Neuropsychology Review

, Volume 20, Issue 3, pp 236–260 | Cite as

The Role of the Cerebellum in Cognition and Emotion: Personal Reflections Since 1982 on the Dysmetria of Thought Hypothesis, and Its Historical Evolution from Theory to Therapy



The cognitive neuroscience of the cerebellum is now an established multidisciplinary field of investigation. This essay traces the historical evolution of this line of inquiry from an emerging field to its current status, with personal reflections over almost three decades on this journey of discovery. It pays tribute to early investigators who recognized the wider role of the cerebellum beyond motor control, traces the origins of new terms and concepts including the dysmetria of thought theory, the universal cerebellar transform, and the cerebellar cognitive affective syndrome, and places these developments within the broader context of the scientific efforts of a growing community of cerebellar cognitive neuroscientists. This account considers the converging evidence from theoretical, anatomical, physiological, clinical, and functional neuroimaging approaches that have resulted in the transition from recognizing the cerebellar incorporation into the distributed neural circuits subserving cognition and emotion, to a hopeful new era of treatment of neurocognitive and neuropsychiatric manifestations of cerebellar diseases, and to cerebellar-based interventions for psychiatric disorders.


Cerebrocerebellar system Cerebellar cognitive affective syndrome Ataxia Behavior Psychosis Schizophrenia Autism History 


  1. Abbie, A. A. (1934). The projection of the forebrain on the pons and cerebellum. Proceedings of the Royal Society of London [Biol.] 115504–115522.Google Scholar
  2. Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.CrossRefGoogle Scholar
  3. Aleman, A., Sommer, I. E., & Kahn, R. S. (2007). Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: a meta-analysis. The Journal of Clinical Psychiatry, 68(3), 416–421.PubMedCrossRefGoogle Scholar
  4. Allen, G. I., & Tsukahara, N. (1974). Cerebrocerebellar communication systems. Physiological Reviews, 54(4), 957–1006.PubMedGoogle Scholar
  5. Andreasen, N. C., O’Leary, D. S., Cizadlo, T., Arndt, S., Rezai, K., Ponto, L. L., et al. (1996). Schizophrenia and cognitive dysmetria: a positron emission tomography study of dysfunctional prefrontal-thalamic-cerebelar circuitry. Proceedings of the National Academy of Sciences of the United States of America, 93, 9985–9990.PubMedCrossRefGoogle Scholar
  6. Angevine, J. B., Mancall, E. L., & Yakovlev, P. I. (1961). The human cerebellum: An atlas of gross topography in serial sections. Boston: Little, Brown and Co.Google Scholar
  7. Baillieux, H., De Smet, H. J., Dobbeleir, A., Paquier, P. F., De Deyn, P. P., & Mariën, P. (2010). Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex, 46(7), 869–879.PubMedCrossRefGoogle Scholar
  8. Ball, G., Micco, D. J., & Berntson, G. (1974). Cerebellar stimulation in the rat. Complex stimulation bound oral behaviors and self-stimulation. Physiology & Behavior, 13, 123–127.CrossRefGoogle Scholar
  9. Barlow, J. S. (2002). The cerebellum and adaptive control. New York: Cambridge University Press.CrossRefGoogle Scholar
  10. Bauman, M., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35(6), 866–874.PubMedGoogle Scholar
  11. Berman, A. F., Berman, D., & Prescott, J. W. (1978). The effect of cerebellar lesions on emotional behavior in the rhesus monkey. In I. S. Cooper, M. Riklan, & R. S. Snider (Eds.), The cerebellum, epilepsy and behavior (pp. 277–284). New York: Plenum. Adapted and reprinted as Berman, A. J. (1997). Amelioration of aggression: Response to selective cerebellar lesions in the rhesus monkey. In J. D. Schmahmann (Ed.), The cerebellum and cognition. Int Rev Neurobiol, 41, 111–119. San Diego: Academic.Google Scholar
  12. Berntson, G. G., Potolicchio, S. J., Jr., & Miller, N. E. (1973). Evidence for higher functions of the cerebellum: eating and grooming elicited by cerebellar stimulation in cats. Proceedings of the National Academy of Sciences of the United States of America, 70(9), 2497–2499.PubMedCrossRefGoogle Scholar
  13. Bishop, D. V. (2007). Curing dyslexia and attention-deficit hyperactivity disorder by training motor co-ordination: miracle or myth? Journal of Paediatrics and Child Health, 43(10), 653–655.PubMedCrossRefGoogle Scholar
  14. Botez-Marquard, T., & Botez, M. I. (1993). Cognitive behavior in heredodegenerative ataxias. European Neurology, 33(5), 351–357.PubMedCrossRefGoogle Scholar
  15. Botez, M. I., Gravel, J., Attig, E., & Vezina, J. L. (1985). Reversible chronic cerebellar ataxia after phenytoin intoxication: possible role of cerebellum in cognitive thought. Neurology, 35(8), 1152–1157.PubMedGoogle Scholar
  16. Bower, J. M. (1995). The cerebellum as sensory acquisition controller. Human Brain Mapping, 2, 12–13.Google Scholar
  17. Brodal, P. (1978). The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain, 101(2), 251–283.PubMedCrossRefGoogle Scholar
