalier, J. (1984). Visual recognition in infant rhesus monkeys: Evidence for a primitive memory process. Society for Neuroscience Abstracts, 10, 137.Google Scholar
  27. Brien, J. F., Loomis, C. W., Tranmer, J., & McGrath, M. (1983). Disposition of ethanol in human maternal venous blood and amniotic fluid. Journal of American Obstetrics and Gynecology, 146(2), 181–186.Google Scholar
  28. Brookes, K., Mill, J., Guindalini, C., Curran, S., Xu, X., Knight, J., et al. (2006). A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol during pregnancy. Archives of General Psychiatry, 63, 74–81.PubMedCrossRefGoogle Scholar
  29. Brown, R. T., Coles, C. D., Smith, I. E., Platzman, K. A., Silverstein, J., Erickson, S., et al. (1991). Effects of prenatal alcohol exposure at school age. II. Attention and behavior. Neurotoxicology and Teratology, 13(4), 369–376.PubMedCrossRefGoogle Scholar
  30. Brudzynski, S. M. (2005). Principles of rat communication: quantitative parameters of ultrasonic calls in rats. Behavior Genetics, 35(1), 85–92.PubMedCrossRefGoogle Scholar
  31. Burden, M. J., Jacobson, S. W., Sokol, R. J., & Jacobson, J. L. (2005). Effects of prenatal alcohol exposure on attention and working memory at 7.5 years of age. Alcoholism, Clinical and Experimental Research, 29(3), 443–452.PubMedCrossRefGoogle Scholar
  32. Casey, B. J., Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Schubert, A. B., et al. (1997). Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 36(3), 374–383.PubMedCrossRefGoogle Scholar
  33. Caspi, A., Sudgen, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.PubMedCrossRefGoogle Scholar
  34. Castellanos, F. X., Giedd, J. N., Eckburg, P., Marsh, W. L., Waituzis, A. C., Kaysen, D., et al. (1994). Quantitative morphology of the caudate nucleus in attention deficit hyperactivity disorder. The American Journal of Psychiatry, 151(12), 1791–1796.PubMedGoogle Scholar
  35. Chen, J. S., Driscoll, C. D., & Riley, E. P. (1982). Ontogeny of suckling behavior in rats prenatally exposed to alcohol. Teratology, 26(2), 145–153.PubMedCrossRefGoogle Scholar
  36. Chen, W. J., Maier, S. E., Parnell, S. E., & West, J. R. (2003). Alcohol and the developing brain: Neuroanatomical studies. Alcohol Research & Health, 27(2), 174–180.Google Scholar
  37. Chernoff, G. F. (1980). The fetal alcohol syndrome in mice: Maternal variables. Teratology, 22(1), 71–75.PubMedCrossRefGoogle Scholar
  38. Choong, K. C., & Shen, R. Y. (2004). Methylphenidate restores ventral tegmental area dopamine neuron activity in prenatal ethanol-exposed rats by augmenting dopamine neurotransmission. The Journal of Pharmacology and Experimental Therapeutics, 309(2), 444–451.PubMedCrossRefGoogle Scholar
  39. Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Developmental Psychopathology, 8, 597–600.CrossRefGoogle Scholar
  40. Clarren, S. K., & Astley, S. J. (1992). Pregnancy outcomes after weekly oral administration of ethanol during gestation in the pig-tailed macaque: Comparing early gestational exposure to full gestational exposure. Teratology, 45(1), 1–9.PubMedCrossRefGoogle Scholar
  41. Clarren, S. K., & Bowden, D. M. (1982). Fetal alcohol syndrome: A new primate model for binge drinking and its relevance to human ethanol teratogenesis. The Journal of Pediatrics, 101(5), 819–824.PubMedCrossRefGoogle Scholar
  42. Clarren, S. K., & Smith, D. W. (1978). The fetal alcohol syndrome. The New England Journal of Medicine, 298, 1063–1067.PubMedCrossRefGoogle Scholar
  43. Clarren, S. K., Bowden, D. M., & Astley, S. J. (1987). Pregnancy outcomes after weekly oral administration of ethanol during gestation in the pig-tailed macaque (Macaca nemestrina). Teratology, 35(3), 345–354.PubMedCrossRefGoogle Scholar
  44. Clarren, S. K., Astley, S. J., Bowden, D. M., Lai, H., Milam, A. H., Rudeen, P. K., et al. (1990). Neuroanatomical and neurochemical abnormalities in nonhuman primate infants exposed to weekly doses of ethanol during gestation. Alcoholism, Clinical and Experimental Research, 14(5), 674–683.PubMedCrossRefGoogle Scholar
  45. Clarren, S. K., Astley, S. J., Gunderson, V. M., & Spellman, D. (1992). Cognitive and behavioral deficits in nonhuman primates associated with very early embryonic binge exposures to ethanol. The Journal of Pediatrics, 121(5), 789–796.PubMedCrossRefGoogle Scholar
  46. Coe, C. L., Lubach, G. R., Crispen, H. R., Shirtcliff, E. A., & Schneider, M. L. (2010). Challenges to maternal wellbeing during pregnancy impact temperament, attention, ad neuromotor responses in the infant rhesus monkey. Developmental Psychobiology, 52(7), 625–637.PubMedCrossRefGoogle Scholar
  47. Coles, C. D., Smith, I., Fernhoff, P. M., & Falek, A. (1985). Neonatal neurobehavioral characteristic as correlates of maternal alcohol use during gestation. Alcoholism, Clinical and Experimental Research, 9(5), 454–460.PubMedCrossRefGoogle Scholar
  48. Coles, C. D., Brown, R. T., Smith, I. E., Platzman, K. A., Erickson, S., & Falek, A. (1991). Effect of prenatal alcohol exposure at school age. I. Physical and cognitive development. Neurotoxicology and Teratology, 13(4), 357–367.PubMedCrossRefGoogle Scholar
  49. Coles, C. D., Platzman, K. A., Raskind-Hood, C. L., Brown, R. T., Falek, A., & Smith, I. E. (1997). A comparison of children affected by prenatal alcohol exposure and attention deficit, hyperactivity disorder. Alcoholism, Clinical and Experimental Research, 21(1), 150–161.PubMedCrossRefGoogle Scholar
  50. Coles, C. D., Platzman, K. A., Lynch, M. E., & Freides, D. (2002). Auditory and visual sustained attention in adolescents prenatally exposed to alcohol. Alcoholism, Clinical and Experimental Research, 26(2), 263–271.PubMedCrossRefGoogle Scholar
  51. Crocker, N., Nguyen, T. T., & Mattson, S. M. (2011). Review of neuropsychological and behavioral effects of heavy prenatal alcohol exposure. Neuropsychology Review, 21(2), in press.Google Scholar
  52. Davies, P. L., Chang, W. P., & Gavin, W. J. (2009). Maturation of sensory gating performance in children with and without sensory processing disorders. International Journal of Psychophysiology, 72(2), 187–197.PubMedCrossRefGoogle Scholar
  53. Dawson, D. A., Grant, B. F., Chou, S. P., & Pickering, R. P. (1995). Subgroup variation in US drinking patterns: Result of the 1992 national longitudinal alcohol epidemiological study. Journal of Substance Abuse, 7(3), 331–344.PubMedCrossRefGoogle Scholar
  54. Dobbing, J., & Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Human Development, 3(1), 79–83.PubMedCrossRefGoogle Scholar
  55. Donnan, G. A., Woodhouse, D. G., Kaczmarczyk, S. J., Holder, J. E., Paxinos, G., Chilco, P. J., et al. (1991). Evidence for plasticity of the dopaminergic system in parkinsonism. Molecular Neurobiology, 5, 421–433.PubMedCrossRefGoogle Scholar
  56. Downing, C., Balderrama-Durbin, C., Hayes, J., Johnson, T. E., & Gilliam, D. (2009). No effect of prenatal alcohol exposure on activity in three inbred strains of mice. Alcohol and Alcoholism, 44(1), 25–33.PubMedCrossRefGoogle Scholar
  57. Driscoll, C. D., Chen, J. S., & Riley, E. P. (1982). Passive avoidance performance in rats prenatally exposed to alcohol during various periods of gestation. Neurobehavioral Toxicology and Teratology, 4(1), 99–103.PubMedGoogle Scholar
  58. Druse, M. L., Tajuddin, N., Kuo, A., & Connerty, M. (1990). Effects of in utero ethanol exposure on the developing dopaminergic system in rats. Journal of Neuroscience Research, 27(2), 233–240.PubMedCrossRefGoogle Scholar
  59. Dunn, W. (1999). The sensory profile. San Antonio: Psychological Corporation.Google Scholar
  60. Dursun, I., Jakubowska-Doğru, E., & Uzbay, T. (2006). Effects of prenatal exposure to alcohol on activity, anxiety, motor coordination, and memory in young adult wistar rats. Pharmacology, Biochemistry and Behavior, 85(2), 345–355.CrossRefGoogle Scholar
  61. Elton, R. H., & Wilson, M. E. (1977). Changes in ethanol consumption by pregnant pigtailed macaques. Journal of Studies on Alcohol, 38(11), 2181–2183.PubMedGoogle Scholar
  62. Erinoff, L., MacPhail, R. C., Heller, A., & Seiden, L. S. (1979). Age-dependent effects of the 6-hydroxydopamine on locomotor activity in the rat. Brain Research, 164, 195–205.PubMedCrossRefGoogle Scholar
  63. Fagan, J. F., & Singer, L. T. (1983). Infant recognition memory as a measure of intelligence. In L. P. Lipsitt (Ed.), Advances in infancy research (Volume 2). New York: Ablex.Google Scholar
  64. Fifer, W. P., Fingers, S. T., Youngman, M., Gomez-Gribben, E., & Myers, M. M. (2009). Effects of alcohol and smoking during pregnancy on infant autonomic control. Developmental Psychobiology, 51(3), 234–242.PubMedCrossRefGoogle Scholar
  65. Fox, N. A., & Porges, S. W. (1985). The relationship between neonatal heart period patterns and developmental outcome. Child Development, 56(1), 28–37.PubMedCrossRefGoogle Scholar
  66. Fried, P. A., Watkinson, B., & Gray, R. (1992). A follow-up study of attentional behavior in 6-year-old children exposed prenatally to marijuana, cigarettes, and alcohol. Neurotoxicology and Teratology, 14(5), 299–311.PubMedCrossRefGoogle Scholar
  67. Giknis, M. L., & Damjanov, J. (1980). The teratogenic and embryonic effects of alcohol in four mouse strains. Teratology, 21, 7.Google Scholar
  68. Gil-Mohapel, J., Boehme, F., Kainer, L., & Christie, B. R. (2010). Hippocampal cell loss and neurogenesis after fetal alcohol exposure: insights from different rodent models. Brain Research Reviews, 64(2), 283–303.PubMedCrossRefGoogle Scholar
  69. Green, C. R., Mihic, A. M., Nikkel, S. M., Stade, B. C., Rasmussen, C., Munoz, D. P., et al. (2009). Executive function deficits in children with fetal alcohol spectrum disorders (FASD) measured using the Cambridge Neuropsychological Tests Automated Battery (CANTAB). Journal of Child Psychology and Psychiatry, 50(6), 688–697.PubMedCrossRefGoogle Scholar
  70. Gunderson, V. M., Grant-Webster, K. S., & Sackett, G. P. (1989). Deficits in visual recognition in low birth weight infant pigtailed monkeys (Macaca nemestrina). Child Development, 60(1), 119–127.PubMedCrossRefGoogle Scholar
  71. Hamre, K. M., & West, J. R. (1993). The effects of the timing of ethanol exposure during the brain growth spurt on the number of cerebellar Purkinje and granule cell nuclear profiles. Alcoholism, Clinical and Experimental Research, 17(3), 610–622.PubMedCrossRefGoogle Scholar
  72. Harlow, H. F. (1959). The development of learning in the rhesus monkey. American Scientist, 47, 459–479.Google Scholar
  73. Heils, A., Mossner, R., & Lesch, K. P. (1997). The human serotonin transporter gene polymorphism – basic research and clinical implications. Journal of Neural Transmission, 104(10), 1005–1014.PubMedCrossRefGoogle Scholar
  74. Howell, K. K., Lynch, M. E., Platzman, K. A., Smith, G. H., & Coles, C. D. (2006). Prenatal alcohol exposure and ability, academic achievement, and school functioning in adolescence: A longitudinal follow-up. Journal of Pediatric Psychology, 31(1), 116–126.PubMedCrossRefGoogle Scholar
  75. Hunt, P. S., & Phillips, J. S. (2004). Postnatal binge ethanol exposure affects habituation of the cardiac orienting response to an olfactory stimulus in preweanling rats. Alcoholism, Clinical and Experimental Research, 28(1), 123–130.PubMedCrossRefGoogle Scholar
  76. Jacobson, S. W. (1998). Specificity of neurobehavioral outcomes associated with prenatal alcohol exposure. Alcoholism, Clinical and Experimental Research, 22(2), 313–320.PubMedCrossRefGoogle Scholar
  77. Jacobson, S. P., Sehgal, P., Bronson, R., Door, B., & Burnap, J. (1980). Comparisons between an oral and intravenous method to demonstrate the in utero effects of ethanol in the monkey. Neurobehavioral Teratology and Toxicology, 2, 253–258.Google Scholar
  78. Jacobson, S. W., Fein, G. G., Jacobson, J. L., Schwartz, P. M., & Dowler, J. K. (1984). Neonatal correlates of prenatal exposure to smoking, caffeine, and alcohol. Infant Behavior & Development, 7, 253–265.CrossRefGoogle Scholar
  79. Jirikowic, T., Olson, H. C., & Kartin, D. (2008). Sensory processing, school performance, and adaptive behavior of young school-age children with fetal alcohol spectrum disorders. Physical & Occupational Therapy in Pediatrics, 28(2), 117–136.CrossRefGoogle Scholar
  80. Jones, K. L., & Smith, M. J. (1973). Recognition of fetal alcohol syndrome in early infancy. Lancet, 302, 999–1001.PubMedCrossRefGoogle Scholar
  81. Kable, J. A., & Coles, C. D. (2004). The impact of prenatal alcohol exposure on neurophysiological encoding of environmental events at six months. Alcoholism, Clinical and Experimental Research, 28(3), 489–496.PubMedCrossRefGoogle Scholar
  82. Kodituwakku, P. W., Handmaker, N. S., Cutler, S. K., Weathersby, E. K., & Handmaker, S. D. (1995). Specific impairments in self-regulation in children exposed to alcohol prenatally. Alcoholism, Clinical and Experimental Research, 19(6), 1558–1564.PubMedCrossRefGoogle Scholar
  83. Kooistra, L., Crawford, S., Gibbard, B., Ramage, B., & Kaplan, B. J. (2010). Differentiating attention deficits in children with fetal alcohol spectrum disorder or attention-deficit-hyperactivity disorder. Developmental Medicine and Child Neurology, 52(2), 205–211.PubMedCrossRefGoogle Scholar
  84. Kraemer, G. W., Moore, C. F., Newman, T. K., Barr, C. S., & Schneider, M. L. (2008). Moderate level fetal alcohol exposure and serotonin transporter gene promoter polymorphism affect neonatal temperament and limbic-hypothalamic-pituitary-adrenal axis regulation in monkeys. Biological Psychiatry, 63(3), 317–324.PubMedCrossRefGoogle Scholar
  85. Landesman-Dwyer, S., Keller, L. S., & Streissguth, A. P. (1978). Naturalistic observations of newborns: effects of maternal alcohol intake. Alcoholism, Clinical and Experimental Research, 2(2), 171–177.PubMedCrossRefGoogle Scholar
  86. Lawrence, R. C., Bonner, H. C., Newsom, R. J., & Kelly, S. J. (2008). Effects of alcohol exposure during development on play behavior and c-Fos expression in response to play behavior. Behavior and Brain Research, 188(1), 209–218.CrossRefGoogle Scholar
  87. Lee, M. H., & Rabe, A. (1999). Infantile handling eliminates reversal learning deficit in rats prenatally exposed to alcohol. Alcohol, 18(1), 49–53.PubMedCrossRefGoogle Scholar
  88. Lee, K. T., Mattson, S. N., & Riley, E. P. (2004). Classifying children with heavy prenatal alcohol exposure using measures of attention. Journal of the International Neuropsychological Society, 10(2), 271–277.PubMedCrossRefGoogle Scholar
  89. Lesch, K. P., Meyer, J., Glatz, K., Flugge, G., Hinney, A., Hebebrand, J., et al. (1997). The 5-HT transporter gene-linked polymorphic region (5-HTTLPR) in evolutionary perspective: Alternative biallelic variation in rhesus monkeys. Journal of Neural Transmission, 104(11–12), 1259–1266.PubMedCrossRefGoogle Scholar
  90. Maier, S. E., & West, J. R. (2001). Regional differences in cell loss associated with binge-like alcohol exposure during the first two trimesters equivalent in the rat. Alcohol, 23(1), 49–57.PubMedCrossRefGoogle Scholar
  91. Martin, D. C., Martin, J. C., & Streissguth, A. P. (1979). Sucking frequency and amplitude in newborns as a function of maternal drinking and smoking. Currents in Alcoholism, 5, 359–366.PubMedGoogle Scholar
  92. Mattson, S. N., & Riley, E. P. (1998). A review of the neurobehavioral deficits in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcoholism, Clinical and Experimental Research, 22(2), 279–297.PubMedCrossRefGoogle Scholar
  93. Mattson, S. N., & Roebuck, T. M. (2002). Acquisition and retention of verbal and nonverbal information in children with heavy prenatal alcohol exposure. Alcoholism, Clinical and Experimental Research, 26(6), 875–882.PubMedCrossRefGoogle Scholar
  94. Mattson, S. N., Riley, E. P., Jernigan, T. L., Garcia, A., Kaneko, W. M., Ehlers, C. L., et al. (1994). A decrease in the size of the basal ganglia following prenatal alcohol exposure: A preliminary report. Neurotoxicology and Teratology, 16(3), 283–289.PubMedCrossRefGoogle Scholar
  95. Mattson, S. N., Riley, E. P., Sowell, E. R., Jernigan, T. L., Sobel, D. F., & Jones, K. L. (1996). A decrease in the size of the basal ganglia in children with fetal alcohol syndrome. Alcoholism, Clinical and Experimental Research, 20(6), 1088–1093.PubMedCrossRefGoogle Scholar
