Advertisement

Neuropsychology Review

, Volume 20, Issue 3, pp 280–289 | Cite as

Contributions of Studies on Alcohol Use Disorders to Understanding Cerebellar Function

  • Natalie M. Zahr
  • Anne-Lise Pitel
  • Sandra Chanraud
  • Edith V. Sullivan
Review

Abstract

Neuropathological, neuropsychological, and neuroimaging studies of human alcoholism provide evidence for degradation of frontal, pontine, thalamic, and cerebellar brain sites and disturbed associated functions. Current studies using neuroimaging combined with examination of executive functions, traditionally considered the sole purview of the frontal lobes, have identified a role for the cerebellum serving as a compensatory processing adjunct to enable normal performance on challenging tasks tapping executive functions. This overview proposes that disruption of an executive frontocerebellar network is a major contributor to characteristic behaviors of alcoholism that, on the one hand, enable alcohol use disorders, and on the other hand, lead to compensation for dysfunctions in alcoholism traditionally considered frontally-based.

Keywords

Cerebellum Alcohol Alcoholism Executive function Structural imaging Functional imaging 

Notes

Acknowledgment

We would like to thank our colleague, Adolf Pfefferbaum, M.D. for thoughtful discussion on brain and behavioral sequelae of alcoholism and for production of the imaging figures.

Funding support

This work was funded by grants from the U.S. National Institute on Alcohol Abuse and Alcoholism (AA010723, AA017168, AA017923).

Disclosure

The authors have no conflict of interest to disclose.

References

  1. Adams, R. D., Victor, M., & Mancall, E. L. (1959). Central pontine myelinolysis: a hitherto undescribed disease occurring in alcoholic and malnourished patients. Archives of Neurology and Psychiatry, 81, 154–172.Google Scholar
  2. Arango, V., Underwood, M. D., & Mann, J. J. (1994). Fewer pigmented neurons in the locus coeruleus of uncomplicated alcoholics. Brain Research, 650, 1–8.PubMedCrossRefGoogle Scholar
  3. Badsberg-Jensen, G., & Pakkenberg, B. (1993). Do alcoholics drink their neurons away? Lancet, 342, 1201–1204.CrossRefGoogle Scholar
  4. Baker, K., Harding, A., Halliday, G., Kril, J., & Harper, C. (1999). Neuronal loss in functional zones of the cerebellum of chronic alcoholics with and without Wernicke’s encephalopathy. Neuroscience, 91, 429–438.PubMedCrossRefGoogle Scholar
  5. Bartsch, A. J., Homola, G., Biller, A., Smith, S. M., Weijers, H. G., Wiesbeck, G. A., et al. (2007). Manifestations of early brain recovery associated with abstinence from alcoholism. Brain, 130, 36–47.PubMedCrossRefGoogle Scholar
  6. Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI. Journal of Magnetic Resonance. Series B, 111, 209–219.PubMedCrossRefGoogle Scholar
  7. Belzunegui, T., Insausti, R., Ibanez, J., & Gonzalo, L. M. (1995). Effect of chronic alcoholism on neuronal nuclear size and neuronal population in the mammillary body and the anterior thalamic complex of man. Histology and Histopathology, 10, 633–638.PubMedGoogle Scholar
  8. Bendszus, M., Weijers, H. G., Wiesbeck, G., Warmuth-Metz, M., Bartsch, A. J., Engels, S., et al. (2001). Sequential MR imaging and proton MR spectroscopy in patients who underwent recent detoxification for chronic alcoholism: correlation with clinical and neuropsychological data. American Journal of Neuroradiology, 22, 1926–1932.PubMedGoogle Scholar
  9. Benegal, V., Antony, G., Venkatasubramanian, G., & Jayakumar, P. N. (2007). Gray matter volume abnormalities and externalizing symptoms in subjects at high risk for alcohol dependence. Addiction Biology, 12, 122–132.PubMedCrossRefGoogle Scholar
  10. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541.PubMedCrossRefGoogle Scholar
  11. Bostan AC, Strick PL (2010) Interactions between the cerebellum and basal ganglia. Neuropsychology Review, 20.Google Scholar
  12. Cardenas, V. A., Studholme, C., Gazdzinski, S., Durazzo, T. C., & Meyerhoff, D. J. (2007). Deformation-based morphometry of brain changes in alcohol dependence and abstinence. Neuroimage, 34, 879–887.PubMedCrossRefGoogle Scholar
  13. Chanraud, S., Pitel, A. L., & Sullivan, E. V. (2010a). Structural imaging of alcohol abuse. In: Shenton, M. E., & Turetsky, B. I. (Eds.). Understanding Neuropsychiatric Disorders. Cambridge University Press.Google Scholar
  14. Chanraud, S., Pitel, A.-L., Rohlfing, T., Pfefferbaum, A., & Sullivan, E. V. (2010b). Dual tasking and working memory in alcoholism: relation to frontocerebellar circuitry. Neuropsychopharmacology, in press.Google Scholar
  15. Chanraud, S., Martelli, C., Delain, F., Kostogianni, N., Douaud, G., Aubin, H. J., et al. (2007). Brain morphometry and cognitive performance in detoxified alcohol-dependents with preserved psychosocial functioning. Neuropsychopharmacology, 32, 429–438.PubMedCrossRefGoogle Scholar
  16. Chanraud, S., Reynaud, M., Wessa, M., Penttila, J., Kostogianni, N., Cachia, A., et al. (2009). Diffusion tensor tractography in mesencephalic bundles: relation to mental flexibility in detoxified alcohol-dependent subjects. Neuropsychopharmacology, 34, 1223–1232.PubMedCrossRefGoogle Scholar
  17. Courville, C. B. (1955). Effects of alcohol on the nervous system of man. Los Angeles: San Lucas Press.Google Scholar
  18. Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50, 873–880.PubMedGoogle Scholar
  19. De la Monte, S. M. (1988). Disproportionate atrophy of cerebral white matter in chronic alcoholics. Archives of Neurology, 45, 990–992.PubMedGoogle Scholar
  20. De Rosa, E., Desmond, J. E., Anderson, A. K., Pfefferbaum, A., & Sullivan, E. V. (2004). The human basal forebrain integrates the old and the new. Neuron, 41, 825–837.PubMedCrossRefGoogle Scholar
  21. Desmond, J. E., Gabrieli, J. D., Wagner, A. D., Ginier, B. L., & Glover, G. H. (1997). Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. The Journal of Neuroscience, 17, 9675–9685.PubMedGoogle Scholar
  22. Desmond, J. E., Chen, S. H., De Rosa, E., Pryor, M. R., Pfefferbaum, A., & Sullivan, E. V. (2003). Increased fronto-cerebellar activation in alcoholics during verbal working memory: an fMRI study. Neuroimage, 19, 1510–1520.PubMedCrossRefGoogle Scholar
  23. Doyon, J., Gaudreau, D., Laforce, R., Jr., Castonguay, M., Bedard, P. J., Bedard, F., et al. (1997). Role of the striatum, cerebellum, and frontal lobes in the learning of a visuomotor sequence. Brain and Cognition, 34, 218–245.PubMedCrossRefGoogle Scholar
  24. Durazzo, T. C., Gazdzinski, S., Banys, P., & Meyerhoff, D. J. (2004). Cigarette smoking exacerbates chronic alcohol-induced brain damage: a preliminary metabolite imaging study. Alcoholism, Clinical and Experimental Research, 28, 1849–1860.PubMedCrossRefGoogle Scholar
  25. Durazzo, T. C., Pathak, V., Gazdzinski, S., Mon, A., & Meyerhoff, D. J. (2010). Metabolite levels in the brain reward pathway discriminate those who remain abstinent from those who resume hazardous alcohol consumption after treatment for alcohol dependence. Journal of Studies on Alcohol and Drugs, 71, 278–289.PubMedGoogle Scholar
  26. Ende, G., Welzel, H., Walter, S., Weber-Fahr, W., Diehl, A., Hermann, D., et al. (2005). Monitoring the effects of chronic alcohol consumption and abstinence on brain metabolism: a longitudinal proton magnetic resonance spectroscopy study. Biological Psychiatry, 58, 974–980.PubMedCrossRefGoogle Scholar
  27. Fein, G., & Di Sclafani, V. (2004). Cerebral reserve capacity: implications for alcohol and drug abuse. Alcohol, 32, 63–67.PubMedCrossRefGoogle Scholar
  28. Fein, G., Di Sclafani, V., & Finn, P. (2010). Sensation seeking in long-term abstinent alcoholics, treatment-naive active alcoholics, and nonalcoholic controls. Alcoholism, Clinical and Experimental Research, 34, 1045–1051.PubMedCrossRefGoogle Scholar
  29. Fitzpatrick, L. E., Jackson, M., & Crowe, S. F. (2008). The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning. Neuroscience and Biobehavioral Reviews, 32, 466–485.PubMedCrossRefGoogle Scholar
  30. Fuster, J. (1999). Synopsis of function and dysfunction of the frontal lobe. Acta Psychiatrica Scandinavica, 99, 51–57.CrossRefGoogle Scholar
  31. Gerig, G., Corouge, I., Vachet, C., Krishnan, K. R., & MacFall, J. R. (2005). Quantitative analysis of diffusion properties of white matter fiber tracts: a validation study. In: 13th Proceedings of the International Society for Magnetic Resonance in Medicine, p Abstract no. 1337. Miami, FL.Google Scholar
  32. Grafman, J., Litvan, I., Massaquoi, S., Stewart, M., Sirigu, A., & Hallett, M. (1992). Cognitive planning deficit in patients with cerebellar atrophy. Neurology, 42, 1493–1496.PubMedGoogle Scholar
  33. Guehl, D., Pessiglione, M., Francois, C., Yelnik, J., Hirsch, E. C., Feger, J., et al. (2003). Tremor-related activity of neurons in the ‘motor’ thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism. The European Journal of Neuroscience, 17, 2388–2400.PubMedCrossRefGoogle Scholar
  34. Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., et al. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. The Journal of Neuroscience, 29, 8586–8594.PubMedCrossRefGoogle Scholar
  35. Hada, M., Porjesz, B., Begleiter, H., & Polich, J. (2000). Auditory P3a assessment of male alcoholics. Biological Psychiatry, 48, 276–286.PubMedCrossRefGoogle Scholar
  36. Halliday, G., Ellis, J., Heard, R., Caine, D., & Harper, C. (1993). Brainstem serotonergic neurons in chronic alcoholics with and without the memory impairment of Korsakoff’s psychosis. Journal of Neuropathology and Experimental Neurology, 52, 567–579.PubMedCrossRefGoogle Scholar
  37. Harding, A., Halliday, G., Caine, D., & Kril, J. (2000). Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain, 123, 141–154.PubMedCrossRefGoogle Scholar
  38. Harper, C. (1998). The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain? Journal Neuropathology and Experimental Neurology, 57, 101–110.CrossRefGoogle Scholar
  39. Harper, C. (2009). The neuropathology of alcohol-related brain damage. Alcohol and Alcoholism 44(2), 136–140.PubMedCrossRefGoogle Scholar
  40. Harper, C., & Kril, J. J. (1985). Brain atrophy in chronic alcoholic patients: a quantitative pathological study. Journal of Neurology, Neurosurgery and Psychiatry, 48, 211–217.CrossRefGoogle Scholar
  41. Harper, C., & Kril, J. (1991). If you drink your brain will shrink: neuropathological considerations. Alcohol and Alcoholism—Supplement, 1, 375–380.PubMedGoogle Scholar
  42. Harper, C. G., Kril, J. J., & Holloway, R. L. (1985). Brain shrinkage in chronic alcoholics: a pathological study. British Medical Journal, 290, 501–504.PubMedCrossRefGoogle Scholar
  43. Harper, C. G., Kril, J. J., & Daly, J. M. (1988). Brain shrinkage in alcoholics is not caused by changes in hydration: a pathological study. Journal of Neurology, Neurosurgery and Psychiatry, 51, 124–127.CrossRefGoogle Scholar
  44. Harper, C., Dixon, G., Sheedy, D., & Garrick, T. (2003). Neuropathological alterations in alcoholic brains. Studies arising from the New South Wales Tissue Resource Centre. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27, 951–961.CrossRefGoogle Scholar
  45. Harper, C., Matsumoto, I., Pfefferbaum, A., Adalsteinsson, E., Sullivan, E. V., Lewohl, J., et al. (2005). The pathophysiology of ‘brain shrinkage’ in alcoholics structural and molecular changes and clinical implications. Alcoholism, Clinical and Experimental Research, 29, 1106–1115.CrossRefGoogle Scholar
  46. Hayakawa, K., & Kumagai, H. (1992). MR imaging of chronic alcoholism. Acta Radiologica, 33, 201–206.PubMedGoogle Scholar
  47. Heindel, W. C., Salmon, D. P., Shults, C. W., Walicke, P. A., & Butters, N. (1989). Neuropsychological evidence for multiple implicit memory systems: A comparison of Alzheimer’s, Huntington’s, and Parkinson’s disease patients. The Journal of Neuroscience, 9, 582–587.PubMedGoogle Scholar
  48. Hubert, V., Beaunieux, H., Chetelat, G., Platel, H., Landeau, B., Viader, F., et al. (2009). Age-related changes in the cerebral substrates of cognitive procedural learning. Human Brain Mapping, 30, 1374–1386.PubMedCrossRefGoogle Scholar
  49. Jagannathan, N. R., Desai, N. G., & Raghunathan, P. (1996). Brain metabolite changes in alcoholism: an in vivo proton magnetic resonance spectroscopy (MRS) study. Magnetic Resonance Imaging, 14, 553–557.PubMedCrossRefGoogle Scholar
  50. Jones, D. K. (2010). Diffusion MRI: Theory, methods, and applications (1st ed.). Oxford: Oxford University Press.Google Scholar
  51. Karhunen, P. J., Erkinjuntti, T., & Laippala, P. (1994). Moderate alcohol consumption and loss of cerebellar purkinje cells. British Medical Journal, 308, 1663–1667.PubMedGoogle Scholar
  52. Kelly, R. M., & Strick, P. L. (2003a). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. The Journal of Neuroscience, 23, 8432–8444.PubMedGoogle Scholar
  53. Kelly, R. M., & Strick, P. L. (2003b). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. The Journal of Neuroscience, 23, 8432–8444.PubMedGoogle Scholar
  54. Kleinschmidt-DeMasters, B. K., Anderson, C. A., & Rubinstein, D. (1997). Asymptomatic pontine lesions found by magnetic resonance imaging: are they central pontine myelinolysis? Journal of Neurological Science, 149, 27–35.CrossRefGoogle Scholar
  55. Kolb, B., & Whishaw, I. Q. (1996). Fundamentals of human neuropsychology (4th ed.). New York: W. H. Freeman and Company.Google Scholar
  56. Krienen, F. M., & Buckner, R. L. (2009). Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebral Cortex, 19, 2485–2497.PubMedCrossRefGoogle Scholar
  57. Kril, J. J., & Harper, C. G. (1989). Neuronal counts from four cortical regions of the alcoholic brain. Acta Neuropathol (Berl), 79, 200–204.CrossRefGoogle Scholar
  58. Kril, J. J., & Butterworth, R. F. (1997). Diencephalic and cerebellar pathology in alcoholic and nonalcoholic patients with end-stage liver disease. Hepatology, 26, 837–841.PubMedCrossRefGoogle Scholar
  59. Le Berre, A. P., Pinon, K., Vabret, F., Pitel, A. L., Alliain, P., Eustache, F., & Beaunieux, H. (2010) Study of metamemory in patients with chronic alcoholism using a feeling-of-knowing episodic memory task. Alcoholism: Clinical & Experimental Research.Google Scholar
  60. Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews. Neuroscience, 4, 469–480.PubMedCrossRefGoogle Scholar
  61. Leggio, M. G., Chiricozzi, F. R., Clausi, S., Tedesco, A. M., & Molinari, M. (2009). The neuropsychological profile of cerebellar damage: The sequencing hypothesis. Cortex.Google Scholar
  62. Lehericy, S., Ducros, M., Van de Moortele, P. F., Francois, C., Thivard, L., Poupon, C., et al. (2004). Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Annals of Neurology, 55, 522–529.PubMedCrossRefGoogle Scholar
  63. Leiner, H. C. (2010). Solving the Mystery of the Human Cerebellum. Neuropsychology Review.Google Scholar
  64. Lewohl, J. M., Wixey, J., Harper, C. G., & Dodd, P. R. (2005). Expression of MBP, PLP, MAG, CNP, and GFAP in the human alcoholic brain. Alcoholism, Clinical and Experimental Research, 29, 1698–1705.PubMedCrossRefGoogle Scholar
  65. Lezak, M. D. (1995). Neuropsychological assessment (3rd ed.). New York: Oxford University Press.Google Scholar
  66. Mann, K., Agartz, I., Harper, C., Shoaf, S., Rawlings, R., Momenan, R., et al. (2001). Neuroimaging in alcoholism: ethanol and brain damage. Alcoholism: Clinical and Experimental Research (supplement), 25, 104–109S.Google Scholar
  67. Martin, P. R., Gibbs, S. J., Nimmerrichter, A. A., Riddle, W. R., Welch, L. W., & Willcott, M. R. (1995). Brain proton magnetic resonance spectroscopy studies in recently abstinent alcoholics. Alcoholism, Clinical and Experimental Research, 19, 1078–1082.PubMedCrossRefGoogle Scholar
  68. Marvel, C. L., & Desmond, J. E. (2010). Functional topography of the cerebellum in verbal working memory. Neuropsychology Review.Google Scholar
  69. Meyerhoff, D. J., Blumenfeld, R., Truran, D., Lindgren, J., Flenniken, D., Cardenas, V., et al. (2004). Effects of heavy drinking, binge drinking, and family history of alcoholism on regional brain metabolites. Alcoholism, Clinical and Experimental Research, 28, 650–661.PubMedCrossRefGoogle Scholar
  70. Murata, T., Fujito, T., Kimura, H., Omori, M., Itoh, H., & Wada, Y. (2001). Serial MRI and (1)H-MRS of Wernicke’s encephalopathy: report of a case with remarkable cerebellar lesions on MRI. Psychiatry Research, 108, 49–55.PubMedCrossRefGoogle Scholar
  71. Nixon, S. J., Tivis, R., Ceballos, N., Varner, J. L., & Rohrbaugh, J. (2002). Neurophysiological efficiency in male and female alcoholics. Progress in Neuropsychopharmacology & Biological Psychiatry, 26, 919–927.CrossRefGoogle Scholar
  72. Olsson, N. U., Harding, A. J., Harper, C., & Salem, N., Jr. (1996). High-performance liquid chromatography method with light-scattering detection for measurements of lipid class composition: analysis of brains from alcoholics. Journal of Chromatography. B, Biomedical Applications, 681, 213–218.PubMedCrossRefGoogle Scholar
  73. Oscar-Berman, M. (2000). Neuropsychological vulnerabilities in chronic alcoholism. In A. Noronha, M. Eckardt, & K. Warren (Eds.), Review of NIAAA’s Neuroscience and Behavioral Research Portfolio, NIAAA Research Monograph No. 34 (pp. 437–472). Bethesda: National Institutes of Health.Google Scholar
  74. Oscar-Berman, M., & Marinkovic, K. (2007). Alcohol: effects on neurobehavioral functions and the brain. Neuropsychology Review, 17, 239–257.PubMedCrossRefGoogle Scholar
  75. Oscar-Berman, M., Shagrin, B., Evert, D. L., & Epstein, C. (1997). Impairments of brain and behavior: the neurological effects of alcohol. Alcohol Health and Research World, 21, 65–75.PubMedGoogle Scholar
  76. Parks, M. H., Dawant, B. M., Riddle, W. R., Hartmann, S. L., Dietrich, M. S., Nickel, M. K., et al. (2002). Longitudinal brain metabolic characterization of chronic alcoholics with proton magnetic resonance spectroscopy. Alcoholism, Clinical and Experimental Research, 26, 1368–1380.PubMedGoogle Scholar
  77. Parks, M. H., Morgan, V. L., Pickens, D. R., Price, R. R., Dietrich, M. S., Nickel, M. K., et al. (2003). Brain MRI activation associated with self-paced finger-tapping in chronic alcohol dependent patients. Alcoholism, Clinical and Experimental Research, 27, 704–711.PubMedGoogle Scholar
  78. Parks, M. H., Greenberg, D. S., Nickel, M. K., Dietrich, M. S., Rogers, B. P., & Martin, P. R. (2010). Recruitment of additional brain regions to accomplish simple motor tasks in chronic alcohol-dependent patients. Alcoholism, Clinical and Experimental Research, 34, 1098–1109.PubMedCrossRefGoogle Scholar
  79. Pascual-Leone, A., Grafman, J., Clark, K., Stewart, M., Massaquoi, S., Lou, J. S., et al. (1993). Procedural learning in Parkinson’s disease and cerebellar degeneration. Annals of Neurology, 34, 594–602.PubMedCrossRefGoogle Scholar
  80. Pentney, R. J. (1993). Alterations in the structure of the cerebellum after long-term ethanol consumption. In W. A. Hunt & S. J. Nixon (Eds.), Alcohol-induced brain damage: NIAAA research monograph No. 22 (pp. 249–276). Rockville: National Institute of Health.Google Scholar
  81. Petroff, O. A., Pleban, L. A., & Spencer, D. D. (1995). Symbiosis between in vivo and in vitro NMR spectroscopy: the creatine, N-acetylaspartate, glutamate, and GABA content of the epileptic human brain. Magnetic Resonance Imaging, 13, 1197–1211.PubMedCrossRefGoogle Scholar
  82. Pfefferbaum, A., & Sullivan, E. V. (2002). Microstructural but not macrostructural disruption of white matter in women with chronic alcoholism. Neuroimage, 15, 708–718.PubMedCrossRefGoogle Scholar
  83. Pfefferbaum, A., & Sullivan, E. V. (2003). Increased brain white matter diffusivity in normal adult aging: relationship to anisotropy and partial voluming. Magnetic Resonance in Medicine, 49, 953–961.PubMedCrossRefGoogle Scholar
  84. Pfefferbaum, A., Lim, K. O., Zipursky, R. B., Mathalon, D. H., Rosenbloom, M. J., Lane, B., et al. (1992). Brain gray and white matter volume loss accelerates with aging in chronic alcoholics: a quantitative MRI study. Alcoholism, Clinical and Experimental Research, 16, 1078–1089.PubMedCrossRefGoogle Scholar
  85. Pfefferbaum, A., Sullivan, E. V., Hedehus, M., Adalsteinsson, E., Lim, K. O., & Moseley, M. (2000). In vivo detection and functional correlates of white matter microstructural disruption in chronic alcoholism. Alcoholism, Clinical and Experimental Research, 24, 1214–1221.PubMedCrossRefGoogle Scholar
  86. Pfefferbaum, A., Desmond, J. E., Galloway, C., Menon, V., Glover, G. H., & Sullivan, E. V. (2001). Reorganization of frontal systems used by alcoholics for spatial working memory: an fMRI study. Neuroimage, 14, 7–20.PubMedCrossRefGoogle Scholar
  87. Pfefferbaum, A., Adalsteinsson, E., & Sullivan, E. V. (2003). Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain. Journal of Magnetic Resonance Imaging, 18, 427–433.PubMedCrossRefGoogle Scholar
  88. Pfefferbaum, A., Adalsteinsson, E., & Sullivan, E. V. (2006). Supratentorial profile of white matter microstructural integrity in recovering alcoholic men and women. Biological Psychiatry, 59, 364–372.PubMedCrossRefGoogle Scholar
  89. Pfefferbaum, A., Rosenbloom, M., Rohlfing, T., & Sullivan, E. V. (2009). Degradation of association and projection white matter systems in alcoholism detected with quantitative fiber tracking. Biological Psychiatry, 65, 680–690.PubMedCrossRefGoogle Scholar
  90. Pfefferbaum, A., Rosenbloom, M. J., Fama, R., Sassoon, S. A., & Sullivan, E. V. (2010). Transcallosal white matter degradation detected with quantitative fiber tracking in alcoholic men and women: selective relations to dissociable functions. Alcoholism, Clinical and Experimental Research, 34, 1201–1211.PubMedGoogle Scholar
  91. Phillips, S. C., Harper, C. G., & Kril, J. (1987). A quantitative histological study of the cerebellar vermis in alcoholic patients. Brain, 110, 301–314.PubMedCrossRefGoogle Scholar
  92. Pierpaoli, C., Barnett, A., Pajevic, S., Chen, R., Penix, L., Virta, A., et al. (2001). Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage, 13, 1174–1185.PubMedCrossRefGoogle Scholar
  93. Rohlfing, T., Zahr, N. M., Sullivan, E. V., & Pfefferbaum, A. (2010). The SRI24 multi-channel atlas of normal adult human brain structure. Human Brain Mapping, 31, 798–819.PubMedCrossRefGoogle Scholar
  94. Schmahmann, J. (1997). The cerebellum and cognition. San Diego: Academic.Google Scholar
  95. Schmahmann, J. (2000). The role of the cerebellum in affect and psychosis. Journal of Neurolinguistics, 13, 189–214.CrossRefGoogle Scholar
  96. Schmahmann, J. D. (2010). The role of the cerebellum in cognition and emotion: Personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychology Review.Google Scholar
  97. Schmahmann, J. D., & Pandya, D. N. (1989). Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. The Journal of Comparative Neurology, 289, 53–73.PubMedCrossRefGoogle Scholar
  98. Schmahmann, J. D., & Pandya, D. N. (1997). The cerebrocerebellar system. In J. D. Schmahmann (Ed.), The cerebellum and cognition (pp. 31–60). San Diego: Academic.Google Scholar
  99. Schmahmann, J. D., & Pandya, D. N. (2008). Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex, 44, 1037–1066.PubMedCrossRefGoogle Scholar
  100. Schulte, T., Muller-Oehring, E., Rohlfing, T., Pfefferbaum, A., & Sullivan, E. V. (2010). White matter fiber degradation attenuates hemispheric asymmetry when integrating visuomotor information. Journal for Neuroscience in revision.Google Scholar
  101. Schweinsburg, B. C., Taylor, M. J., Alhassoon, O. M., Videen, J. S., Brown, G. G., Patterson, T. L., et al. (2001). Chemical pathology in brain white matter of recently detoxified alcoholics: a 1H magnetic resonance spectroscopy investigation of alcohol-associated frontal lobe injury. Alcoholism, Clinical and Experimental Research, 25, 924–934.PubMedCrossRefGoogle Scholar
  102. Schweinsburg, B. C., Alhassoon, O. M., Taylor, M. J., Gonzalez, R., Videen, J. S., Brown, G. G., et al. (2003). Effects of alcoholism and gender on brain metabolism. The American Journal of Psychiatry, 160, 1180–1183.PubMedCrossRefGoogle Scholar
  103. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27, 2349–2356.PubMedCrossRefGoogle Scholar
  104. Shear, P. K., Butters, N., Jernigan, T. L., DiTraglia, G. M., Irwin, M., Schuckit, M. A., et al. (1992). Olfactory loss in alcoholics: correlations with cortical and subcortical MRI indices. Alcohol (Fayetteville, NY), 9, 247–255.Google Scholar
  105. Shear, P. K., Jernigan, T. L., & Butters, N. (1994). Volumetric magnetic resonance imaging quantification of longitudinal brain changes in abstinent alcoholics. Alcoholism, Clinical and Experimental Research, 18, 172–176.PubMedCrossRefGoogle Scholar
  106. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31, 1487–1505.PubMedCrossRefGoogle Scholar
  107. Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage, 17, 1429–1436.PubMedCrossRefGoogle Scholar
  108. Song, S. K., Yoshino, J., Le, T. Q., Lin, S. J., Sun, S. W., Cross, A. H., et al. (2005). Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage, 26, 132–140.PubMedCrossRefGoogle Scholar
  109. Stieltjes, B., Kaufmann, W. E., van Zijl, P. C., Fredericksen, K., Pearlson, G. D., Solaiyappan, M., et al. (2001). Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage, 14, 723–735.PubMedCrossRefGoogle Scholar
  110. Stoll, A. L., Renshaw, P. F., Demicheli, E., Wurtman, R., Pillay, S. S., & Cohen, B. M. (1995). Choline ingestion increases the resonance of choline-containing compounds in human brain: an in vivo proton magnetic resonance study. Biological Psychiatry, 37, 170–174.PubMedCrossRefGoogle Scholar
  111. Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434.PubMedCrossRefGoogle Scholar
  112. Sullivan, E. V. (2000). Human brain vulnerability to alcoholism: Evidence from neuroimaging studies. In A. Noronha, M. Eckardt, & K. Warren (Eds.), Review of NIAAA’s neuroscience and behavioral research portfolio, NIAAA research monograph No. 34 (pp. 473–508). Bethesda: National Institutes of Health.Google Scholar
  113. Sullivan, E. V. (2003). Compromised pontocerebellar and cerebellothalamocortical systems: speculations on their contributions to cognitive and motor impairment in nonamnesic alcoholism. Alcoholism, Clinical and Experimental Research, 27, 1409–1419.PubMedCrossRefGoogle Scholar
  114. Sullivan, E. V., & Pfefferbaum, A. (2001). Magnetic resonance relaxometry reveals central pontine abnormalities in clinically asymptomatic alcoholic men. Alcoholism, Clinical and Experimental Research, 25, 1206–1212.PubMedCrossRefGoogle Scholar
  115. Sullivan, E. V., & Pfefferbaum, A. (2005). Neurocircuitry in alcoholism: a substrate of disruption and repair. Psychopharmacology (Berl), 180, 583–594.CrossRefGoogle Scholar
  116. Sullivan, E. V., Mathalon, D. H., Lim, K. O., Marsh, L., & Pfefferbaum, A. (1998). Patterns of regional cortical dysmorphology distinguishing schizophrenia and chronic alcoholism. Biological Psychiatry, 43, 118–131.PubMedCrossRefGoogle Scholar
  117. Sullivan, E. V., Rosenbloom, M. J., & Pfefferbaum, A. (2000). Pattern of motor and cognitive deficits in detoxified alcoholic men. Alcoholism, Clinical and Experimental Research, 24, 611–621.PubMedCrossRefGoogle Scholar
  118. Sullivan, E. V., Deshmukh, A., Desmond, J. E., Lim, K. O., & Pfefferbaum, A. (2000). Cerebellar volume decline in normal aging, alcoholism, and Korsakoff’s syndrome: Relation to ataxia. Neuropsychology, 14, 341–352.PubMedCrossRefGoogle Scholar
  119. Sullivan, E. V., Rosenbloom, M. J., Serventi, K. L., Deshmukh, A., & Pfefferbaum, A. (2003). Effects of alcohol dependence comorbidity and anti-psychotic medication on volumes of the thalamus and pons in schizophrenia. The American Journal of Psychiatry, 160, 1110–1116.PubMedCrossRefGoogle Scholar
  120. Sullivan, E. V., Rose, J., & Pfefferbaum, A. (2006). Effect of vision, touch, and stance on cerebellar vermian-related sway and tremor: a quantitative MRI and physiological study. Cerebral Cortex, 16, 1077–1086.PubMedCrossRefGoogle Scholar
  121. Sullivan, E. V., Adalsteinsson, E., & Pfefferbaum, A. (2006). Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. Cerebral Cortex, 16, 1030–1039.PubMedCrossRefGoogle Scholar
  122. Sullivan, E. V., Rohlfing, T., & Pfefferbaum, A. (2010). Pontocerebellar volume deficits and ataxia in alcoholic men and women: no evidence for “telescoping”. Psychopharmacology, 208, 279–290.PubMedCrossRefGoogle Scholar
  123. Sullivan, E. V., Harris, R. A., & Pfefferbaum, A. (2010). Alcohol’s effects on brain and behavior. Alcohol Research & Health, 33, 127–143.Google Scholar
  124. Sun, S. W., Liang, H. F., Trinkaus, K., Cross, A. H., Armstrong, R. C., & Song, S. K. (2006). Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magnetic Resonance in Medicine, 55, 302–308.PubMedCrossRefGoogle Scholar
  125. Sun, S. W., Liang, H. F., Le, T. Q., Armstrong, R. C., Cross, A. H., & Song, S. K. (2006). Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. Neuroimage, 32, 1195–1204.PubMedCrossRefGoogle Scholar
  126. Tapert, S. F., Brown, G. G., Kindermann, S. S., Cheung, E., Frank, L. R., & Brown, S. A. (2001). fMRI measurement of brain dysfunction in alcohol dependent young women. Alcoholism, Clinical and Experimental Research, 25, 236–245.PubMedCrossRefGoogle Scholar
  127. Tapert, S. F., Schweinsburg, A. D., Barlett, V. C., Brown, S. A., Frank, L. R., Brown, G. G., et al. (2004). Blood oxygen level dependent response and spatial working memory in adolescents with alcohol use disorders. Alcoholism, Clinical and Experimental Research, 28, 1577–1586.PubMedCrossRefGoogle Scholar
  128. Tedeschi, G., Bertolino, A., Righini, A., Campbell, G., Raman, R., Duyn, J. H., et al. (1995). Brain regional distribution pattern of metabolite signal intensities in young adults by proton magnetic resonance spectroscopic imaging. Neurology, 45, 1384–1391.PubMedGoogle Scholar
  129. Urenjak, J., Williams, S. R., Gadian, D. G., & Noble, M. (1993). Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. The Journal of Neuroscience, 13, 981–989.PubMedGoogle Scholar
  130. van der Graaf, M. (2010). In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. European Biophysics Journal, 39, 527–540.PubMedCrossRefGoogle Scholar
  131. Victor, M. (1987). The irrelevance of mammillary body lesions in the causation of the Korsakoff amnesic state. International Journal of Neurology, 21–22, 51–57.PubMedGoogle Scholar
  132. Victor, M., Adam, R. D., & Mancall, E. L. (1959). A restricted form of cerebellar degeneration occurring in alcoholic patients. Archives of Neurology, 1, 577–688.Google Scholar
  133. Wang, G. J., Volkow, N. D., Roque, C. T., Cestaro, V. L., Hitzemann, R. J., Cantos, E. L., et al. (1993). Functional importance of ventricular enlargement and cortical atrophy in healthy subjects and alcoholics as assessed with PET, MR imaging, and neuropsychologic testing. Radiology, 186, 59–65.PubMedGoogle Scholar
  134. Wijnia, J. W., & Goossensen, A. (2010). Cerebellar neurocognition and Korsakoff’s syndrome: an hypothesis. Medical Hypotheses, 75, 266–268.PubMedCrossRefGoogle Scholar
  135. Wilson, W. (2001). The big book, Fourth Edn.Google Scholar
  136. Witt, K., Nuhsman, A., & Deuschl, G. (2002). Dissociation of habit-learning in Parkinson’s and cerebellar disease. Journal of Cognitive Neuroscience, 14, 493–499.PubMedCrossRefGoogle Scholar
  137. Xu, D., Mori, S., Solaiyappan, M., van Zijl, P. C., & Davatzikos, C. (2002). A framework for callosal fiber distribution analysis. Neuroimage, 17, 1131–1143.PubMedCrossRefGoogle Scholar
  138. Yeh, P. H., Simpson, K., Durazzo, T. C., Gazdzinski, S., & Meyerhoff, D. J. (2009). Tract-Based Spatial Statistics (TBSS) of diffusion tensor imaging data in alcohol dependence: abnormalities of the motivational neurocircuitry. Psychiatry Research, 173, 22–30.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Natalie M. Zahr
    • 1
    • 2
  • Anne-Lise Pitel
    • 1
  • Sandra Chanraud
    • 1
    • 2
  • Edith V. Sullivan
    • 1
  1. 1.Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordUSA
  2. 2.SRI InternationalMenlo ParkUSA

Personalised recommendations