Neuropsychology Review

, Volume 20, Issue 4, pp 362–375 | Cite as

Development of the Brain’s Functional Network Architecture

  • Alecia C. VogelEmail author
  • Jonathan D. Power
  • Steven E. Petersen
  • Bradley L. Schlaggar


A full understanding of the development of the brain’s functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.


Functional connectivity Graph theory fMRI Segregation Integration 



Portions of this work were funded by NIH NS61144, NS4624, K02 NS0534425, and R01HD057076.


  1. Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924–935.CrossRefPubMedGoogle Scholar
  2. Asato, M. R., Terwilliger, R., Woo, J., & Luna, B. (2010). White matter development in adolescence: a DTI study. Cerebral Cortex, 20(9), 2122–2131.CrossRefPubMedGoogle Scholar
  3. Birn, R. M., Diamond, J. B., Smith, M. A., & Bandettini, P. A. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage, 13(4), 1536–1548.CrossRefGoogle Scholar
  4. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.CrossRefPubMedGoogle Scholar
  5. Bitan, T., Cheon, J., Lu, D., Burman, D. D., Gitelman, D. R., Mesulam, M. M., et al. (2007). Developmental changes in activation and effective connectivity in phonological processing. Neuroimage, 38(3), 564–575.CrossRefPubMedGoogle Scholar
  6. Brown, T. T., Lugar, H. M., Coalson, R. S., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2005). Developmental changes in human cerebral functional organization for word generation. Cerebral Cortex, 15, 275–290.CrossRefPubMedGoogle Scholar
  7. Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(6), 1860–1873.Google Scholar
  8. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186–198.CrossRefPubMedGoogle Scholar
  9. Bunge, S. A., & Wright, S. B. (2007). Neurodevelopmental changes in working memory and cognitive control. Current Opinion in Neurobiology, 17(2), 243–250.CrossRefPubMedGoogle Scholar
  10. Castellanos, F. X., Margulies, D. S., Kelly, A. M. C., Uddin, L. Q., Ghaffari, M., Kirsch, A., et al. (2008). Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biological Psychiatry, 63, 332–337.CrossRefPubMedGoogle Scholar
  11. Chang, C., Cunningham, J. P., & Glover, G. H. (2009). Influence of heart rate on the BOLD signal: the cardiac response function. Neuroimage, 44, 857–869.CrossRefPubMedGoogle Scholar
  12. Cherkassky, V. L., Kana, R. K., Keller, T. A., & Just, M. A. (2006). Functional connectivity in a baseline resting-state network in autism. NeuroReport, 17(16), 1687–1690.CrossRefPubMedGoogle Scholar
  13. Church, J. A., Coalson, R. S., Lugar, H. M., Petersen, S. E., & Schlaggar, B. L. (2008). A developmental fMRI study of reading and repetition reveals changes in phonological and visual mechanisms over age. Cerebral Cortex, 18(9), 2054–2065.CrossRefPubMedGoogle Scholar
  14. Church, J. A., Fair, D. A., Dosenbach, N. U., Cohen, A. L., Miezin, F. M., Petersen, S. E., et al. (2009a). Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain: A Journal of Neurology, 132(Pt 1), 225–238.Google Scholar
  15. Church, J. A., Wenger, K. K., Dosenbach, N. U., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2009b). Task control signals in pediatric Tourette syndrome show evidence of immature and anomalous functional activity. Frontiers in Human Neuroscience, 3(38).Google Scholar
  16. Church, J. A., Petersen, S. E., & Schlaggar, B. L. (2010). The “Task B Problem” and other considerations in developmental functional neuroimaging. Human Brain Mapping, 31(6), 852–862.PubMedGoogle Scholar
  17. Churchland, P. S., & Sejnowski, T. J. (1991). Perspectives on cognitive neuroscience. In R. G. Lister & H. J. Weingartner (Eds.), Perspectives on cognitive neuroscience. Oxford: Oxford University Press.Google Scholar
  18. Cowan, W. M., Fawcett, J., O’Leary, D. D. M., & Stanfield, B. B. (1984). Regressive events in neurogenesis. Science, 225(468), 1258–1265.CrossRefPubMedGoogle Scholar
  19. Cullen, K. R., Gee, D. G., Klimes-Dougan, B., Gabbay, V., Hulvershorn, L., Mueller, B. A., et al. (2009). A preliminary study of functional connectivity in comorbid adolescent depression. Neuroscience Letters, 460, 227–231.CrossRefPubMedGoogle Scholar
  20. Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853.CrossRefPubMedGoogle Scholar
  21. Dosenbach, N. U. F., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., et al. (2006). A core system for the implementation of task sets. Neuron, 50(5), 799–812.CrossRefPubMedGoogle Scholar
  22. Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11073–11078.CrossRefPubMedGoogle Scholar
  23. Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99–105.CrossRefPubMedGoogle Scholar
  24. Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Church, J. A., Nelson, S. M., et al. (2010). Prediction of individual brain maturity using fMRI. Science, 329(5997), 1358–1361.CrossRefPubMedGoogle Scholar
  25. Eichler, M. (2005). A graphical approach for evaluating effective connectivity in neural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 953–967.CrossRefGoogle Scholar
  26. Fair, D. A., Dosenbach, N. U. F., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., et al. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences of the United States of America, 104(33), 13507–13512.CrossRefPubMedGoogle Scholar
  27. Fair, D. A., Cohen, A. L., Dosenbach, N. U., Church, J. A., Miezin, F. M., Barch, D. M., et al. (2008). The maturing architecture of the brain’s default network. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 4028–4032.CrossRefPubMedGoogle Scholar
  28. Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U., Church, J. A., Miezin, F. M., et al. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5(5), e1000381.CrossRefPubMedGoogle Scholar
  29. Fair, D. A., Posner, J., Nagel, B. J., Bathula, D., Costa Dias, T. G., Mills, K. L., et al. (2010). Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol Psychiatry, epub. Google Scholar
  30. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.CrossRefPubMedGoogle Scholar
  31. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences of the United States of America, 103(26), 10046–10051.CrossRefPubMedGoogle Scholar
  32. Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 3270–3283.CrossRefPubMedGoogle Scholar
  33. Fransson, P., Aden, U., Blennow, M., & Lagercrantz, H. (2010). The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb Cortex, epub.Google Scholar
  34. Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4), 1273–1302.CrossRefPubMedGoogle Scholar
  35. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2(10), 861–863.CrossRefPubMedGoogle Scholar
  36. Gozzo, Y., Vohr, B., Lacadie, C., Hampson, M., Katz, K. H., Maller-Kesselman, J., et al. (2009). Alterations in neural connectivity in preterm children at school age. Neuroimage, 48, 458–463.CrossRefPubMedGoogle Scholar
  37. Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424–438.CrossRefGoogle Scholar
  38. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.CrossRefPubMedGoogle Scholar
  39. Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C., & Constable, R. T. (2006). Brain connectivity related to working memory performance. The Journal of Neuroscience, 26(51), 13338–13343.CrossRefPubMedGoogle Scholar
  40. Hampson, M., Tokoglu, F., King, R. A., Constable, R. T., & Leckman, J. F. (2009). Brain areas coactivating with motor cortex during chronic motor tics and intentional movements. Biological Psychiatry, 65, 594–599.CrossRefPubMedGoogle Scholar
  41. Hampson, M., Driesen, N., Roth, J. K., Gore, J. C., & Constable, R. T. (2010). Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magnetic Resonance Imaging, epub. Google Scholar
  42. He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & Corbetta, M. (2007). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron, 53(6), 905–918.CrossRefPubMedGoogle Scholar
  43. He, Y., Wang, J., Wang, L., Chen, Z. J., Yan, C., Yang, H., et al. (2009). Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS ONE, 4(4), e5226.CrossRefPubMedGoogle Scholar
  44. Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: Wiley.Google Scholar
  45. Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Research, 163(2), 195–205.CrossRefPubMedGoogle Scholar
  46. Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28(6), 517–527.CrossRefPubMedGoogle Scholar
  47. Johnson, M. H. (2000). Functional brain development in infants: elements of an interactive specialization framework. Child Development, 71(1), 75–81.CrossRefPubMedGoogle Scholar
  48. Jones, T. B., Bandettini, P. A., Kenworthy, L., Case, L. K., Milleville, S. C., Martin, A., et al. (2010). Sources of group differences in functional connectivity: an investigation applied to autism spectrum disorder. Neuroimage, 49(1), 401–414.CrossRefPubMedGoogle Scholar
  49. Kelly, A. M. C., Di Martino, A., Uddin, L. Q., Shehzad, Z., Gee, D. G., Reiss, P. T., et al. (2009). Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cerebral Cortex, 19(3), 640–657.CrossRefPubMedGoogle Scholar
  50. Kennedy, D. P., & Courchesne, E. (2008). The intrinsic functional organization of the brain is altered in autism. Neuroimage, 39(4), 1877–1885.CrossRefPubMedGoogle Scholar
  51. Koyama, M. S., Kelly, C., Shehzad, Z., Penesetti, D., Castellanos, F. X., & Milham, M. P. (2010). Reading networks at rest. Cerebral Cortex, epub. Google Scholar
  52. Larson-Prior, L. J., Zempel, J. M., Nolan, T. S., Prior, F. W., Snyder, A. Z., & Raichle, M. E. (2009). Cortical network functional connectivity in the descent to sleep. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4489–4494.CrossRefPubMedGoogle Scholar
  53. Latora, V., & Marchiori, M. (2001). Efficient behavior of small world networks. Physical Review Letters, 87(19), 198701.CrossRefPubMedGoogle Scholar
  54. Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17558–17563.CrossRefPubMedGoogle Scholar
  55. Lowe, M. J., Mock, B. J., & Sorenson, J. A. (1998). Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage, 7(2), 119–132.CrossRefPubMedGoogle Scholar
  56. Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., et al. (2001). Maturation of widely distributed brain function subserves cognitive development. Neuroimage, 13(5), 786–793.CrossRefPubMedGoogle Scholar
  57. Luo, L., & O’Leary, D. (2005). Axon retraction and degeneration in development and disease. Annual Review of Neuroscience, 28, 127–156.CrossRefPubMedGoogle Scholar
  58. Mesulam, M.-M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28(5), 597–613.CrossRefPubMedGoogle Scholar
  59. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage, 44(3), 893–905.CrossRefPubMedGoogle Scholar
  60. Myers, E. H., Hampson, M., Vohr, B., Lacadie, C., Frost, S. J., Pugh, K. R., et al. (2010). Functional connectivity to a right hemisphere language center in prematurely born adolescents. Neuroimage, 51, 1445–1452.CrossRefPubMedGoogle Scholar
  61. Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8577–8582.CrossRefPubMedGoogle Scholar
  62. Newman, M. (2010). Networks: An introduction. Oxford University Press.Google Scholar
  63. Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 69(2 Pt 2), 026113.Google Scholar
  64. Newsome, W. T., & Allman, J. M. (1980). Interhemispheric connections of visual cortex in the owl monkey, Aotus trivergatus, and the bushbaby, Galago senegalensis. The Journal of Comparative Neurology, 194(1), 209–233.CrossRefPubMedGoogle Scholar
  65. Ongur, D., Ferry, A. T., & Price, J.L. (2003). Architectonic subdivision of the human orbital and medial prefrontal cortex. Journal of Comparative Neurology, 460(3), 425–429.CrossRefPubMedGoogle Scholar
  66. Poldrack, R. A. (2010). Interpreting developmental changes in neuroimaging signals. Human Brain Mapping, 31, 872–878.PubMedGoogle Scholar
  67. Power, J. D., Cohen, A. L., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2009). rs-fcMRI networks preferentially link auditory and sensorimotor mouth regions across development from 8-26 years of age. Paper presented at the Society for Neuroscience, Chicago, IL.Google Scholar
  68. Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Miezin, F. M., Vogel, A.C., et al. (2010a). The network architecture of functionally defined regions spanning the brain reorganize from a predominantly local architecture in children to a distributed, functional architecture in adults. Paper presented at the Cognitive Neuroscience Society, Montreal, QC, Canada.Google Scholar
  69. Power, J. D., Fair, D. A., Schlaggar, B. L., & Petersen, S. E. (2010b). The development of human functional brain networks. Neuron, 67(5), 735–748.CrossRefGoogle Scholar
  70. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.CrossRefPubMedGoogle Scholar
  71. Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1118–1123.CrossRefPubMedGoogle Scholar
  72. Rubinov, M., & Sporns, O. (2009). Complex network measures of brain connectivity: uses and interpretations. Neuroimage.Google Scholar
  73. Saur, D., Schelter, B., Schnell, S., Kratochvil, D., Kupper, H., Kellmeyer, P., et al. (2010). Combining functional and anatomical connectivity reveals brain networks for auditor language comprehension. Neuroimage, 49, 3187–3197.CrossRefPubMedGoogle Scholar
  74. Schlaggar, B. L., & McCandliss, B. D. (2007). Development of neural systems for reading. Annual Review of Neuroscience, 30, 475–503.CrossRefPubMedGoogle Scholar
  75. Schlaggar, B. L., Brown, T. T., Lugar, H. M., Visscher, K. M., Miezin, F. M., & Petersen, S. E. (2002). Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science, 296, 1476–1479.CrossRefPubMedGoogle Scholar
  76. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356.CrossRefPubMedGoogle Scholar
  77. Sepulcre, J., Liu, H., Talukdar, T., Martincorena, I., Yeo, B. T. T., & Buckner, R. L. (2010). The organization of local and distant functional connectivity in the human brain. PLOS Computational Biology, 6(6), e1000808.CrossRefPubMedGoogle Scholar
  78. Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., et al. (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9, 648–663.CrossRefGoogle Scholar
  79. Smith, S. M., Miller, K. L., Salimi-Korshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., et al. (in press). Network modeling methods for fMRI. NeuroImage. doi: 10.1016/j.neuroimage.2010.08.063
  80. Smyser, C. D., Inder, T. E., Shimony, J. S., Hill, J. E., Degnan, A. J., Snyder, A. Z., et al. (2010). Longitudinal analysis of neural network development in preterm infants. Cereb Cortex, epub.Google Scholar
  81. Snook, L., Paulson, L.-A., Roy, D., Phillips, L., & Beaulieu, C. (2005). Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage, 26(4), 1164–1173.CrossRefPubMedGoogle Scholar
  82. Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience, 24(38), 8223–8231.CrossRefPubMedGoogle Scholar
  83. Sporns, O., & Honey, C. J. (2006). Small worlds inside big brains. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19219–19220.CrossRefPubMedGoogle Scholar
  84. Stevens, M. C., Pearlson, G. D., & Calhoun, V. D. (2009). Changes in the interaction of resting-state neural networks from adolescence to adulthood. Human Brain Mapping, 30(8), 2356–2366.CrossRefPubMedGoogle Scholar
  85. Stevens, W. D., Buckner, R. L., & Schacter, D. L. (2010). Correlated low-frequency BOLD fluctuations in the resting human brain are modulated by recent experience in category-preferential visual regions. Cerebral Cortex, 20, 1997–2006.CrossRefPubMedGoogle Scholar
  86. Stiles, J. (2008). The fundamentals of brain development: Integrating nature and nurture. Harvard University Press.Google Scholar
  87. Stiles, J., Moses, P., Passarotti, A., Dick, F. K., & Buxton, R. (2003). Exploring developmental change in the neural bases of higher cognitive functions: the promise of functional magnetic resonance imaging. Developmental Neuropsychology, 24(2–3), 641–668.CrossRefPubMedGoogle Scholar
  88. Supekar, K., Musen, M., & Menon, V. (2009). Development of large-scale functional brain networks in children. PLoS Biology, 7(7), e1000157.CrossRefPubMedGoogle Scholar
  89. Supekar, K., Uddin, L. Q., Prater, K., Amin, H., Greicius, M. D., & Menon, V. (2010). Development of functional and structural connectivity within the default mode network in young children. Neuroimage, 52(1), 290–301.CrossRefPubMedGoogle Scholar
  90. Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations furing rest are related to memory for recent experiences. Neuron, 65(2), 280–290.CrossRefPubMedGoogle Scholar
  91. Tamm, L., Menon, V., & Reiss, A. L. (2002). Maturation of brain function associated with response inhibition. Journal of the American Academy of Child and Adolescent Psychiatry, 41(10), 1231–1238.CrossRefPubMedGoogle Scholar
  92. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomic parcellation of the MNI MRI single subject brain. NeuroImage, 15(1), 293–289.Google Scholar
  93. Uddin, L. Q., Kelly, A. M., Biswal, B. B., Margulies, D. S., Shehzad, Z., Shaw, D., et al. (2008). Network homogeneity reveals decreased integrity of default-mode network in ADHD. Journal of Neuroscience Methods, 169(1), 249–254.Google Scholar
  94. Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Essen, D. C., et al. (2007). Intrinsic functional architecture in the anesthetized monkey brain. Nature, 447(7140), 46–47.CrossRefGoogle Scholar
  95. Vogel, A. C., Church, J. A., Power, J. D., Cohen, A. L., Miezin, F. M., Schlaggar, B. L., et al. (2009). Development of network structure in reading related regions. Paper presented at the Society for Neuroscience, Chicago, IL.Google Scholar
  96. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.CrossRefPubMedGoogle Scholar
  97. Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life (pp. 3–70). Oxford: Blackwell Scientific.Google Scholar
  98. Zalesky, A., Fornito, A., Harding, I. A., Cocchi, L., Yucel, M., Pantelis, C., et al. (2010). Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage, 50, 970–983.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alecia C. Vogel
    • 1
    Email author
  • Jonathan D. Power
    • 1
  • Steven E. Petersen
    • 1
    • 2
    • 3
    • 5
  • Bradley L. Schlaggar
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of NeurologyWashington University School of MedicineSt. LouisUSA
  2. 2.Department of RadiologyWashington University School of MedicineSt. LouisUSA
  3. 3.Department of Anatomy and NeurobiologyWashington University School of MedicineSt. LouisUSA
  4. 4.Department of PediatricsWashington University School of MedicineSt. LouisUSA
  5. 5.Department of PsychologyWashington University in St. LouisSt. LouisUSA

Personalised recommendations