  96. Mattson, S. N., Goodman, A. M., Caine, C., Delis, D. C., & Riley, E. P. (1999). Executive functioning in children with heavy prenatal alcohol exposure. Alcoholism, Clinical and Experimental Research, 23(11), 1808–1815.PubMedCrossRefGoogle Scholar
  97. Mattson, S. N., Roesch, S. C., Fagerlund, A., Autti-Ramo, I., Jones, K. L., May, P. A., et al. (2010). Toward a neurobehavioral profile of fetal alcohol spectrum disorders. Alcoholism, Clinical and Experimental Research, 34(9), 1640–1650.PubMedCrossRefGoogle Scholar
  98. McIntosh, D. N., Miller, L. J., Shyu, V., & Hagerman, R. (1999). Sensory modulation disruption, electrodermal responses, and functional behaviors. Developmental Medicine and Child Neurology, 41, 608–615.PubMedCrossRefGoogle Scholar
  99. Melcer, T., Gonzalez, D., Somes, D., & Riley, E. P. (1995). Neonatal alcohol exposure and early development of motor skills in alcohol preferring and nonpreferring rats. Neurotoxicology and Teratology, 17(2), 103–110.PubMedCrossRefGoogle Scholar
  100. Meyer, L. S., & Riley, E. P. (1986). Behavioral teratology of alcohol. In C. V. Vorhees (Ed.), Handbook of behavioral teratology. New York: Plenum.Google Scholar
  101. Mihalick, S. M., Crandall, J. E., Langlois, J. C., Krienke, J. D., & Dube, W. V. (2001). Prenatal ethanol exposure, generalized learning impairment, and medial prefrontal cortical deficits in rats. Neurotoxicology and Teratology, 23(5), 453–462.PubMedCrossRefGoogle Scholar
  102. Miller, L. J. (1988). Miller Assessment for Preschoolers (MAP). San Antonio: Psychological Corporation.Google Scholar
  103. Miller, M. W. (1997). Effects of prenatal exposure to ethanol on callosal projection neurons in rat somatosensory cortex. Brain Research, 766(1–2), 121–128.PubMedCrossRefGoogle Scholar
  104. Miller, M. W., & Potempa, G. (1990). Numbers of neurons and glia in mature rat somatosensory cortex: effects of prenatal exposure to ethanol. The Journal of Comparative Neurology, 293(1), 92–102.PubMedCrossRefGoogle Scholar
  105. Miller, L. J., McIntosh, D. N., McGrath, J., Shyu, V., Lampe, M., Taylor, A. K., et al. (1999a). Electrodermal responses to sensory stimuli in individuals with Fragile X syndrome: A preliminary report. American Journal of Medical Genetics, 83(4), 268–279.PubMedCrossRefGoogle Scholar
  106. Miller, M. W., Astley, S. J., & Clarren, S. K. (1999b). Number of axons in the corpus callosum of the mature Macaca nemestrina: Increases caused by prenatal exposure to ethanol. The Journal of Comparative Neurology, 412(1), 123–131.PubMedCrossRefGoogle Scholar
  107. Nanson, J. L., & Hiscock, M. (1990). Attention deficits in children exposed to alcohol prenatally. Alcoholism, Clinical and Experimental Research, 14(5), 656–661.PubMedCrossRefGoogle Scholar
  108. Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J., & Monteggia, L. M. (2002). Neurobiology of depression. Neuron, 34, 13–25.PubMedCrossRefGoogle Scholar
  109. O’Leary-Moore, S. K., McMechan, A. P., Mathison, S. N., Berman, R. F., & Hannigan, J. H. (2006). Reversal learning after prenatal or early postnatal alcohol exposure in juvenile and adult rats. Alcohol, 38(2), 99–110.PubMedCrossRefGoogle Scholar
  110. O’Malley, K. D., & Nanson, J. L. (2002). Clinical implications of a link between fetal alcohol spectrum disorder and attention-deficit hyperactivity disorder. Canadian Journal of Psychiatry, 47(4), 349–354.Google Scholar
  111. Oberlander, T. F., Jacobson, S. W., Weinberg, J., Grunau, R. E., Molteno, C. D., & Jacobson, J. L. (2010). Prenatal alcohol exposure alters biobehavioral reactivity to pain in newborns. Alcoholism, Clinical and Experimental Research, 34(4), 681–692.PubMedCrossRefGoogle Scholar
  112. Parush, S., Sohmer, H., Steinberg, A., & Kaitz, M. (2007). Somatosensory function in boys with ADHD and tactile defensiveness. Physiology & Behavior, 90, 553–558.CrossRefGoogle Scholar
  113. Pierce, D. R., Williams, D. K., & Light, K. E. (1999). Purkinje cell vulnerability to developmental ethanol exposure in the rat cerebellum. Alcoholism, Clinical and Experimental Research, 23(10), 1650–1659.PubMedCrossRefGoogle Scholar
  114. Popova, E. N. (2004). Structure of the sensorimotor area of the cerebral cortex in the offspring of alcoholized rats. Neuroscience and Behavioral Physiology, 34(7), 663–669.PubMedCrossRefGoogle Scholar
  115. Rakic, P. (1988). Defects of neuronal migration and the pathogenesis of cortical malformations. Progress in Brain Research, 73, 15–37.PubMedCrossRefGoogle Scholar
  116. Rakic, P. (1995). Development of cerebral cortex in human and nonhuman primates. In M. Lewis (Ed.), Child and adolescent Psychiatry (pp. 9–29). Baltimore: Williams and Wilkins.Google Scholar
  117. Rasmussen, C., & Bisanz, J. (2009). Executive functioning in children with Fetal Alcohol Spectrum Disorders: Profiles and age-related differences. Child Neuropsychology, 15(3), 201–215.PubMedCrossRefGoogle Scholar
  118. Riley, E. P., & McGee, C. L. (2005). Fetal alcohol spectrum disorders: an overview with emphasis on changes in brain and behavior. Experimental Biology and Medicine, 230(6), 357–365.PubMedGoogle Scholar
  119. Riley, E. P., & Rockwood, G. A. (1984). Alterations in suckling behavior in preweanling rats exposed to alcohol prenatally. Nutrition and Behavior, 1, 289–299.Google Scholar
  120. Riley, E. P., Lochry, E. A., & Shapiro, N. R. (1979). Lack of response inhibition in rats prenatally exposed to alcohol. Psychopharmacology, 62(1), 47–52.PubMedCrossRefGoogle Scholar
  121. Riley, E. P., Barron, S., Melcer, T., & Gonzalez, D. (1993). Alterations in activity following alcohol administration during the third trimester equivalent in P and NP rats. Alcoholism, Clinical and Experimental Research, 17(6), 1240–1246.PubMedCrossRefGoogle Scholar
  122. Roberts, A. D., Moore, C. F., DeJesus, O. T., Barnhart, T. E., Larson, L. A., Mukherjee, J., et al. (2004). Prenatal stress, moderate fetal alcohol, and dopamine system function in rhesus monkeys. Neurotoxicology and Teratology, 26(2), 169–178.PubMedCrossRefGoogle Scholar
  123. Rogers, D. T., Barron, S., & Littleton, J. M. (2004). Neonatal ethanol produces a hyperalgesia that extends into adolescence, and is associated with increased analgesic and rewarding properties of nicotine in rats. Psychopharmacology, 171(2), 204–211.PubMedCrossRefGoogle Scholar
  124. Rutter, M., & Sroufe, L. A. (2000). Developmental psychopathology: concepts and challenges. Development and Psychopathology, 12(3), 265–296.PubMedCrossRefGoogle Scholar
  125. Sameroff, A. J. (2000). Developmental systems and psychopathology. Development and Psychopathology, 12(3), 297–312.PubMedCrossRefGoogle Scholar
  126. Sari, Y., Hammad, L. A., Saleh, M. M., Rebec, G. V., & Mechref, Y. (2010). Alteration of selective neurotransmitters in fetal brains of prenatally alcohol-treated C57BL/6 mice: Quantitative analysis using liquid chromatography/tandem mass spectrometry. International Journal of Developmental Neuroscience, 28(3), 263–269.PubMedCrossRefGoogle Scholar
  127. Schneider, M. L., & Suomi, S. J. (1992). Neurobehavioral assessment in rhesus monkey neonates (Macaca mulatta): Developmental changes, behavioral stability, and early experience. Infant Behavior & Development, 15(2), 155–177.CrossRefGoogle Scholar
  128. Schneider, M. L., Moore, C. F., Suomi, S. J., & Champoux, M. (1991). Laboratory assessment of temperament and environmental enrichment in rhesus monkey infants (Macaca mulatta). American Journal of Primatology, 25, 137–155.CrossRefGoogle Scholar
  129. Schneider, M. L., Roughton, E. C., & Lubach, G. R. (1997). Moderate alcohol consumption and psychological stress during pregnancy induces attention and neuromotor impairments in primate infants. Child Development, 68, 747–759.CrossRefGoogle Scholar
  130. Schneider, M. L., Moore, C. F., & Becker, E. F. (2001). Timing of moderate alcohol exposure during pregnancy and neonatal outcome in rhesus monkeys (Macaca mulatta). Alcoholism, Clinical and Experimental Research, 25(8), 1238–1245.PubMedCrossRefGoogle Scholar