  18. Brodal, A. (1981). Neurological anatomy in relation to clinical medicine (3rd ed.). New York: Oxford University Press.Google Scholar
  19. Cannon, W. B. (1939). Law of denervation. American Journal of Medical Science 198(737–50).Google Scholar
  20. Caplan, L. R., Schmahmann, J. D., Kase, C. S., Feldmann, E., Baquis, G., Greenberg, J. P., et al. (1990). Caudate Infarcts. Archives of Neurology, 47, 133–143.Google Scholar
  21. Catani, M., Jones, D. K., Daly, E., Embiricos, N., Deeley, Q., Pugliese, L., et al. (2008). Altered cerebellar feedback projections in Asperger syndrome. Neuroimage, 41(4), 1184–1191.PubMedCrossRefGoogle Scholar
  22. Chambers, W. W., & Sprague, J. M. (1955a). Functional localization in the cerebellum. I. Organization in longitudinal cortico-nuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. The Journal of Comparative Neurology, 103(1), 105–129.CrossRefGoogle Scholar
  23. Chambers, W. W., & Sprague, J. M. (1955b). Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. A.M.A. Archives of Neurology & Psychiatry, 74(6), 653–680.Google Scholar
  24. Chheda, M., Sherman, J., & Schmahmann, J. D. (2002). Neurologic, psychiatric and cognitive manifestations in cerebellar agenesis. Neurology, 58(Suppl 3), 356.Google Scholar
  25. Clarke, E., & O’Malley, C. D. (1996). The human brain and spinal cord. A historical study illustrated by writings from antiquity to the twentieth century (2nd ed.). San Francisco: Norman.Google Scholar
  26. Clower, D. M., West, R. A., Lynch, J. C., & Strick, P. L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. The Journal of Neuroscience, 21(16), 6283–6291.PubMedGoogle Scholar
  27. Combettes. (1831). Absence complète du cervelet, des pédoncules postérieurs et de la protubérance cérébrale chez une jeune fille morte dans sa onzième année. Bulletins de la Societe anatomique de Paris, 5, 148–157.Google Scholar
  28. Cooper, I. S., Amin, L., & Gilman, S. W. J. M. (1974). The effect of chronic stimulation of cerebellar cortex on epilepsy in man. In I. S. Cooper, M. Riklan, & R. S. Snider (Eds.), The cerebellum, epilepsy and behavior (pp. 119–172). New York: Plenum.Google Scholar
  29. Cooper, I. S., Riklan, M., Amin, I., & Cullinan, T. (1978). A long-term follow-up study of cerebellar stimulation for the control of epilepsy. In I. S. Cooper (Ed.), Cerebellar stimulation in man (pp. 19–38). New York: Raven.Google Scholar
  30. Courchesne, E., & Allen, G. (1997). Prediction and preparation, fundamental functions of the cerebellum. Learning & Memory, 4(1), 1–35.CrossRefGoogle Scholar
  31. Courchesne, E., Yeung-Courchesne, R., Press, G. A., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. The New England Journal of Medicine, 318(21), 1349–1354.PubMedCrossRefGoogle Scholar
  32. Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., & Woolsey, T. A. (1972). The autoradiographic demonstration of axonal connections in the central nervous system. Brain Research, 37, 21–51.PubMedCrossRefGoogle Scholar
  33. Dejerine, J. J. (1895). Anatomie des centres nerveux. Paris: Rueff et Cie.Google Scholar
  34. Demirtas-Tatlidede, A., Freitas, C., Cromer, J., Safar, L., Ongur, D., & Stone, W. S., et al. (2010). A proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophrenia Research, doi:10.1016/j.schres.2010.08.015
  35. Denny-Brown, D. (1942). The sequelae of war head injuries. New England Journal of Medicine, 227, 771–789 and 813–821.Google Scholar
  36. Denny-Brown, D. (1962). The Basal Ganglia and their relation to disorders of movement. London: Oxford University Press.Google Scholar
  37. Denny-Brown, D. (1964). Department of neurology. In J. J. Byrne (Ed.), A history of the Boston City Hospital, 1905–1964 (pp. 110–122). Boston: Sheldon.Google Scholar
  38. Denny-Brown, D., & Banker, B. Q. (1954). Amorphosynthesis from left parietal lesion. AMA Archives of Neurology and Psychiatry, 71, 302–313.Google Scholar
  39. Denny-Brown, D., & Chambers, R. A. (1958). The parietal lobe and behavior. Research Publications - Association for Research in Nervous and Mental Disease, 36, 35–117.PubMedGoogle Scholar
  40. Denny-Brown, D., Meyer, J. S., & Horenstein, S. (1952). The significance of perceptual rivalry resulting from parietal lesion. Brain, 75(4), 433–471.PubMedCrossRefGoogle Scholar
  41. Desmond, J. E., & Fiez, J. A. (1998). Neuroimaging studies of the cerebellum: language, learning and memory. Trends in Cognitive Sciences, 2, 355–362.CrossRefGoogle Scholar
  42. Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. Neuroimage, 33(1), 127–138.PubMedCrossRefGoogle Scholar
  43. Dietrichs, E., & Haines, D. E. (1984). Demonstration of hypothalamo-cerebellar and cerebello-hypothalamic fibres in a prosimian primate (Galago crassicaudatus). Anatomy and Embryology (Berlin), 170(3), 313–318.CrossRefGoogle Scholar
  44. Dimitrova, A., Zeljko, D., Schwarze, F., Maschke, M., Gerwig, M., Frings, M., et al. (2006). Probabilistic 3D MRI atlas of the human cerebellar dentate/interposed nuclei. Neuroimage, 30(1), 12–25.PubMedCrossRefGoogle Scholar
  45. Dow, R. S. (1974). Some novel concepts of cerebellar physiology. The Mount Sinai Journal of Medicine, 41(1), 103–119.Google Scholar
  46. Dow, R. S., & Moruzzi, G. (1958). The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press.Google Scholar
  47. Doyon, J., Penhune, V., Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252–262.PubMedCrossRefGoogle Scholar
  48. Dum, R. P., & Strick, P. L. (2003). An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. Journal of Neurophysiology, 89(1), 634–639.PubMedCrossRefGoogle Scholar
  49. Duncan, G. W., Parker, S. W., & Fisher, C. M. (1975). Acute cerebellar infarction in the PICA territory. Archives of Neurology, 32(6), 364–368.PubMedGoogle Scholar
  50. Evarts, E. V., & Thach, W. T. (1969). Motor mechanisms of the CNS: cerebrocerebellar interrelations. Annual Review of Physiology, 31, 451–498.PubMedCrossRefGoogle Scholar
  51. Exner, C., Weniger, G., & Irle, E. (2004). Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology, 63(11), 2132–2135.PubMedGoogle Scholar
  52. Fiez, J. A., & Raichle, M. E. (1997). Linguistic processing. In J. D. Schmahmann (Ed.), The cerebellum and cognition. Int Rev Neurobiol, 41, 233–254. San Diego: Academic.Google Scholar
  53. Flourens, P. (1824). Recherches experimentales sur les proprietes et les fonctions du systseme nerveux, dans les animaux vertebres. Paris: Crevot.Google Scholar
  54. Fox, P. T., Raichle, M. E., & Thach, W. T. (1985). Functional mapping of the human cerebellum with positron emission tomography. Proceedings of the National Academy of Sciences of the United States of America, 82(21), 7462–7466.PubMedCrossRefGoogle Scholar
  55. Fregni, F., Marcolin, M. A., Myczkowski, M., Amiaz, R., Hasey, G., Rumi, D. O., et al. (2006). Predictors of antidepressant response in clinical trials of transcranial magnetic stimulation. The International Journal of Neuropsychopharmacology, 9(6), 641–654.PubMedCrossRefGoogle Scholar
  56. Frick, R. B. (1982). The ego and the vestibulocerebellar system: some theoretical perspectives. The Psychoanalytic Quarterly, 51(1), 93–122.PubMedGoogle Scholar
  57. Fries, W. (1990). Pontine projection from striate and prestriate visual cortex in the macaque monkey: an anterograde study. Visual Neuroscience, 4(3), 205–216.PubMedCrossRefGoogle Scholar
  58. Gall, F. J., Vimont, J., & Broussais, J. V. (1838). On the functions of the cerebellum. English translation by George Combe. Edinburgh: Maclachlan & Stewart.Google Scholar
  59. Geschwind, N. (1965a). Disconnexion syndromes in animals and man. I. Brain, 88(2), 237–294.PubMedCrossRefGoogle Scholar
  60. Geschwind, N. (1965b). Disconnexion syndromes in animals and man. II. Brain, 88(3), 585–644.PubMedCrossRefGoogle Scholar
  61. Glickstein, M., May, J. G., 3rd, & Mercier, B. E. (1985). Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. The Journal of Comparative Neurology, 235(3), 343–359.PubMedCrossRefGoogle Scholar
  62. Gomez Beldarrain, M., Garcia-Monco, J. C., Quintana, J. M., Llorens, V., & Rodeno, E. (1997). Diaschisis and neuropsychological performance after cerebellar stroke. European Neurology, 37(2), 82–89.PubMedCrossRefGoogle Scholar
  63. Granziera, C., Schmahmann, J. D., Hadjikhani, N., Heiko, M., Meuli, R., Wedeen, V. J., et al. (2009). Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS ONE, 4(4), e5101. Epub 2009 Apr 2.PubMedCrossRefGoogle Scholar
  64. Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70(1–2), 119–136.PubMedCrossRefGoogle Scholar
  65. Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., et al. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. The Journal of Neuroscience, 29(26), 8586–8594.PubMedCrossRefGoogle Scholar
  66. Haines, D. E., & Rubertone, J. A. (1977). Cerebellar corticonuclear fibers: evidence of zones in the primate anterior lobe. Neuroscience Letters, 6(2–3), 231–236.PubMedCrossRefGoogle Scholar
  67. Haines, D. E., & Dietrichs, E. (1984). An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (Saimiri sciureus). The Journal of Comparative Neurology, 229(4), 559–575.PubMedCrossRefGoogle Scholar
  68. Harlow, H. F., & Harlow, M. (1962). Social deprivation in monkeys. Scientific American, 207, 136–146.PubMedCrossRefGoogle Scholar
  69. Harper, J. W., & Heath, R. G. (1973). Anatomic connections of the fastigial nucleus to the rostral forebrain in the cat. Experimental Neurology, 39(2), 285–292.PubMedCrossRefGoogle Scholar
  70. Hartmann-von Monakow, K., Akert, K., & Kunzle, H. (1981). Projection of precentral, premotor and prefrontal cortex to the basilar pontine grey and to nucleus reticularis tegmenti pontis in the monkey (Macaca fascicularis). Schweizer Archiv für Neurologie, Neurochirurgie und Psychiatrie, 129(2), 189–208.PubMedGoogle Scholar
  71. Heath, R. G. (1977). Modulation of emotion with a brain pacemaker. Treatment for intractable psychiatric illness. The Journal of Nervous and Mental Disease, 165(5), 300–317.PubMedCrossRefGoogle Scholar
  72. Heath, R. G. (1997). Foreword. In J. D. Schmahmann (Ed.), The Cerebellum and Cognition. Int Rev Neurobiol, 41, xxiii–xxv. San Diego: Academic.Google Scholar
  73. Heath, R. G., & Harper, J. W. (1974). Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: evoked potential and histological studies in monkeys and cats. Experimental Neurology, 45(2), 268–287.PubMedCrossRefGoogle Scholar
  74. Heath, R. G., Franklin, D. E., & Shraberg, D. (1979). Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. The Journal of Nervous and Mental Disease, 167(10), 585–592.PubMedCrossRefGoogle Scholar
  75. Heath, R. G., Llewellyn, R. C., & Rouchell, A. M. (1980). The cerebellar pacemaker for intractable behavioral disorders and epilepsy: follow-up report. Biological Psychiatry, 15(2), 243–256.PubMedGoogle Scholar
  76. Heilman, K. M., Bowers, D., Valenstein, E., & Watson, R. T. (1986). The right hemisphere: neuropsychological functions. Journal of Neurosurgery, 64(5), 693–704.PubMedCrossRefGoogle Scholar
  77. Heilman, K. M., & Van Den Abell, T. (1980). Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30(3), 327–330.PubMedGoogle Scholar
  78. Henneman, E., Cooke, P. M., & Snider, R. S. (1952). Cerebellar projections to the cerebral cortex. Research Publications—Association for Research in Nervous and Mental Disease, 30, 317–333.PubMedGoogle Scholar
  79. Hornyak, M., Rovit, R. L., Simon, A. S., & Couldwell, W. T. (2001). Irving S. Cooper and the early surgical management of movement disorders. Video history. Neurosurgical Focus, 11(2), E6.PubMedCrossRefGoogle Scholar
  80. Ito, M. (1984). The cerebellum and neural control. New York: Raven.Google Scholar
  81. Ito, M. (1993). Movement and thought: identical control mechanisms by the cerebellum. Trends in Neurosciences, 16(11), 448–450. discussion 453–444.PubMedCrossRefGoogle Scholar
  82. Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1, 136–152.CrossRefGoogle Scholar
  83. Jansen, J., & Brodal, A. (1940). Experimental studies on the intrinsic fibers of the cerebellum. II. The cortico-nuclear projection. The Journal of Comparative Neurology, 73, 267–321.CrossRefGoogle Scholar
  84. Joseph, A. B., Anderson, W. H., & O’Leary, D. H. (1985). Brainstem and vermis atrophy in catatonia. The American Journal of Psychiatry, 142(3), 352–354.PubMedGoogle Scholar
  85. Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. The Journal of Neuroscience, 23(23), 8432–8444.PubMedGoogle Scholar
  86. Kemper, T. L., & Bauman, M. (1998). Neuropathology of infantile autism. Journal of Neuropathology and Experimental Neurology, 57(7), 645–652.PubMedCrossRefGoogle Scholar
  87. Kim, J. J., Mohamed, S., Andreasen, N. C., O’Leary, D. S., Watkins, G. L., Boles Ponto, L. L., et al. (2000). Regional neural dysfunctions in chronic schizophrenia studied with positron emission tomography. The American Journal of Psychiatry, 157(4), 542–548.PubMedCrossRefGoogle Scholar
  88. Krienen, F. M., & Buckner, R. L. (2009). Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebral Cortex, 19(10), 2485–2497.PubMedCrossRefGoogle Scholar
  89. Kuypers, H. G., & Ugolini, G. (1990). Viruses as transneuronal tracers. Trends in Neurosciences, 13(2), 71–75.PubMedCrossRefGoogle Scholar
  90. Laird, A. R., Fox, P. M., Price, C. J., Glahn, D. C., Uecker, A. M., Lancaster, J. L., et al. (2005). ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Human Brain Mapping, 25(1), 155–164.PubMedCrossRefGoogle Scholar
  91. Lalonde, R., & Botez, M. I. (1986). Navigational deficits in weaver mutant mice. Brain Research, 398(1), 175–177.PubMedCrossRefGoogle Scholar
  92. Larsell, O., & Jansen, J. (1972). The comparative anatomy and histology of the cerebellum. The human cerebellum, cerebellar connections, and cerebellar cortex. Minneapolis: The University of Minnesota Press.Google Scholar
  93. Leaton, R. N., & Supple, W. F., Jr. (1986). Cerebellar vermis: essential for long-term habituation of the acoustic startle response. Science, 232(4749), 513–515.PubMedCrossRefGoogle Scholar
  94. Lee, H., Sohn, S. I., Cho, Y. W., Lee, S. R., Ahn, B. H., Park, B. R., et al. (2006). Cerebellar infarction presenting isolated vertigo: frequency and vascular topographical patterns. Neurology, 67(7), 1178–1183.PubMedCrossRefGoogle Scholar
  95. Leggio, M. G., Chiricozzi, F. R., Clausi, S., Tedesco, A. M., & Molinari, M. (2009). The neuropsychological profile of cerebellar damage: The sequencing hypothesis. Cortex, Sep 6. [Epub ahead of print]Google Scholar
  96. Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100(4), 443–454.PubMedCrossRefGoogle Scholar
  97. Levinson, H. N. (1988). The cerebellar-vestibular basis of learning disabilities in children, adolescents and adults: hypothesis and study. Perceptual and Motor Skills, 67(3), 983–1006.PubMedGoogle Scholar
  98. Levisohn, L., Cronin-Golomb, A., & Schmahmann, J. D. (2000). Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain, 123(Pt 5), 1041–1050.PubMedCrossRefGoogle Scholar
  99. Limperopoulos, C., Soul, J. S., Haidar, H., Huppi, P. S., Bassan, H., Warfield, S. K., et al. (2005). Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics, 116(4), 844–850.PubMedCrossRefGoogle Scholar
  100. Limperopoulos, C., Bassan, H., Gauvreau, K., Robertson, R. L., Jr., Sullivan, N. R., Benson, C. B., et al. (2007). Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics, 120(3), 584–593.PubMedCrossRefGoogle Scholar
  101. Locke, S. (1969). Modern neurology papers in tribute to Denny-Brown. Boston: Little Brown.Google Scholar
  102. Maeshima, S., & Osawa, A. (2007). Stroke rehabilitation in a patient with cerebellar cognitive affective syndrome. Brain Injury, 21(8), 877–883.PubMedCrossRefGoogle Scholar
  103. Makris, N., Hodge, S. M., Haselgrove, C., Kennedy, D. N., Dale, A., Fischl, B., et al. (2003). Human cerebellum: surface-assisted cortical parcellation and volumetry with magnetic resonance imaging. Journal of Cognitive Neuroscience, 15(4), 584–599.PubMedCrossRefGoogle Scholar
  104. Makris, N., Schlerf, J. E., Hodge, S. M., Haselgrove, C., Albaugh, M. D., Seidman, L. J., et al. (2005). MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. Neuroimage, 25(4), 1146–1160.PubMedCrossRefGoogle Scholar
  105. Marr, D. (1969). A theory of cerebellar cortex. Journal de Physiologie, 202(2), 437–470.Google Scholar
  106. Martner, J. (1975). Cerebellar influences on autonomic mechanisms. An experimental study in the cat with special reference to the fastigial nucleus. Acta Physiologica Scandinavica. Supplementum, 425, 1–42.PubMedGoogle Scholar
  107. Mason, W. A., & Berkson, G. (1975). Effects of maternal mobility on the development of rocking and other behaviors in rhesus monkeys: a study with artificial mothers. Developmental Psychobiology, 8(3), 197–211.PubMedCrossRefGoogle Scholar
  108. May, J. G., & Andersen, R. A. (1986). Different patterns of corticopontine projections from separate cortical fields within the inferior parietal lobule and dorsal prelunate gyrus of the macaque. Experimental Brain Research, 63(2), 265–278.CrossRefGoogle Scholar
  109. Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., et al. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45(5), 651–660.PubMedCrossRefGoogle Scholar
  110. Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10(4), 309–325.PubMedCrossRefGoogle Scholar
  111. Middleton, F. A., & Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266(5184), 458–461.PubMedCrossRefGoogle Scholar
  112. Molinari, M., Leggio, M. G., Solida, A., Ciorra, R., Misciagna, S., Silveri, M. C., et al. (1997). Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain, 120(Pt 10), 1753–1762.PubMedCrossRefGoogle Scholar
  113. Molinari, M., Petrosini, L., Misciagna, S., & Leggio, M. G. (2004). Visuospatial abilities in cerebellar disorders. Journal of Neurology, Neurosurgery and Psychiatry, 75(2), 235–240.Google Scholar
  114. Nadeau, S. E., & Crosson, B. (1997). Subcortical aphasia. Brain and Language, 58(3), 355–402. discussion 418–423.PubMedCrossRefGoogle Scholar
  115. Neau, J. P., Arroyo-Anllo, E., Bonnaud, V., Ingrand, P., & Gil, R. (2000). Neuropsychological disturbances in cerebellar infarcts. Acta Neurologica Scandinavica, 102(6), 363–370.PubMedCrossRefGoogle Scholar
  116. Neuburger, M. (1897/1981). Die historiche Entwicklung der experimentellen Gehirn-und Ruckenmarksphysiologie vor Flourens. Translated and edited, with additional material, by Edwin Clarke, as The Historical Development of Experimental Brain and Spinal Cord Physiology Before Flourens. Baltimore/London: Johns Hopkins University Press.Google Scholar
  117. Nicolson, R. I., & Fawcett, A. J. (2005). Developmental dyslexia, learning and the cerebellum. Journal of Neural Transmission. Supplementum (69), 19–36.Google Scholar
  118. Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: the cerebellar deficit hypothesis. Trends in Neurosciences, 24(9), 508–511.PubMedCrossRefGoogle Scholar
  119. Nopoulos, P. C., Ceilley, J. W., Gailis, E. A., & Andreasen, N. C. (1999). MRI volumetry of the vermis and the cerebellar hemispheres in men with schizophrenia. Biological Psychiatry, 46, 703–711.PubMedCrossRefGoogle Scholar
  120. Nyby, O., & Jansen, J. (1951). An experimental investigation of the corticopontine projection in macaca mulatta. Skrifter utgitt av det Norske Vedenskapsakademie Oslo. Mat Naturv Klasse, 3, 1–47.Google Scholar
  121. O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20(4), 953–965.PubMedCrossRefGoogle Scholar
  122. Oscarsson, O. (1965). Functional organization of the spino- and cuneocerebellar tracts. Physiological Reviews, 45, 495–522.PubMedGoogle Scholar
  123. Parvizi, J., Joseph, J. T., Press, D., & Schmahmann, J. D. (2007). Pathological laughter and crying in patients with multiple system atrophy-cerebellar type. Movement Disorders, 22, 798–803.PubMedCrossRefGoogle Scholar
  124. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(6157), 585–589.PubMedCrossRefGoogle Scholar
  125. Petrides, M., & Pandya, D. N. (1988). Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. The Journal of Comparative Neurology, 273(1), 52–66.PubMedCrossRefGoogle Scholar
  126. Petrosini, L., Molinari, M., & Dell’Anna, M. E. (1996). Cerebellar contribution to spatial event processing: Morris water maze and T-maze. The European Journal of Neuroscience, 8(9), 1882–1896.PubMedCrossRefGoogle Scholar
  127. Pollack, I. F., Polinko, P., Albright, A. L., Towbin, R., & Fitz, C. (1995). Mutism and pseudobulbar symptoms after resection of posterior fossa tumors in children: incidence and pathophysiology. Neurosurgery, 37(5), 885–893.PubMedCrossRefGoogle Scholar
  128. Prescott, J. W. (1971). Early somatosensory deprivation as ontogenic process in the abnormal development of the brain and behavior. In Moor-Jankowski EIGaJ (Ed.), Medical primatology 1970. Basel: Karger.Google Scholar
  129. Rapoport, M., van Reekum, R., & Mayberg, H. (2000). The role of the cerebellum in cognition and behavior: a selective review. The Journal of Neuropsychiatry and Clinical Neurosciences, 12(2), 193–198.PubMedGoogle Scholar
  130. Rauch, S. L., Dougherty, D. D., Malone, D., Rezai, A., Friehs, G., Fischman, A. J., et al. (2006). A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. Journal of Neurosurgery, 104(4), 558–565.PubMedCrossRefGoogle Scholar
  131. Reynolds, D., & Nicolson, R. I. (2007). Follow-up of an exercise-based treatment for children with reading difficulties. Dyslexia, 13(2), 78–96.PubMedCrossRefGoogle Scholar
  132. Reynolds, D., Nicolson, R. I., & Hambly, H. (2003). Evaluation of an exercise-based treatment for children with reading difficulties. Dyslexia, 9(1), 48–71. discussion 46–47.PubMedCrossRefGoogle Scholar
  133. Richter, S., Aslan, B., Gerwig, M., Wilhelm, H., Kramer, S., Todica, O., et al. (2007). Patients with chronic focal cerebellar lesions show no cognitive abnormalities in a bedside test. Neurocase, 13(1), 25–36.PubMedCrossRefGoogle Scholar
  134. Riva, D., & Giorgi, C. (2000). The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain, 123(Pt 5), 1051–1061.PubMedCrossRefGoogle Scholar
  135. Sadeh, M., & Cohen, I. (2001). Transient loss of speech after removal of posterior fossa tumors—one aspect of a larger neuropsychological entity: the cerebellar cognitive affective syndrome. Pediatric Hematology and Oncology, 18(7), 423–426.PubMedCrossRefGoogle Scholar
  136. Sasaki, K., Oka, H., Matsuda, Y., Shimono, T., & Mizuno, N. (1975). Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex. Experimental Brain Research, 23, 91–102.CrossRefGoogle Scholar
  137. Schmahmann, J. (1991). An emerging concept. The cerebellar contribution to higher function. Archives of Neurology, 48(11), 1178–1187.PubMedGoogle Scholar
  138. Schmahmann, J. D. (1994). The cerebellum in autism: Clinical and anatomic perspectives. In M. L. Bauman & T. L. Kemper (Eds.), The neurobiology of autism (pp. 195–226). Baltimore: Johns Hopkins University Press.Google Scholar
  139. Schmahmann, J. D. (1996). From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Human Brain Mapping, 4, 174–198.PubMedCrossRefGoogle Scholar
  140. Schmahmann, J. D. (1997a). The cerebellum and cognition. Int Rev Neurobiol, vol 41. San Diego: Academic.Google Scholar
  141. Schmahmann, J. D. (1997b). Therapeutic and research implications. In J. D. Schmahmann (Ed.), The cerebellum and cognition. Int Rev Neurobiol, 41, 637–647. San Diego: Academic.Google Scholar
  142. Schmahmann, J. D. (1998). Dysmetria of thought. Clinical consequences of cerebellar dysfunction on cognition and affect. Trends in Cognitive Sciences, 2, 362–370.CrossRefGoogle Scholar
  143. Schmahmann, J. D. (2000). The role of the cerebellum in affect and psychosis. Journal of Neurolinguistics, 13, 189–214.CrossRefGoogle Scholar
  144. Schmahmann, J. D. (2001). The cerebellar cognitive affective syndrome: clinical correlations of the dysmetria of thought hypothesis. International Review of Psychiatry, 13, 313–322.CrossRefGoogle Scholar
  145. Schmahmann, J. D. (2004). Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 16(3), 367–378.PubMedGoogle Scholar
  146. Schmahmann, J. D., Doyon, J., McDonald, D., Holmes, C., Lavoie, K., Hurwitz, A. S., et al. (1999). Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage, 10(3 Pt 1), 233–260.PubMedCrossRefGoogle Scholar
  147. Schmahmann, J. D., Doyon, J., Toga, A., Evans, A., & Petrides, M. (2000). MRI atlas of the human cerebellum. San Diego: Academic.Google Scholar
  148. Schmahmann, J. D., Gardner, R. C., MacMore, J., & Vangel, M. (2009b). Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Movement Disorders, 24, 1820–1828.CrossRefGoogle Scholar
  149. Schmahmann, J. D., Hurwitz, A. S., Loeber, R. T., & Marjani, J. L. (1998a). A semi-flattened map of the human cerebellum. A new approach to visualizing the cerebellar cortex in 2-dimensional space. Society for Neuroscience Abstracts, 24, 1409.Google Scholar
  150. Schmahmann, J. D., Loeber, R. T., Marjani, J., & Hurwitz, A. S. (1998b). Topographic organization of cognitive functions in the human cerebellum. A meta-analysis of functional imaging studies. Neuroimage, 7, S721.Google Scholar
  151. Schmahmann, J. D., MacMore, J., & Vangel, M. (2009a). Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience, 162(3), 852–861.CrossRefGoogle Scholar
  152. Schmahmann, J. D., & Pandya, D. N. (1987). Posterior parietal projections to the basis pontis in rhesus monkey. Possible anatomical substrate for the cerebellar modulation of complex behavior. Neurology, 37, 297.Google Scholar
  153. Schmahmann, J. D., & Pandya, D. N. (1989). Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. The Journal of Comparative Neurology, 289(1), 53–73.PubMedCrossRefGoogle Scholar
  154. Schmahmann, J. D., & Pandya, D. N. (1990). Anatomical investigation of projections from thalamus to posterior parietal cortex in the rhesus monkey: a WGA-HRP and fluorescent tracer study. The Journal of Comparative Neurology, 295(2), 299–326.PubMedCrossRefGoogle Scholar
  155. Schmahmann, J. D., & Pandya, D. N. (1991). Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. The Journal of Comparative Neurology, 308(2), 224–248.PubMedCrossRefGoogle Scholar
  156. Schmahmann, J. D., & Pandya, D. N. (1992). Course of the fiber pathways to pons from parasensory association areas in the rhesus monkey. The Journal of Comparative Neurology, 326(2), 159–179.PubMedCrossRefGoogle Scholar
  157. Schmahmann, J. D., & Pandya, D. N. (1993). Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. The Journal of Comparative Neurology, 337(1), 94–112.PubMedCrossRefGoogle Scholar
  158. Schmahmann, J. D., & Pandya, D. N. (1995). Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neuroscience Letters, 199(3), 175–178.PubMedCrossRefGoogle Scholar
  159. Schmahmann, J. D., & Pandya, D. N. (1997a). Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. The Journal of Neuroscience, 17(1), 438–458.Google Scholar
  160. Schmahmann, J. D., & Pandya, D. N. (1997b). The cerebrocerebellar system. In J. D. Schmahmann (Ed.), The cerebellum and cognition. Int Rev Neurobiol, 41, 31–60. San Diego: Academic.Google Scholar
  161. Schmahmann, J. D., & Pandya, D. (2006). Fiber pathways of the brain. New York: Oxford University Press.CrossRefGoogle Scholar
  162. Schmahmann, J. D., & Pandya, D. N. (2008). Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex, 44(8), 1037–1066.PubMedCrossRefGoogle Scholar
  163. Schmahmann, J. D., & Sherman, J. C. (1997). Cerebellar cognitive affective syndrome. In J. D. Schmahmann (Ed.), The Cerebellum and Cognition. Int Rev Neurobiol, 41, 433–440. San Diego: Academic.Google Scholar
  164. Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(Pt 4), 561–579.PubMedCrossRefGoogle Scholar
  165. Schmahmann, J. D., Rosene, D. L., & Pandya, D. N. (2004). Motor projections to the basis pontis in rhesus monkey. The Journal of Comparative Neurology, 478(3), 248–268.PubMedCrossRefGoogle Scholar
  166. Schmahmann, J. D., Weilburg, J. B., & Sherman, J. C. (2007). The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum, 6(3), 254–267.PubMedCrossRefGoogle Scholar
  167. Schweizer, T. A., Levine, B., Rewilak, D., O’Connor, C., Turner, G., Alexander, M. P., et al. (2008). Rehabilitation of executive functioning after focal damage to the cerebellum. Neurorehabilitation and Neural Repair, 22(1), 72–77.PubMedCrossRefGoogle Scholar
  168. Seltzer, B., & Pandya, D. N. (1984). Further observations on parieto-temporal connections in the rhesus monkey. Experimental Brain Research, 55, 301–312.CrossRefGoogle Scholar
  169. Snider, R. S. (1950). Recent contributions to the anatomy and physiology of the cerebellum. Archives of Neurology and Psychiatry, 64(2), 196–219.PubMedGoogle Scholar
  170. Snider, R. S. (1952). Interrelations of cerebellum and brainstem. Research Publications—Association for Research in Nervous and Mental Disease, 30, 267–281.PubMedGoogle Scholar
  171. Snider, R. S., & Eldred, E. (1948). Cerebral projections to the tactile, auditory and visual areas of the cerebellum. The Anatomical Record, 100, 714.Google Scholar
  172. Snider, R. S., & Maiti, A. (1976). Cerebellar contributions to the Papez circuit. Journal of Neuroscience Research, 2(2), 133–146.PubMedCrossRefGoogle Scholar
  173. Snider, R. S., & Stowell, A. (1944). Receiving areas of the tactile, auditory, and visual systems in the cerebellum. Journal of Neurophysiology, 7, 331–357.Google Scholar
  174. Snider, S. R. (1982). Cerebellar pathology in schizophrenia—cause or consequence? Neuroscience and Biobehavioral Reviews, 6(1), 47–53.PubMedCrossRefGoogle Scholar
  175. Snowling, M. J., & Hulme, C. (2003). A critique of claims from Reynolds, Nicolson & Hambly (2003) that DDAT is an effective treatment for children with reading difficulties—‘lies, damned lies and (inappropriate) statistics’? Dyslexia, 9(2), 127–133. discussion 134–125.PubMedCrossRefGoogle Scholar
  176. Steinlin, M., Imfeld, S., Zulauf, P., Boltshauser, E., Lovblad, K. O., Ridolfi Luthy, A., et al. (2003). Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain, 126(Pt 9), 1998–2008.PubMedCrossRefGoogle Scholar
  177. Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage, 44(2), 489–501.PubMedCrossRefGoogle Scholar
  178. Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46(7), 831–844.PubMedCrossRefGoogle Scholar
  179. Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2010a). An fMRI case study of functional topography in the human cerebellum. Behavioural Neurology, 23(1), 65–79.Google Scholar
  180. Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2010b). Functional topography in the cerebellum for motor and cognitive tasks: An fMRI study. Society for Neuroscience, 2010. Online.Google Scholar
  181. Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434.PubMedCrossRefGoogle Scholar
  182. Sugihara, I., & Shinoda, Y. (2004). Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. The Journal of Neuroscience, 24(40), 8771–8785.PubMedCrossRefGoogle Scholar
  183. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: An approach to cerebral imaging (Translated by Mark Rayport.). New York: Thieme.Google Scholar
  184. Tavano, A., Grasso, R., Gagliardi, C., Triulzi, F., Bresolin, N., Fabbro, F., et al. (2007). Disorders of cognitive and affective development in cerebellar malformations. Brain, 130(Pt 10), 2646–2660.PubMedCrossRefGoogle Scholar
  185. Thach, W. T. (1987). Cerebellar inputs to motor cortex. Ciba Foundation Symposium, 132, 201–220.PubMedGoogle Scholar
  186. Thompson, R. F. (1983). Neuronal substrate of simple associative learning. Classical conditioning. Trends in Neurosciences, 6, 270–275.CrossRefGoogle Scholar
  187. Timmann, D., Brandauer, B., Hermsdorfer, J., Ilg, W., Konczak, J., Gerwig, M., et al. (2008). Lesion-symptom mapping of the human cerebellum. Cerebellum, 7(4), 602–606.PubMedCrossRefGoogle Scholar
  188. Timmann, D., Drepper, J., Frings, M., Maschke, M., Richter, S., Gerwig, M., et al. (2010). The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex, 46(7), 845–857.PubMedCrossRefGoogle Scholar
  189. Trouillas, P., Takayanagi, T., Hallett, M., Currier, R. D., Subramony, S. H., Wessel, K., et al. (1997). International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. Journal of the Neurological Sciences, 145(2), 205–211.PubMedCrossRefGoogle Scholar
  190. Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage, 16, 765–780.PubMedCrossRefGoogle Scholar
  191. Valenstein, E., Heilman, K. M., Watson, R. T., & Van Den Abell, T. (1982). Nonsensory neglect from parietotemporal lesions in monkeys. Neurology, 32(10), 1198–1201.PubMedGoogle Scholar
  192. Vilensky, J., & van Hoesen, G. V. (1981). Corticopontine projections from the cingulate cortex in the rhesus monkey. Brain Research, 205, 391–395.PubMedCrossRefGoogle Scholar
  193. Voogd, J. (2004). Cerebellum and precerebellar nuclei. In G. Paxinos & J. Mai (Eds.), The human nervous system (pp. 321–392). San Diego: Academic.CrossRefGoogle Scholar
  194. Voogd, J., & Glickstein, M. (1998). The anatomy of the cerebellum. Trends in Neurosciences, 21(9), 370–375.PubMedCrossRefGoogle Scholar
  195. Watson, P. J. (1978). Nonmotor functions of the cerebellum. Psychological Bulletin, 85(5), 944–967.PubMedCrossRefGoogle Scholar
  196. Watson, R. T., Valenstein, E., & Heilman, K. M. (1981). Thalamic neglect. Possible role of the medial thalamus and nucleus reticularis in behavior. Archives of Neurology, 38(8), 501–506.PubMedGoogle Scholar
  197. Weinberger, D. R., Kleinman, J. E., Luchins, D. J., Bigelow, L. B., & Wyatt, R. J. (1980). Cerebellar pathology in schizophrenia: a controlled postmortem study. The American Journal of Psychiatry, 137(3), 359–361.PubMedGoogle Scholar
  198. Whitney, E. R., Kemper, T. L., Rosene, D. L., Bauman, M. L., & Blatt, G. J. (2009). Density of cerebellar basket and stellate cells in autism: evidence for a late developmental loss of Purkinje cells. Journal of Neuroscience Research, 87(10), 2245–2254.PubMedCrossRefGoogle Scholar
  199. Wiesendanger, R., Wiesendanger, M., & Ruegg, D. G. (1979). An anatomical investigation of the corticopontaine projection in the primate (Macaca fascicularis and Saimiri sciureus)-II. The projection from frontal and parental association areas. Neuroscience, 4(6), 747–765.PubMedCrossRefGoogle Scholar
  200. Wisoff, J. H., & Epstein, F. J. (1984). Pseudobulbar palsy after posterior fossa operation in children. Neurosurgery, 15(5), 707–709.PubMedCrossRefGoogle Scholar
  201. Wolf, J. K. (1971). The classical brainstem syndromes. Springfield: Charles C. Thomas.Google Scholar
  202. Woolsey, C. N. (1952). Summary of the papers on the cerebellum. Research Publications—Association for Research in Nervous and Mental Disease, 30, 334–336.Google Scholar
  203. Yeterian, E. H., & Van Hoesen, G. W. (1978). Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Research, 139(1), 43–63.PubMedCrossRefGoogle Scholar
  204. Zanchetti, A., & Zoccolini, A. (1954). Autonomic hypothalamic outbursts elicited by cerebellar stimulation. Journal of Neurophysiology, 17(5), 475–483.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Ataxia Unit, Cognitive/Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Department of NeurologyMassachusetts General HospitalBostonUSA

Personalised recommendations