Advertisement

Neuropsychology Review

, Volume 20, Issue 4, pp 349–361 | Cite as

Anatomic Magnetic Resonance Imaging of the Developing Child and Adolescent Brain and Effects of Genetic Variation

  • Jay N. Giedd
  • Michael Stockman
  • Catherine Weddle
  • Maria Liverpool
  • Aaron Alexander-Bloch
  • Gregory L. Wallace
  • Nancy R. Lee
  • Francois Lalonde
  • Rhoshel K. Lenroot
Review

Abstract

Magnetic resonance imaging studies have begun to map effects of genetic variation on trajectories of brain development. Longitudinal studies of children and adolescents demonstrate a general pattern of childhood peaks of gray matter followed by adolescent declines, functional and structural increases in connectivity and integrative processing, and a changing balance between limbic/subcortical and frontal lobe functions, which extends well into young adulthood. Twin studies have demonstrated that genetic factors are responsible for a significant amount of variation in pediatric brain morphometry. Longitudinal studies have shown specific genetic polymorphisms affect rates of cortical changes associated with maturation. Although over-interpretation and premature application of neuroimaging findings for diagnostic purposes remains a risk, converging data from multiple imaging modalities is beginning to elucidate the influences of genetic factors on brain development and implications of maturational changes for cognition, emotion, and behavior.

Keywords

Magnetic resonance imaging Brain Development Genes Twins 

Notes

Acknowledgements

This research was supported by the Intramural Program of the National Institute of Mental Health, National Institutes of Health.

References

  1. Allen, L. S., Richey, M. F., Chai, Y. M., & Gorski, R. A. (1991). Sex differences in the corpus callosum of the living human being. The Journal of Neuroscience, 11, 933–942.PubMedGoogle Scholar
  2. Anderson, B. J., Eckburg, P. B., & Relucio, K. I. (2002). Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learning & Memory, 9(1), 1–9.CrossRefGoogle Scholar
  3. Baare, W. F., Hulshoff Pol, H. E., Boomsma, D. I., Posthuma, D., de Geus, E. J., Schnack, H. G., et al. (2001). Quantitative genetic modeling of variation in human brain morphology. Cerebral Cortex, 11(9), 816–824.CrossRefPubMedGoogle Scholar
  4. Berlucchi, G. (1981). Interhemispheric asymmetries in visual discrimination: a neurophysiological hypothesis. Documenta ophthalmologica. Proceedings series, 30, 87–93.Google Scholar
  5. Braitenberg, V. (2001). Brain size and number of neurons: an exercise in synthetic neuroanatomy. Journal of Computational Neuroscience, 10(1), 71–77.CrossRefPubMedGoogle Scholar
  6. Clark, A. S., MacLusky, N. J., & Goldman-Rakic, P. S. (1988). Androgen binding and metabolism in the cerebral cortex of the deveoping rhesus monkey. Endocrinology, 123, 932–940.CrossRefPubMedGoogle Scholar
  7. Cook, N. D. (1986). The brain code. Mechanisms of information transfer and the role of the corpus callosum. London: Methuen.Google Scholar
  8. Cowell, P. E., Allen, L. S., Zalatimo, N. S., & Denenberg, V. H. (1992). A developmental study of sex and age interactions in the human corpus callosum. Developmental brain research, 66, 187–192.CrossRefPubMedGoogle Scholar
  9. Darlington, R. B., Dunlop, S. A., & Finlay, B. L. (1999). Neural development in metatherian and eutherian mammals: variation and constraint. The Journal of Comparative Neurology, 411(3), 359–368.CrossRefPubMedGoogle Scholar
  10. Deutsch, G. K., Dougherty, R. F., Bammer, R., Siok, W. T., Gabrieli, J. D., & Wandell, B. (2005). Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex, 41(3), 354–363.CrossRefPubMedGoogle Scholar
  11. Diener, E., Sandvik, E., & Larsen, R. F. (1985). Age and sex effects for affect intensity. Developmental Psychology, 21, 542–546.CrossRefGoogle Scholar
  12. Fields, R. (2008). Oligodendrocytes changing the rules: action potentials in glia and oligodendrocytes controlling action potentials. The Neuroscientist, 14(6), 540–543.CrossRefPubMedGoogle Scholar
  13. Finlay, B. L., & Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1584.CrossRefPubMedGoogle Scholar
  14. Fishell, G. (1997). Regionalization in the mammalian telencephalon. Current Opinion in Neurobiology, 7(1), 62–69.CrossRefPubMedGoogle Scholar
  15. Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399–433.Google Scholar
  16. Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., et al. (1996). Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex, 6(4), 551–560.CrossRefPubMedGoogle Scholar
  17. Giedd, J. N., Shaw, P., Wallace, G., Gogtay, N., & Lenroot, R. K. (2006). Anatomic brain imaging studies of normal and abnormal brain development in children and adolescents. In D. Cicchetti & D. J. Cohen (Eds.), Developmental psychopathology (2nd ed., Vol. 2, pp. 127–194). Hoboken: Wiley.Google Scholar
  18. Gogtay, N., Giedd, J.N., Lusk, L., Hayashi, K.M., Greenstein, D., Vaituzis, A.C., et al. (2004). Dynamic mapping of human cortical development during childhood though early adulthood. Proceedings of the National Academy of Sciences 101, 8174–8179.Google Scholar
  19. Hulshoff Pol, H. E., Schnack, H. G., Posthuma, D., Mandl, R. C., Baare, W. F., van Oel, C., et al. (2006). Genetic contributions to human brain morphology and intelligence. The Journal of Neuroscience, 26(40), 10235–10242.CrossRefPubMedGoogle Scholar
  20. Huttenlocher, P. R. (1994). Synaptogenesis in human cerebral cortex. In G. Dawson & K. Fischer (Eds.), Human behavior and the developing brain (pp. 137–152). New York: Guilford.Google Scholar
  21. Jerslid, A. T. (1963). The psychology of adolescence (2nd ed.). New York: Macmillan.Google Scholar
  22. Kendler, K. S., Walters, E. E., Truett, K. R., Heath, A. C., Neale, M. C., Martin, N. G., et al. (1994). Sources of individual differences in depressive symptoms: analysis of two samples of twins and their families. The American Journal of Psychiatry, 151(11), 1605–1614.PubMedGoogle Scholar
  23. Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., et al. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage, 36(4), 1065–1073.CrossRefPubMedGoogle Scholar
  24. Lenroot, R. K., Schmitt, J. E., Ordaz, S. J., Wallace, G. L., Neale, M. C., Lerch, J. P., et al. (2009). Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Human Brain Mapping, 30(1), 163–174.CrossRefPubMedGoogle Scholar
  25. Levy, J. (1985). Interhemispheric collaboration: Single mindedness in the asymmetric brain. In C. T. Best (Ed.), Hemisphere function and collaboration in the child (pp. 11–32). New York: Academic.Google Scholar
  26. Lewontin, R. C. (1974). Analysis of variance and analysis of causes. American Journal of Human Genetics, 26(3), 400–411.PubMedGoogle Scholar
  27. Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A. M., et al. (2006). Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cerebral Cortex, 16(4), 553–560.CrossRefPubMedGoogle Scholar
  28. McGue, M. (2010). The end of behavioral genetics? Behavior Genetics, 40(3), 284–296.CrossRefPubMedGoogle Scholar
  29. Meaney, M. J. (2010). Epigenetics and the biological definition of gene x environment interactions. [Review]. Child Development, 81(1), 41–79.CrossRefPubMedGoogle Scholar
  30. Morse, J. K., Scheff, S. W., & DeKosky, S. T. (1986). Gonadal steroids influence axonal sprouting in the hippocampal dentate gyrus: a sexually dimorphic response. Experimental Neurology, 94, 649–658.CrossRefPubMedGoogle Scholar
  31. Nagy, Z., Westerberg, H., & Klingberg, T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16(7), 1227–1233.CrossRefPubMedGoogle Scholar
  32. Neale, M. C., & Maes, H. H. M. (2005). Methodology for genetic studies of twins and families.Google Scholar
  33. Nolte, J. (1993). Olfactory and limbic systems. In R. Farrell (Ed.), The human brain. An introduction to its functional anatomy (3rd ed., pp. 397–413). St. Louis: Mosby-Year Book.Google Scholar
  34. Peper, J. S., Brouwer, R. M., Van Baal, G. C., Schnack, H. G., Van Leeuwen, M., Boomsma, D. I., et al. (2009). Does having a twin-brother make for a bigger brain? European Journal of Endocrinology.Google Scholar
  35. Posthuma, D., De Geus, E., Neale, M., Hulshoff Pol, H., Baare, W., Kahn, R., et al. (2000). Multivariate genetic analysis of brain structure in an extended twin design. Behavior Genetics, 30(4), 311–319.CrossRefPubMedGoogle Scholar
  36. Posthuma, D., De Geus, E. J., Baare, W. F., Hulshoff Pol, H. E., Kahn, R. S., & Boomsma, D. I. (2002). The association between brain volume and intelligence is of genetic origin. Nature Neuroscience, 5(2), 83–84.CrossRefPubMedGoogle Scholar
  37. Pujol, J., Vendrell, P., Junque, C., Marti-Vilalta, J. L., & Capdevila, A. (1993). When does human brain development end? Evidence of corpus callosum growth up to adulthood. Annals of Neurology, 34, 71–75.CrossRefPubMedGoogle Scholar
  38. Rakic, P., & Caviness, V. S., Jr. (1995). Cortical development: view from neurological mutants two decades later. Neuron, 14(6), 1101–1104.CrossRefPubMedGoogle Scholar
  39. Rauch, R. A., & Jinkins, J. R. (1994). Analysis of cross-sectional area measurements of the corpus callosum adjusted for brain size in male and female subjects from childhood to adulthood. Behavioural Brain Research, 64, 65–78.CrossRefPubMedGoogle Scholar
  40. Raznahan, A., Lee, Y., Long, R., Greenstein, D., Clasen, L., Addington, A., et al. (2010). Common functional polymorphisms of DISC1 and cortical maturation in typically developing children and adolescents. Molecular Psychiatry.Google Scholar
  41. Rimol, L. M., Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Fischl, B., Franz, C. E., et al. (2010). Cortical thickness is influenced by regionally specific genetic factors. Biological Psychiatry, 67(5), 493–499.CrossRefPubMedGoogle Scholar
  42. Riva, D., & Giorgi, C. (2000). The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain, 123(Pt 5), 1051–1061.CrossRefPubMedGoogle Scholar
  43. Rutter, M. (2007). Gene-environment interdependence. Developmental Science, 10(1), 12–18.CrossRefPubMedGoogle Scholar
  44. Scarr, S., & McCartney, K. (1983). How people make their own environments: a theory of genotype greater than environment effects. Child Development, 54(2), 424–435.PubMedGoogle Scholar
  45. Schmahmann, J. D. (2004). Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 16(3), 367–378.PubMedGoogle Scholar
  46. Schmahmann, J. D. (2010). The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychology Review, 20(3), 236–260.CrossRefPubMedGoogle Scholar
  47. Schmitt, J., Lenroot, R., Wallace, G., Ordaz, S., Taylor, K., Kabani, N., et al. (2007). Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cerebral Cortex, 18(8), 1737–1747.CrossRefGoogle Scholar
  48. Shanks, M. F., Rockel, A. J., & Powel, T. P. S. (1975). The commissural fiber connections of the primary somatic sensory cortex. Brain Research, 98, 166–171.CrossRefPubMedGoogle Scholar
  49. Shaw, P., Lerch, J., Greenstein, D., Sharp, W., Clasen, L., Evans, A., et al. (2006). Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 63(5), 540–549.CrossRefPubMedGoogle Scholar
  50. Shaw, P., Lerch, J. P., Pruessner, J. C., Taylor, K. N., Rose, A. B., Greenstein, D., et al. (2007). Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study. Lancet Neurology, 6(6), 494–500.CrossRefPubMedGoogle Scholar
  51. Shaw, P., Wallace, G. L., Addington, A., Evans, A., Rapoport, J., & Giedd, J. N. (2009). Effects of the Val158Met catechol-O-methyltransferase polymorphism on cortical structure in children and adolescents. Molecular Psychiatry, 14(4), 348–349.CrossRefPubMedGoogle Scholar
  52. Sowell, E. R., Thompson, P. M., Tessner, K. D., & Toga, A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. The Journal of Neuroscience, 21(22), 8819–8829.PubMedGoogle Scholar
  53. Stead, J. D., Neal, C., Meng, F., Wang, Y., Evans, S., Vazquez, D. M., et al. (2006). Transcriptional profiling of the developing rat brain reveals that the most dramatic regional differentiation in gene expression occurs postpartum. The Journal of Neuroscience, 26(1), 345–353.CrossRefPubMedGoogle Scholar
  54. Sun, T., Patoine, C., Abu-Khalil, A., Visvader, J., Sum, E., Cherry, T. J., et al. (2005). Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science, 308(5729), 1794–1798.CrossRefPubMedGoogle Scholar
  55. Tabery, J. (2009). Interactive predispositions: gene-environment interactions-from IQ controversy to genetic screening. Behavior Genetics, 39(6), 683–683.Google Scholar
  56. Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A. C., & Toga, A. W. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404(6774), 190–193.CrossRefPubMedGoogle Scholar
  57. Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V. P., Huttunen, M., et al. (2001). Genetic influences on brain structure. Nature Neuroscience, 4(12), 1253–1258.CrossRefPubMedGoogle Scholar
  58. Tiemeier, H., Lenroot, R. K., Greenstein, D. K., Tran, L., Pierson, R., & Giedd, J. N. (2009). Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage.Google Scholar
  59. Tramo, M. J., Loftus, W. C., Stukel, T. A., Green, R. L., Weaver, J. B., & Gazzaniga, M. S. (1998). Brain size, head size, and intelligence quotient in monozygotic twins. Neurology, 50(5), 1246–1252.PubMedGoogle Scholar
  60. Tunbridge, E. M., Weickert, C. S., Kleinman, J. E., Herman, M. M., Chen, J., Kolachana, B. S., et al. (2007). Catechol-o-methyltransferase enzyme activity and protein expression in human prefrontal cortex across the postnatal lifespan. Cerebral Cortex, 17(5), 1206–1212.CrossRefPubMedGoogle Scholar
  61. Vreeke, G. J. (2000). Nature, nurture and the future of the analysis of variance. Human Development, 43(1), 32–45.CrossRefGoogle Scholar
  62. Wallace, G., Eric Schmitt, J., Lenroot, R., Viding, E., Ordaz, S., Rosenthal, M., et al. (2006). A pediatric twin study of brain morphometry. Journal of child psychology and psychiatry, 47(10), 987–993.CrossRefPubMedGoogle Scholar
  63. Wallace, G. L., Lee, N. R., Prom-Wormley, E. C., Medland, S. E., Lenroot, R. K., Clasen, L. S., et al. (2010). A bivariate twin study of regional brain volumes and verbal and nonverbal intellectual skills during childhood and adolescence. Behavior Genetics, 40(2), 125–134.CrossRefPubMedGoogle Scholar
  64. Webster, M. J., Herman, M. M., Kleinman, J. E., & Shannon Weickert, C. (2006). BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expression Patterns, 6(8), 941–951.CrossRefPubMedGoogle Scholar
  65. Wechsler, D. (1974). Wechsler intelligence scale for children—revised. New York: Psychological.Google Scholar
  66. Weickert, C. S., Webster, M. J., Gondipalli, P., Rothmond, D., Fatula, R. J., Herman, M. M., et al. (2007). Postnatal alterations in dopaminergic markers in the human prefrontal cortex. Neuroscience, 144(3), 1109–1119.CrossRefPubMedGoogle Scholar
  67. White, T., Andreasen, N., & Nopoulos, P. (2002). Brain volumes and surface morphology in monozygotic twins. Cerebral Cortex, 12(5), 486.CrossRefPubMedGoogle Scholar
  68. Whitford, T. J., Rennie, C. J., Grieve, S. M., Clark, C. R., Gordon, E., & Williams, L. M. (2006). Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology. Human Brain Mapping.Google Scholar
  69. Wright, S. (1968). Evolution and the genetics of populations. I. Genetic and biometric foundations. Chicago: University of Chicago Press.Google Scholar
  70. Wright, I. C., Sham, P., Murray, R. M., Weinberger, D. R., & Bullmore, E. T. (2002). Genetic contributions to regional variability in human brain structure: methods and preliminary results. Neuroimage, 17(1), 256–271.CrossRefPubMedGoogle Scholar
  71. Zaidel, D., & Sperry, R. W. (1974). Memory impairment after commissurotomy in man. Brain, 97, 263–272.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2010

Authors and Affiliations

  • Jay N. Giedd
    • 1
    • 3
  • Michael Stockman
    • 1
  • Catherine Weddle
    • 1
  • Maria Liverpool
    • 1
  • Aaron Alexander-Bloch
    • 1
  • Gregory L. Wallace
    • 1
  • Nancy R. Lee
    • 1
  • Francois Lalonde
    • 1
  • Rhoshel K. Lenroot
    • 1
    • 2
  1. 1.Child Psychiatry BranchNational Institutes of Mental HealthBethesdaUSA
  2. 2.University of New South Wales and Neuroscience Research AustraliaSydneyAustralia
  3. 3.Brain Imaging Unit Child Psychiatry BranchNIMHBethesdaMDUSA

Personalised recommendations