  131. Schneider, M. L., Moore, C. F., & Kraemer, G. W. (2001). Moderate alcohol during pregnancy: Learning and behavior in adolescent rhesus monkeys. Alcoholism, Clinical and Experimental Research, 25(9), 1383–1392.PubMedCrossRefGoogle Scholar
  132. Schneider, M. L., Moore, C. F., Kraemer, G. W., Roberts, A. D., & DeJesus, O. T. (2002). The impact of prenatal stress, fetal alcohol exposure, or both on development: Perspectives from a primate model. Psychoneuroendocrinology, 27, 285–298.PubMedCrossRefGoogle Scholar
  133. Schneider, M. L., Moore, C. F., & Kraemer, G. W. (2004). Moderate level alcohol during pregnancy, prenatal stress, or both and limbic-hypothalamic-pituitary-adrenocortical axis response to stress is rhesus monkeys. Child Development, 75(1), 96–109.PubMedCrossRefGoogle Scholar
  134. Schneider, M. L., Champoux, M., & Moore, C. F. (2006). Neurobehavioral assessment of nonhuman primate neonates. In G. P. Sackett, G. C. Ruppenthal, & K. Elias (Eds.), Nursery rearing of nonhuman primates in the 21st century (pp. 215–247). New York: Springer.CrossRefGoogle Scholar
  135. Schneider, M. L., Moore, C. F., Gajewski, L. L., Larson, J. A., Roberts, A. D., Converse, A. K., et al. (2008). Sensory processing disorder in a primate model: evidence from a longitudinal study of prenatal alcohol and prenatal stress effects. Child Development, 79(1), 100–113.PubMedCrossRefGoogle Scholar
  136. Schneider, M. L., Moore, C. F., Larson, J. A., Barr, C. S., DeJesus, O. T., & Roberts, A. D. (2009). Timing of moderate level prenatal alcohol exposure influences gene expression of sensory processing behavior in rhesus monkeys. Frontiers in Integrative Neuroscience, 3, 30.PubMedCrossRefGoogle Scholar
  137. Schneider, M. L., Moore, C. F., Barr, C. S., Larson, J. A., & Kraemer, G. W. (2011). Moderate prenatal alcohol exposure and serotonin genotype interact to alter CNS serotonin function in rhesus monkey offspring. Alcoholism, Clinical and Experimental Research 35(5), 1–9.Google Scholar
  138. Schonfeld, A. M., Mattson, S. N., Lang, A. R., Delis, D. C., & Riley, E. P. (2001). Verbal and nonverbal fluency in children with heavy prenatal alcohol exposure. Journal of Studies on Alcohol, 62(2), 239246.Google Scholar
  139. Scott, W. J., Jr., & Fradkin, R. (1984). The effects of prenatal ethanol in cynomolgus monkeys. Teratology, 29(1), 49–56.PubMedCrossRefGoogle Scholar
  140. Shaywitz, B. A., Yager, R. D., & Klopper, J. H. (1976). Selective brain dopamine depletion in developing rats: An experimental model of minimal brain dysfunction. Science, 191(4224), 305–308.PubMedCrossRefGoogle Scholar
  141. Shaywitz, B. A., Cohen, D. J., & Bowers, M. B. (1977). CSF monoamine metabolites in children with minimal brain dysfunction: evidence for alteration of brain dopamine. A preliminary report. The Journal of Pediatrics, 90(1), 67–71.PubMedCrossRefGoogle Scholar
  142. Shaywitz, B. A., Gordon, J. W., Klopper, J. H., Zelterman, D. A., & Irvine, J. (1979). Ontogenesis of spontaneous activity and habituation of activity in the rat pup. Developmental Psychobiology, 12(4), 359–367.PubMedCrossRefGoogle Scholar
  143. Slawecki, C. J., Thomas, J. D., Riley, E. D., & Ehlers, C. L. (2004). Neurophysiological consequences of neonatal ethanol exposure in the rat. Alcohol, 34(2–3), 187–196.PubMedCrossRefGoogle Scholar
  144. Sowell, E. R., Jernigan, T. L., Mattson, S. N., Riley, E. P., Sobel, D. F., & Jones, K. L. (1996). Abnormal development of the cerebellar vermis in children prenatally exposed to alcohol: Size reductions in lobules I-V. Alcoholism, Clinical and Experimental Research, 20(1), 31–34.PubMedCrossRefGoogle Scholar
  145. Sowell, E. R., Mattson, S. N., Thompson, P. M., Jernigan, T. L., Riley, E. P., & Toga, A. W. (2001). Mapping callosal morphology and cognitive correlates: Effects of heavy prenatal alcohol exposure. Neurology, 57(2), 235–244.PubMedGoogle Scholar
  146. Sowell, E. R., Mattson, S. N., Kan, E., Thompson, P. M., Riley, E. P., & Toga, A. W. (2008). Abnormal cortical thickness and brain-behavior correlation patterns in individuals with heavy prenatal alcohol exposure. Cerebral Cortex, 18(1), 136–144.PubMedCrossRefGoogle Scholar
  147. Streissguth, A. P., Barr, H. M., & Martin, D. C. (1983). Maternal alcohol use and neonatal habituation assessed with the Brazelton scale. Child Development, 54(4), 1109–1118.PubMedCrossRefGoogle Scholar
  148. Streissguth, A. P., Barr, H. M., Sampson, P. D., Parrish-Johnson, J. C., Kirchner, G. L., & Martin, D. C. (1986). Attention, distraction, and reaction time at age 7 years and prenatal alcohol exposure. Neurobehavioral Toxicology and Teratology, 8(6), 717–725.PubMedGoogle Scholar
  149. Streissguth, A. P., Barr, H. M., Kogan, J., & Bookstein, F. (1996). Understanding the occurrence of secondary disabilities in clients with fetal alcohol syndrome (FAS) and fetal alcohol effects (FAE). Final report to the Centers for Disease Control and Prevention. August 1996. (Tech. Rep. No. 96–06). Seattle, WA: University of Washington Press.Google Scholar
  150. Suomi, S. J., & Higley, J. D. (1991). Rationale and methodologies for developing nonhuman primate models of prenatal drug exposure. NIDA Research Monograph, 114, 291–302.PubMedGoogle Scholar
  151. Thomas, J. D., Wasserman, E. A., West, J. R., & Goodlett, C. R. (1996). Behavioral deficits induced by bingelike exposure to alcohol in neonatal rats: importance of developmental timing and number of episodes. Developmental Psychobiology, 29(5), 433–452.PubMedCrossRefGoogle Scholar
  152. Thomas, J. D., Weinert, S. P., Sharif, S., & Riley, E. P. (1997). MK-801 administration during ethanol withdrawal in neonatal rat pups attenuates ethanol-induced behavioral deficits. Alcoholism, Clinical and Experimental Research, 21(7), 1218–1225.PubMedCrossRefGoogle Scholar
  153. Uban, K. A., Silwowska, J. H., Lieblich, S., Ellis, L. A., Yu, W. K., Weinberg, J., et al. (2010). Prenatal alcohol exposure reduces the proportion of newly produced neurons and glia in the dentate gyrus of the hippocampus in female rats. Hormones and Behavior, 58(5), 835–843.PubMedCrossRefGoogle Scholar
  154. Ulug, S., & Riley, E. P. (1983). The effect of methylphenidate on overactivity in rats prenatally exposed to alcohol. Neurobehavioral Toxicology and Teratology, 5(1), 35–39.PubMedGoogle Scholar
  155. Van den Bergh, B. R., & Marcoen, A. (2004). High antenatal maternal anxiety is related to ADHD symptoms, externalizing problems, and anxiety in 8- and 9-year-olds. Child Development, 75(4), 1085–1097.PubMedCrossRefGoogle Scholar
  156. Vaurio, L., Riley, E. P., & Mattson, S. N. (2008). Differences in executive functioning in children with heavy prenatal alcohol exposure or attention-deficit/hyperactivity disorder. Journal of the International Neuropsychological Society, 14(1), 119–129.PubMedCrossRefGoogle Scholar
  157. Wadhwa, P. D. (2005). Psychoneuroendocrine processes in human pregnancy influence fetal development and health. Psychoneuroendocrinology, 30(8), 724–743.PubMedCrossRefGoogle Scholar
  158. Waltman, R., & Iniquez, E. S. (1972). Placental transfer of ethanol and its elimination at term. Obstetrics and Gynecology, 40(2), 180–185.PubMedGoogle Scholar
  159. West, J. R. (1993). Use of a pup in a cup model to study brain development. The Journal of Nutrition, 123(2 suppl.), 382–385.PubMedGoogle Scholar
  160. Zecevic, N., & Rakic, P. (1991). Synaptogenesis in monkey somatosensory cortex. Cerebral Cortex, 1(6), 510–523.PubMedCrossRefGoogle Scholar
  161. Zhou, F. C., Sari, Y., Powrozek, T., Goodlett, C. R., & Li, T. K. (2003). Moderate alcohol exposure compromises neural tube midline development in prenatal brain. Developmental Brain Research, 144(1), 43–55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mary L. Schneider
    • 1
    • 2
    • 3
  • Colleen F. Moore
    • 3
  • Miriam M. Adkins
    • 2
  1. 1.Harlow Center for Biological PsychologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of KinesiologyUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of PsychologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations