Neuropsychology Review

, Volume 20, Issue 3, pp 271–279 | Cite as

Functional Topography of the Cerebellum in Verbal Working Memory



Speech—both overt and covert—facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms.


Cerebellum Working memory fMRI Speech Addiction Cognition 


  1. Aboitiz, F., Garcia, R. R., Bosman, C., & Brunetti, E. (2006). Cortical memory mechanisms and language origins. Brain and Language, 98(1), 40–56.CrossRefPubMedGoogle Scholar
  2. Ackermann, H. (2008). Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends in Neurosciences, 31(6), 265–272.CrossRefPubMedGoogle Scholar
  3. Akkal, D., Dum, R. P., & Strick, P. L. (2007). Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(40), 10659–10673.Google Scholar
  4. Baddeley, A. (1966). Short-term memory for word sequences as a function of acoustic, semantic and formal similarity. The Quarterly Journal of Experimental Psychology, 18(4), 362–365.CrossRefPubMedGoogle Scholar
  5. Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559.CrossRefPubMedGoogle Scholar
  6. Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews. Neuroscience, 4(10), 829–839.CrossRefPubMedGoogle Scholar
  7. Baddeley, A., & Logie, R. H. (1999). Working memory: The multiple-component model. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 28–61). New York: Cambridge University Press.Google Scholar
  8. Baddeley, A., Gathercole, S., & Papagno, C. (1998). The phonological loop as a language learning device. Psychological Review, 105(1), 158–173.CrossRefPubMedGoogle Scholar
  9. Belin, P., McAdams, S., Smith, B., Savel, S., Thivard, L., Samson, S., et al. (1998). The functional anatomy of sound intensity discrimination. The Journal of Neuroscience, 18(16), 6388–6394.PubMedGoogle Scholar
  10. Belin, P., McAdams, S., Thivard, L., Smith, B., Savel, S., Zilbovicius, M., et al. (2002). The neuroanatomical substrate of sound duration discrimination. Neuropsychologia, 40(12), 1956–1964.CrossRefPubMedGoogle Scholar
  11. Bohland, J. W., & Guenther, F. H. (2006). An fmri investigation of syllable sequence production. Neuroimage, 32(2), 821–841.CrossRefPubMedGoogle Scholar
  12. Bonson, K. R., Grant, S. J., Contoreggi, C. S., Links, J. M., Metcalfe, J., Weyl, H. L., et al. (2002). Neural systems and cue-induced cocaine craving. Neuropsychopharmacology, 26(3), 376–386.CrossRefPubMedGoogle Scholar
  13. Bower, J. M. (1997). Control of sensory data acquisition. In J. D. Schmahmann (Ed.), The cerebellum and cognition, vol. 41 (pp. 490–513). San Diego: Academic.Google Scholar
  14. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the harold model. Psychology and Aging, 17(1), 85–100.CrossRefPubMedGoogle Scholar
  15. Chein, J. M., & Fiez, J. A. (2001). Dissociation of verbal working memory system components using a delayed serial recall task. Cerebral Cortex, 11(11), 1003–1014.CrossRefPubMedGoogle Scholar
  16. Chen, S. H., & Desmond, J. E. (2005a). Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage, 24(2), 332–338.CrossRefPubMedGoogle Scholar
  17. Chen, S. H., & Desmond, J. E. (2005b). Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia, 43(9), 1227–1237.CrossRefPubMedGoogle Scholar
  18. Chiricozzi, F. R., Clausi, S., Molinari, M., & Leggio, M. G. (2008). Phonological short-term store impairment after cerebellar lesion: a single case study. Neuropsychologia, 46(7), 1940–1953.CrossRefPubMedGoogle Scholar
  19. Connolly, C. G., Bell, R., Jones, J., Nierenberg, J., Hoptman, M., Butler, P., et al. (2009). Neuroimage, changes in grey matter volumes related to cocaine abstinence. Paper presented at the Organization for Human Brain Mapping 15th Annual Meeting, San Francisco, CA.Google Scholar
  20. Desmond, J. E., & Marvel, C. L. (2009). Cognition: Cerebellum role. In L. R. Squire (Ed.), Encyclopedia of neuroscience (Vol. 2, pp. 1079–1085). Oxford: Academic.CrossRefGoogle Scholar
  21. Desmond, J. E., Gabrieli, J. D., Wagner, A. D., Ginier, B. L., & Glover, G. H. (1997). Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional mri. The Journal of Neuroscience, 17(24), 9675–9685.PubMedGoogle Scholar
  22. Desmond, J. E., Chen, S. H., DeRosa, E., Pryor, M. R., Pfefferbaum, A., & Sullivan, E. V. (2003). Increased frontocerebellar activation in alcoholics during verbal working memory: an fmri study. Neuroimage, 19(4), 1510–1520.CrossRefPubMedGoogle Scholar
  23. Dimitrova, A., Zeljko, D., Schwarze, F., Maschke, M., Gerwig, M., Frings, M., et al. (2006). Probabilistic 3d mri atlas of the human cerebellar dentate/interposed nuclei. Neuroimage, 30(1), 12–25.CrossRefPubMedGoogle Scholar
  24. Dum, R. P., & Strick, P. L. (2003). An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. Journal of Neurophysiology, 89(1), 634–639.CrossRefPubMedGoogle Scholar
  25. Durisko, C., & Fiez, J. A. (2010). Functional activation in the cerebellum during working memory and simple speech tasks. Cortex, 46(7), 896–906.Google Scholar
  26. Fitzgerald, P. B., Laird, A. R., Maller, J., & Daskalakis, Z. J. (2008). A meta-analytic study of changes in brain activation in depression. Human Brain Mapping, 29(6), 683–695.CrossRefPubMedGoogle Scholar
  27. Gao, J. H., Parsons, L. M., Bower, J. M., Xiong, J., Li, J., & Fox, P. T. (1996). Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science, 272(5261), 545–547.CrossRefPubMedGoogle Scholar
  28. Garavan, H., & Hester, R. (2007). The role of cognitive control in cocaine dependence. Neuropsychology Review, 17(3), 337–345.CrossRefPubMedGoogle Scholar
  29. Gathercole, S., & Baddeley, A. (1989). Evaluation of the role of phonological stm in the development of vocabulary in children: a longitudinal study. Journal of Memory and Language, 28, 200–213.CrossRefGoogle Scholar
  30. Gathercole, S., & Baddeley, A. (1990). Phonological memory deficits in language disordered children: is there a causal connection? Journal of Memory and Language, 29, 336–360.CrossRefGoogle Scholar
  31. Ghosh, S. S., Tourville, J. A., & Guenther, F. H. (2008). A neuroimaging study of premotor lateralization and cerebellar involvement in the production of phonemes and syllables. Journal of Speech, Language, and Hearing Research, 51(5), 1183–1202.CrossRefPubMedGoogle Scholar
  32. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179.CrossRefPubMedGoogle Scholar
  33. Hayter, A. L., Langdon, D. W., & Ramnani, N. (2007). Cerebellar contributions to working memory. Neuroimage, 36(3), 943–954.CrossRefPubMedGoogle Scholar
  34. Hester, R., & Garavan, H. (2004). Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. The Journal of Neuroscience, 24(49), 11017–11022.CrossRefPubMedGoogle Scholar
  35. Ho, B. C., Mola, C., & Andreasen, N. C. (2004). Cerebellar dysfunction in neuroleptic naive schizophrenia patients: clinical, cognitive, and neuroanatomic correlates of cerebellar neurologic signs. Biological Psychiatry, 55(12), 1146–1153.CrossRefPubMedGoogle Scholar
  36. Holcomb, H. H., Medoff, D. R., Caudill, P. J., Zhao, Z., Lahti, A. C., Dannals, R. F., et al. (1998). Cerebral blood flow relationships associated with a difficult tone recognition task in trained normal volunteers. Cerebral Cortex, 8(6), 534–542.CrossRefPubMedGoogle Scholar
  37. Hoppenbrouwers, S. S., Schutter, D. J., Fitzgerald, P. B., Chen, R., & Daskalakis, Z. J. (2008). The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: a review. Brain Research Reviews, 59(1), 185–200.CrossRefPubMedGoogle Scholar
  38. Hulsmann, E., Erb, M., & Grodd, W. (2003). From will to action: sequential cerebellar contributions to voluntary movement. Neuroimage, 20(3), 1485–1492.CrossRefPubMedGoogle Scholar
  39. Justus, T., Ravizza, S. M., Fiez, J. A., & Ivry, R. B. (2005). Reduced phonological similarity effects in patients with damage to the cerebellum. Brain and Language, 95(2), 304–318.CrossRefPubMedGoogle Scholar
  40. Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. The Journal of Neuroscience, 23(23), 8432–8444.PubMedGoogle Scholar
  41. Kim, J. J., Lee, M. C., Kim, J., Kim, I. Y., Kim, S. I., Han, M. H., et al. (2001). Grey matter abnormalities in obsessive-compulsive disorder: statistical parametric mapping of segmented magnetic resonance images. The British Journal of Psychiatry, 179, 330–334.CrossRefPubMedGoogle Scholar
  42. Kirschen, M. P., Davis-Ratner, M. S., Milner, M. W., Chen, S. H., Schraedley-Desmond, P., Fisher, P. G., et al. (2008). Verbal memory impairments in children after cerebellar tumor resection. Behavioural Neurology, 20(1–2), 39–53.PubMedGoogle Scholar
  43. Krienen, F. M., & Buckner, R. L. (2009). Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebral Cortex, 19(10), 2485–2497.CrossRefPubMedGoogle Scholar
  44. Leggio, M. G., Tedesco, A. M., Chiricozzi, F. R., Clausi, S., Orsini, A., & Molinari, M. (2008). Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain, 131(Pt 5), 1332–1343.PubMedGoogle Scholar
  45. Leggio, M. G., Chiricozzi, F. R., Clausi, S., Tedesco, A. M., & Molinari, M. (in press). The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex, doi:10.1016/j.cortex.2009.08.011.
  46. Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100(4), 443–454.CrossRefPubMedGoogle Scholar
  47. Leiner, H. C., Leiner, A. L., & Dow, R. S. (1991). The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behavioural Brain Research, 44(2), 113–128.CrossRefPubMedGoogle Scholar
  48. Levy, B. A. (1971). Role of articulation in auditory and visual short-term memory. Journal of Verbal Learning and Verbal Behavior, 10, 123–132.CrossRefGoogle Scholar
  49. Marvel, C. L., & Desmond, J. E. (2010). The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex, 46(7), 880–895.CrossRefPubMedGoogle Scholar
  50. Marvel, C. L., Ellis, D. A., & Desmond, J. E. (2007). Cerebellar neural correlates of executive function: An fmri verbal working memory investigation. Paper presented at the 37th Annual Meeting of the Society for Neuroscience, San Diego.Google Scholar
  51. Marvel, C. L., Faulkner, M. L., Strain, E. C., Mintzer, M. Z., & Desmond, J. E. (2009). Brain activation patterns in heroin users as revealed by fmri during an executive verbal working memory task. Paper presented at the 39th Annual Meeting of the Society for Neuroscience. Chicago, IL.Google Scholar
  52. Matano, S. (2001). Brief communication: proportions of the ventral half of the cerebellar dentate nucleus in humans and great apes. American Journal of Physical Anthropology, 114(2), 163–165.CrossRefPubMedGoogle Scholar
  53. Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21(2), 700–712.Google Scholar
  54. Murray, D. J. (1965). The effect of white noise upon the recall of vocalized lists. Canadian Journal of Psychology, 19(4), 333–345.PubMedGoogle Scholar
  55. Murray, D. J. (1967). The role of speech responses in short-term memory. Canadian Journal of Psychology, 21(3), 263–276.PubMedGoogle Scholar
  56. O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20(4), 953–965.CrossRefPubMedGoogle Scholar
  57. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59.CrossRefPubMedGoogle Scholar
  58. Parsons, L. M., Bower, J. M., Gao, J. H., Xiong, J., Li, J., & Fox, P. T. (1997). Lateral cerebellar hemispheres actively support sensory acquisition and discrimination rather than motor control. Learning & Memory, 4(1), 49–62.CrossRefGoogle Scholar
  59. Parsons, L. M., Petacchi, A., Schmahmann, J. D., & Bower, J. M. (2009). Pitch discrimination in cerebellar patients: evidence for a sensory deficit. Brain Research, 1303, 84–96.CrossRefPubMedGoogle Scholar
  60. Rauschecker, A. M., Pringle, A., & Watkins, K. E. (2008). Changes in neural activity associated with learning to articulate novel auditory pseudowords by covert repetition. Human Brain Mapping, 29(11), 1231–1242.CrossRefPubMedGoogle Scholar
  61. Ravizza, S. M., Delgado, M. R., Chein, J. M., Becker, J. T., & Fiez, J. A. (2004). Functional dissociations within the inferior parietal cortex in verbal working memory. Neuroimage, 22(2), 562–573.CrossRefPubMedGoogle Scholar
  62. Ravizza, S. M., McCormick, C. A., Schlerf, J. E., Justus, T., Ivry, R. B., & Fiez, J. A. (2006). Cerebellar damage produces selective deficits in verbal working memory. Brain, 129(Pt 2), 306–320.PubMedGoogle Scholar
  63. Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., et al. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by pet. Journal of Cognitive Neuroscience, 12(1), 174–187.CrossRefPubMedGoogle Scholar
  64. Roelofs, A., Ozdemir, R., & Levelt, W. J. (2007). Influences of spoken word planning on speech recognition. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33(5), 900–913.CrossRefPubMedGoogle Scholar
  65. Schmahmann, J. D. (1997). Rediscovery of an early concept. In J. D. Schmahmann (Ed.), The cerebellum and cognition (Vol. 41, pp. 3–27). San Diego: Academic.Google Scholar
  66. Schmahmann, J. D., Doyon, J., McDonald, D., Holmes, C., Lavoie, K., Hurwitz, A. S., et al. (1999). Three-dimensional mri atlas of the human cerebellum in proportional stereotaxic space. Neuroimage, 10(3 Pt 1), 233–260.CrossRefPubMedGoogle Scholar
  67. Silveri, M. C., Di Betta, A. M., Filippini, V., Leggio, M. G., & Molinari, M. (1998). Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. Brain, 121(Pt 11), 2175–2187.CrossRefPubMedGoogle Scholar
  68. Sim, M. E., Lyoo, I. K., Streeter, C. C., Covell, J., Sarid-Segal, O., Ciraulo, D. A., et al. (2007). Cerebellar gray matter volume correlates with duration of cocaine use in cocaine-dependent subjects. Neuropsychopharmacology, 32(10), 2229–2237.CrossRefPubMedGoogle Scholar
  69. Spencer, K. A., & Slocomb, D. L. (2007). The neural basis of ataxic dysarthria. Cerebellum, 6(1), 58–65.CrossRefPubMedGoogle Scholar
  70. Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(736), 652–654.CrossRefPubMedGoogle Scholar
  71. Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage, 44(2), 489–501.CrossRefPubMedGoogle Scholar
  72. Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46(7), 831–844.Google Scholar
  73. Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434.CrossRefPubMedGoogle Scholar
  74. Sullivan, E. V., Deshmukh, A., Desmond, J. E., Lim, K. O., & Pfefferbaum, A. (2000). Cerebellar volume decline in normal aging, alcoholism, and korsakoff’s syndrome: relation to ataxia. Neuropsychology, 14(3), 341–352.CrossRefPubMedGoogle Scholar
  75. Tiemeier, H., Lenroot, R. K., Greenstein, D. K., Tran, L., Pierson, R., & Giedd, J. N. (2010). Cerebellum development during childhood and adolescence: a longitudinal morphometric mri study. Neuroimage, 49(1), 63–70.CrossRefPubMedGoogle Scholar
  76. Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage, 16(3 Pt 1), 765–780.CrossRefPubMedGoogle Scholar
  77. Volkow, N. D., Wang, G. J., Ma, Y., Fowler, J. S., Zhu, W., Maynard, L., et al. (2003). Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. The Journal of Neuroscience, 23(36), 11461–11468.PubMedGoogle Scholar
  78. Xiao, Z., Lee, T., Zhang, J. X., Wu, Q., Wu, R., Weng, X., et al. (2006). Thirsty heroin addicts show different fmri activations when exposed to water-related and drug-related cues. Drug and Alcohol Dependence, 83(2), 157–162.CrossRefPubMedGoogle Scholar
  79. Yuan, Y., Zhu, Z., Shi, J., Zou, Z., Yuan, F., Liu, Y., et al. (2009). Gray matter density negatively correlates with duration of heroin use in young lifetime heroin-dependent individuals. Brain and Cognition, 71(3), 223–228.CrossRefPubMedGoogle Scholar
  80. Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. Neuroimage, 13(2), 314–327.CrossRefPubMedGoogle Scholar
  81. Zago, L., Petit, L., Turbelin, M. R., Andersson, F., Vigneau, M., & Tzourio-Mazoyer, N. (2008). How verbal and spatial manipulation networks contribute to calculation: an fmri study. Neuropsychologia, 46(9), 2403–2414.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Neurology, Division of Cognitive NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations