Neuropsychology Review

, Volume 19, Issue 4, pp 504–522 | Cite as

Aging, Training, and the Brain: A Review and Future Directions

  • Cindy LustigEmail author
  • Priti Shah
  • Rachael Seidler
  • Patricia A. Reuter-Lorenz


As the population ages, the need for effective methods to maintain or even improve older adults’ cognitive performance becomes increasingly pressing. Here we provide a brief review of the major intervention approaches that have been the focus of past research with healthy older adults (strategy training, multi-modal interventions, cardiovascular exercise, and process-based training), and new approaches that incorporate neuroimaging. As outcome measures, neuroimaging data on intervention-related changes in volume, structural integrity; and functional activation can provide important insights into the nature and duration of an intervention’s effects. Perhaps even more intriguingly, several recent studies have used neuroimaging data as a guide to identify core cognitive processes that can be trained in one task with effective transfer to other tasks that share the same underlying processes. Although many open questions remain, this research has greatly increased our understanding of how to promote successful aging of cognition and the brain.


Training fmri Healthy aging Brain Neuroimaging Cardiovascular Cognitive intervention 



We thank Naftali Raz for organizing this issue, Caitlin Mallory for assistance with references, and Rena Wexelberg-Clouser and Alyse Stegman for assistance with Table 1. Cindy Lustig was supported by NIA AG029329, Rachael Seidler and Patricia Reuter-Lorenz by NIH AG024106.

Conflict of interest



  1. Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1998). The variability of the human, BOLD hemodynamic response. NeuroImage, 8, 360–369.PubMedGoogle Scholar
  2. Ashburner, J., & Friston, K. J. (2001). Why voxel-based morphometry should be used. NeuroImage, 14, 1238–1243.PubMedGoogle Scholar
  3. Backman, L., Almkvist, O., Andersson, J., Nordberg, A., Winblad, B., Reineck, R., et al. (1997). Brain activation in young and older adults during implicit and explicit retrieval. Journal of Cognitive Neuroscience, 9(3), 378–391.Google Scholar
  4. Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L., & Griggs, D. S. (1988). Age and visual-search—expanding the useful field of view. Journal of the Optical Society of America a-Optics Image Science and Vision, 5(12), 2210–2219.Google Scholar
  5. Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., et al. (2002). Effects of cognitive training interventions with older adults—a randomized controlled trial. Journal of the American Medical Association, 288(18), 2271–2281.PubMedGoogle Scholar
  6. Baltes, P. B., & Willis, S. L. (1982). Plasticity and enhancement of intellectual functioning in old age: Penn State's adult development and enrichment project (ADEPT). In F. I. M. Craik & S. Trehub (Eds.), Advances in the study of communication and affect (Vol. 8): aging and cognitive processes (pp. 353–389). New York: Plenum.Google Scholar
  7. Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23(4), 765–777.PubMedGoogle Scholar
  8. Bergerbest, D., Gabrieli, J. D. E., Whitfield-Gabrieli, S., Kim, H., Stebbins, G. T., Bennett, D. A., et al. (2009). Age-associated reduction of asymmetry in prefrontal function and preservation of conceptual repetition priming. Neuroimage, 45(1), 237–246.PubMedGoogle Scholar
  9. Bissig, D., & Lustig, C. (2007). Who benefits from memory training? Psychological Science, 18(8), 720–726.PubMedGoogle Scholar
  10. Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., & Greenough, W. T. (1990). Learning causes synaptogenesis, whereas motor-activity causes angiogenesis, in cerebellar cortex of adult-rats. Proceedings of the National Academy of Sciences of the United States of America, 87(14), 5568–5572.PubMedGoogle Scholar
  11. Bookstein, F. L. (2001). “Voxel-based morphometry” should not be used with imperfectly registered images. NeuroImage, 14, 1454–1462.PubMedGoogle Scholar
  12. Boron, J. B., Turiano, N. A., Willis, S. L., & Schaie, W. (2007). Effects of cognitive training on change in accuracy in inductive reasoning ability. Journals of Gerontology Series B-Psychological Sciences and Social Sciences, 62(3), 179–P186.Google Scholar
  13. Boyke, J., Driemeyer, J., Gaser, C., Buechel, C., & May, A. (2008). Training-induced brain structure changes in the elderly. Journal of Neuroscience, 28(28), 7031–7035.PubMedGoogle Scholar
  14. Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7351–7356.PubMedGoogle Scholar
  15. Brehmer, Y., Li, S. C., Straube, B., Stoll, G., von Oertzen, T., Mueller, V., et al. (2008). Comparing memory skill maintenance across the life span: preservation in adults, increase in children. Psychology and Aging, 23(2), 227–238.PubMedGoogle Scholar
  16. Buckner, R. L., Snyder, A. Z., Sanders, A. L., Raichle, M. E., & Morris, J. C. (2000). Functional brain imaging of young, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 12, 24–34.PubMedGoogle Scholar
  17. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17(1), 85–100.PubMedGoogle Scholar
  18. Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage, 17(3), 1394–1402.PubMedGoogle Scholar
  19. Calero, M. D., & Navarro, E. (2007). Cognitive plasticity as a modulating variable on the effects of memory training in elderly persons. Archives of Clinical Neuropsychology, 22(1), 63–72.PubMedGoogle Scholar
  20. Cappell, K. A., Gmiendl, L. & Reuter-Lorenz, P.A. (under review). Age differences in DLPFC recruitment during verbal working memory depend on memory load. Google Scholar
  21. Cassavaugh, N. D., & Kramer, A. F. (2009). Transfer of computer-based cognitive training to simulated driving in older adults. Applied Ergonomcs, 40, 943–952.Google Scholar
  22. Clark, J. E., Lanphear, A. K., & Riddick, C. C. (1987). The effects of videogame playing on the response selection processing of elderly adults. Journals of Gerontology, 42(1), 82–85.PubMedGoogle Scholar
  23. Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological Science, 14(2), 125–130.PubMedGoogle Scholar
  24. Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., et al. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 3316–3321.PubMedGoogle Scholar
  25. Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 61(11), 1166–1170.Google Scholar
  26. Craik, F. I. M., Winocur, G., Palmer, H., Binns, M. A., Edwards, M., Bridges, K., et al. (2007). Cognitive rehabilitation in the elderly: effects on memory. Journal of the International Neuropsychological Society, 13(1), 132–142.PubMedGoogle Scholar
  27. Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 1510–1512.PubMedGoogle Scholar
  28. Daselaar, S. M., Veltman, D. J., Rombouts, S., Raaijmakers, J. G. W., & Jonker, C. (2005). Aging affects both perceptual and lexical/semantic components of word stem priming: an event-related MRI study. Neurobiology of Learning and Memory, 83(3), 251–262.PubMedGoogle Scholar
  29. Denney, N. W., Jones, F. W., & Krigel, S. H. (1979). Modifying the questioning strategies of young children and elderly adults with strategy-modeling techniques. Human Development, 22, 23–36.Google Scholar
  30. Detre, J. A., Wang, J. J., Wang, Z., & Rao, H. Y. (2009). Arterial spin-labeled perfusion in MRI in basic and clinical neuroscience. Current Opinion in Neurology, 22, 348–355.PubMedGoogle Scholar
  31. Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15(2), 161–167.PubMedGoogle Scholar
  32. Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252–262.PubMedGoogle Scholar
  33. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: changes in grey matter induced by training—newly honed juggling skills show up as a transient feature on a brain-imaging scan. Nature, 427(6972), 311–312.PubMedGoogle Scholar
  34. Drew, B., & Waters, J. (1986). Video games: utilization of a novel strategy to improve perceptual motor skills and cognitive functioning in the non-institutionalized elderly. Cognitive Rehabilitation, 4, 26–31.Google Scholar
  35. Dunlosky, J., Kubat-Silman, A. K., & Hertzog, C. (2003). Training monitoring skills improves older adults' self-paced associative learning. Psychology and Aging, 18(2), 340–345.PubMedGoogle Scholar
  36. Dustman, R. E., Ruhling, R. O., Russell, E. M., Shearer, D. E., Bonekat, H. W., Shigeoka, J. W., et al. (1984). Aerobic exercise training and improved neuropsychological function of older individuals. Neurobiology of Aging, 5(1), 35–42.PubMedGoogle Scholar
  37. Dustman, R. E., Emmerson, R. Y., Steinhaus, L. A., Shearer, D. E., & Dustman, T. J. (1992). The effects of videogame playing on neuropsychological performance of elderly individuals. Journals of Gerontology, 47(3), 168–P171.Google Scholar
  38. Emery, C. F., Hauck, E. R., & Blumenthal, J. A. (1992). Exercise adherence or maintenance among older adults—1-year follow-up-study. Psychology and Aging, 7(3), 466–470.PubMedGoogle Scholar
  39. Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E., et al. (2007). Training-induced functional activation changes in dual-task processing: an fMRI study. Cerebral Cortex, 17(1), 192–204.PubMedGoogle Scholar
  40. Erickson, K. I., & Kramer, A. F. (2009). Aerobic exercise effects on cognitive and neural plasticity in older adults. British Journal of Sports Medicine, 43(1), 22–24.PubMedGoogle Scholar
  41. Etnier, J. L., & Landers, D. M. (1997). The influence of age and fitness on performance and learning. Journal of Aging and Physical Activity, 5(3), 175–189.Google Scholar
  42. Etnier, J. L., Romero, D. H., & Traustadottir, T. (2001). Acquisition and retention of motor skills as a function of age and aerobic fitness. Journal of Aging and Physical Activity, 9(4), 425–437.Google Scholar
  43. Etnier, J. L., Salazar, W., Landers, D. M., Petruzzello, S. J., Han, M., & Nowell, P. (1997). The influence of physical fitness and exercise upon cognitive functioning: a meta-analysis. Journal of Sport & Exercise Psychology, 19(3), 249–277.Google Scholar
  44. Fleischman, D. A., & Gabrieli, J. D. E. (1998). Repetition priming in normal aging and Alzheimer's disease: a review of findings and theories. Psychology and Aging, 13(1), 88–119.PubMedGoogle Scholar
  45. Fried, L. P., Carlson, M. C., Freedman, M., Frick, K. D., Glass, T. A., Hill, J., et al. (2004). A social model for health promotion for an aging population: initial evidence on the experience corps model. Journal of Urban Health-Bulletin of the New York Academy of Medicine, 81(1), 64–78.PubMedGoogle Scholar
  46. Gaser, C., & Schlaug, G. (2003). Gray matter differences between musicians and nonmusicians. Annals of the New York Academy of Sciences, 999, 514–517.PubMedGoogle Scholar
  47. Goldstein, J., Cajko, L., Oosterbroek, M., Michielsen, M., van Houten, O., & Salverda, F. (1997). Video games and the elderly. Social Behavior and Personality, 25(4), 345–352.Google Scholar
  48. Green, C. S., & Bavelier, D. (2006). Effect of action video games on the spatial distribution of visuospatial attention. Journal of Experimental Psychology-Human Perception and Performance, 32(6), 1465–1478.PubMedGoogle Scholar
  49. Green, C. S., & Bavelier, D. (2008). Exercising your brain: a review of human brain plasticity and training-induced learning. Psychology and Aging, 23(4), 692–701.PubMedGoogle Scholar
  50. Greenwood, P., & Parasuraman, R. (1991). Effects of aging on the speed and attentional cost of cognitive operations. Developmental Neuropsychology, 7(4), 421–434.CrossRefGoogle Scholar
  51. Hatzitaki, V., Voudouris, D., Nikodelis, T., & Amiridis, I. G. (2009). Visual feedback training improves postural adjustments associated with moving obstacle avoidance in elderly women. Gait & Posture, 29(2), 296–299.Google Scholar
  52. Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2009). Enrichment effects on adult cognitive development. Psychological Science in the Public Interest, 9, 1–65.Google Scholar
  53. Huettel, S. A., Singerman, J. D., & McCarthy, G. (2001). The effects of aging upon the hemodynamic response measured by functional MRI. NeuroImage, 13, 161–175.PubMedGoogle Scholar
  54. Jennings, J. M., & Jacoby, L. L. (2003). Improving memory in older adults: training recollection. Neuropsychological Rehabilitation, 13(4), 417–440.Google Scholar
  55. Jonides, J., & Nee, D. E. (2006). Brain mechanisms of proactive interference in working memory. Neuroscience, 139(1), 181–193.PubMedGoogle Scholar
  56. Karas, G. B., et al. (2003). A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. NeuroImage, 18, 895–907.PubMedGoogle Scholar
  57. Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12, 978–990.Google Scholar
  58. Kelly, A. M. C., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15(8), 1089–1102.PubMedGoogle Scholar
  59. Kennedy, K. M., Rodrigue, K. M., & Raz, N. (2007). Fragmented pictures revisited: Long-term changes in repetition priming, relation to skill learning, and the role of cognitive resources. Gerontology, 53, 148–158.PubMedGoogle Scholar
  60. Kennedy, K. M., et al. (2008). Age-related differences in regional brain volumes: a comparison of optimized voxel-based morphometry to manual morphometry. Neurobiology of Aging, 30, 1657–1676.PubMedGoogle Scholar
  61. King, J. W., & Suzman, R. (2009). Prospects for improving cognition throughout the life course. Psychological Science in the Public Interest, 9, i–iii.Google Scholar
  62. Kliegl, R., Smith, J., & Baltes, P. B. (1989). Testing-the-limits and the study of adult age-differences in cognitive plasticity of a mnemonic Skill. Developmental Psychology, 25(2), 247–256.Google Scholar
  63. Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 781–791.PubMedGoogle Scholar
  64. Kornatz, K. W., Christou, E. A., & Enoka, R. M. (2005). Practice reduces motor unit discharge variability in a hand muscle and improves manual dexterity in old adults. Journal of Applied Physiology, 98(6), 2072–2080.PubMedGoogle Scholar
  65. Kramer, A. F., Larish, J. F., & Strayer, D. L. (1995). Training for attentional control in dual-task settings—a comparison of young and old adults. Journal of Experimental Psychology-Applied, 1(1), 50–76.Google Scholar
  66. Labouvie-vief, G., & Gonda, J. N. (1976). Cognitive strategy training and intellectual-performance in elderly. Journals of Gerontology, 31(3), 327–332.PubMedGoogle Scholar
  67. Levine, B., Stuss, D. T., Winocur, G., Binns, M. A., Fahy, L., Mandic, M., et al. (2007). Cognitive rehabilitation in the elderly: effects on strategic behavior in relation to goal management. Journal of the International Neuropsychological Society, 13(1), 143–152.PubMedGoogle Scholar
  68. Littmann, A., Jens, G., Christian, B., & Stiehl, H. S. (2006). Acquisition-related morphological variability in structural MRI. Academic Radiology, 13, 1055–1061.PubMedGoogle Scholar
  69. Luders, E., Toga, A. W., Lepore, N., & Gaser, C. (2009). The underlying anatomical correlates of long-term meditation: larger hippocampal and frontal volumes of gray matter. Neuroimage, 45(3), 672–678.PubMedGoogle Scholar
  70. Lustig, C., & Buckner, R. L. (2004). Preserved neural correlates of priming in old age and dementia. Neuron, 42(5), 865–875.PubMedGoogle Scholar
  71. Lustig, C., & Flegal, K. E. (2008). Targeting latent function: encouraging effective encoding for successful memory training and transfer. Psychology and Aging, 23(4), 754–764.PubMedGoogle Scholar
  72. Maguire, E. A., Spiers, H. J., Good, C. D., Hartley, T., Frackowiak, R. S. J., & Burgess, N. (2003). Navigation expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus, 13(2), 250–259.PubMedGoogle Scholar
  73. Mahncke, H. W., Connor, B. B., Appelman, J., Ahsanuddin, O. N., Hardy, J. L., Wood, R. A., et al. (2006). Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12523–12528.PubMedGoogle Scholar
  74. Mattay, V. S., Fera, F., Tessitore, A., Hariri, A. R., Berman, K. F., Das, S., et al. (2006). Neurophysiological correlates of age-related changes in working memory capacity. Neuroscience Letters, 392(1–2), 32–37.PubMedGoogle Scholar
  75. McDowd, J. M. (1986). The effects of age and extended practice on divided attention performance. Journals of Gerontology, 41(6), 764–769.PubMedGoogle Scholar
  76. Melzer, I., Marx, R., & Kurz, I. (2009). Regular exercise in the elderly Is effective to preserve the speed of voluntary stepping under single-task condition but not under dual-task condition a case-control study. Gerontology, 55(1), 49–57.PubMedGoogle Scholar
  77. Merzenich, M. M., Jenkins, W. M., Johnston, P., Schreiner, C., Miller, S. L., & Tallal, P. (1996). Temporal processing deficits of language-learning impaired children ameliorated by training. Science, 271(5245), 77–81.PubMedGoogle Scholar
  78. Minear, M., Shah, P., Park, D. (2002). Training task-shifting skills in older adults. Poster presented at the 2002 meeting of the Cognitive Aging Conference, Atlanta, GA.Google Scholar
  79. Nelson, J. K., Reuter-Lorenz, P. A., Persson, J., Sylvester, C. Y. C., & Jonides, J. (2009). Mapping interference resolution across task domains: A shared control process in left inferior frontal gyrus. Brain Research, 1256, 92–100.PubMedGoogle Scholar
  80. Noice, H., Noice, T., & Staines, G. (2004). A short-term intervention to enhance cognitive and affective functioning in older adults. Journal of Aging and Health, 16(4), 562–585.PubMedGoogle Scholar
  81. Nyberg, L., Sandblom, J., Jones, S., Neely, A. S., Petersson, K. M., Ingvar, M., et al. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13728–13733.PubMedGoogle Scholar
  82. Pagnoni, G., & Cekic, M. (2007). Age effects on gray matter volume and attentional performance in Zen meditation. Neurobiology of Aging, 28(10), 1623–1627.PubMedGoogle Scholar
  83. Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196.PubMedGoogle Scholar
  84. Persson, J., & Reuter-Lorenz, P. A. (2008). Gaining control training executive function and far transfer of the ability to resolve interference. Psychological Science, 19(9), 881–888.PubMedGoogle Scholar
  85. Rebok, G. W., Carlson, M. C., & Langbaurn, J. B. S. (2007). Training and maintaining memory abilities in healthy older adults: traditional and novel approaches. Journals of Gerontology Series B-Psychological Sciences and Social Sciences, 62, 53–61.Google Scholar
  86. Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177–182.Google Scholar
  87. Reuter-Lorenz, P. A., & Lustig, C. (2005). Brain aging: reorganizing discoveries about the aging mind. Current Opinion in Neurobiology, 15(2), 245–251.PubMedGoogle Scholar
  88. Rodrigue, K. M., Kennedy, K. M., & Raz, N. (2005). Aging and longitudinal change in perceptual-motor skill acquisition in healthy adults. Journals of Gerontology Series B: psychological and Social Sciences, 60, P174–P181.Google Scholar
  89. Rypma, B., Berger, J. S., & D'Esposito, M. (2001). Neural mechanisms of age-related changes in human working memory. Brain and Cognition, 47(1–2), 113–116.Google Scholar
  90. Salthouse, T. A. (2006). Mental exercise and mental aging: evaluating the validity of the “use it or lose it” hypothesis. Perspectives on Psychological Science, 1, 68–87.Google Scholar
  91. Salthouse, T. A., & Somberg, B. L. (1982). Skilled performance—effects of adult age and experience on elementary processes. Journal of Experimental Psychology-General, 111(2), 176–207.Google Scholar
  92. Scalf, P. E., Banich, M. T., Kramer, A. F., Narechania, K., & Simon, C. D. (2007). Double take: parallel processing by the cerebral hemispheres reduces the attentional blink. Journal of Experimental Psychology-Human Perception and Performance, 33(2), 298–329.PubMedGoogle Scholar
  93. Schaie, K. W., & Willis, S. L. (1986). Can decline in adult intellectual-functioning be reversed. Developmental Psychology, 22(2), 223–232.Google Scholar
  94. Schneider-Garcas Gordon, B. A., Brumback-Peltz, C. R., Shin, E., Lee, Y.,Sutton, B. P., Maclin, E. L., et al. (2009). Span and beyond: Working memory capacity and aging. Journal of Cognitive Neuroscience. doi: 10.1162/jocn.2009.21230
  95. Seidler, R. D. (2004). Multiple motor learning experiences enhance motor adaptability. Journal of Cognitive Neuroscience, 16(1), 65–73.PubMedGoogle Scholar
  96. Seidler, R. D. (2006). Differential effects of age on sequence learning and sensorimotor adaptation. Brain Research Bulletin, 70(4–6), 337–346.PubMedGoogle Scholar
  97. Seidler, R. D. (2007a). Aging affects motor learning but not savings at transfer of learning. Learning & Memory, 14(1–2), 17–21.Google Scholar
  98. Seidler, R. D. (2007b). Older adults can learn to learn new motor skills. Behavioural Brain Research, 183(1), 118–122.PubMedGoogle Scholar
  99. Seidler, R. D., & Martin, P. E. (1997). The effects of short term balance training on the postural control of older adults. Gait & Posture, 6(3), 224–236.Google Scholar
  100. Silsupadol, P., Lugade, V., Shumway-Cook, A., van Donkelaar, P., Chou, L. S., Mayr, U., et al. (2009). Training-related changes in dual-task walking performance of elderly persons with balance impairment: a double-blind, randomized controlled trial. Gait & Posture, 29(4), 634–639.Google Scholar
  101. Silsupadol, P., Shumway-Cook, A., Lugade, V., van Donkelaar, P., Chou, L. S., Mayr, U., et al. (2009). Effects of single-task versus dual-task training on balance performance in older adults: a double-blind, randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 90(3), 381–387.PubMedGoogle Scholar
  102. Soldan, A., Gazes, Y., Hilton, H. J., & Stern, Y. (2008). Aging does not affect brain patterns of repetition effects associated with perceptual priming of novel objects. Journal of Cognitive Neuroscience, 20(10), 1762–1776.PubMedGoogle Scholar
  103. Spirduso, W. W., & Clifford, P. (1978). Replication of age and physical-activity effects on reaction and movement time. Journals of Gerontology, 33(1), 26–30.PubMedGoogle Scholar
  104. Stine-Morrow, E. A. L., Parisi, J. M., Morrow, D. G., & Park, D. C. (2008). The effects of an engaged lifestyle on cognitive vitality: a field experiment. Psychology and Aging, 23(4), 778–786.PubMedGoogle Scholar
  105. Stuss, D. T., Robertson, I. H., Craik, F. I. M., Levine, B., Alexander, M. P., Black, S., et al. (2007). Cognitive rehabilitation in the elderly: a randomized trial to evaluate a new protocol. Journal of the International Neuropsychological Society, 13(1), 120–131.PubMedGoogle Scholar
  106. Swain, R. A., Harris, A. B., Wiener, E. C., Dutka, M. V., Morris, H. D., Theien, B. E., et al. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117(4), 1037–1046.PubMedGoogle Scholar
  107. Tisserand, D. J., et al. (2002). Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. NeuroImage, 17, 657–669.PubMedGoogle Scholar
  108. Tranter, L. J., & Koutstaal, W. (2008). Age and flexible thinking: an experimental demonstration of the beneficial effects of increased cognitively stimulating activity on fluid intelligence in healthy older adults. Aging Neuropsychology and Cognition, 15(2), 184–207.Google Scholar
  109. van Hooren, S. A. H., Valentijn, S. A. M., Bosma, H., Ponds, R., van Boxtel, M. P. J., Levine, B., et al. (2007). Effect of a structured course involving goal management training in older adults: a randomized controlled trial. Patient Education and Counseling, 65(2), 205–213.PubMedGoogle Scholar
  110. van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96(23), 13427–13431.PubMedGoogle Scholar
  111. van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2(3), 266–270.PubMedGoogle Scholar
  112. van Praag, H., Shubert, T., Zhao, C. M., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25(38), 8680–8685.PubMedGoogle Scholar
  113. Verhaeghen, P., Marcoen, A., & Goossens, L. (1992). Improving memory performance in the aged through mnemonic training—a meta-analytic study. Psychology and Aging, 7(2), 242–251.PubMedGoogle Scholar
  114. Wiggs, C. L., Weisberg, J., & Martin, A. (2006). Repetition priming across the adult lifespan—the long and short of it. Aging Neuropsychology and Cognition, 13(3–4), 308–325.Google Scholar
  115. Willis, S. L., & Schaie, K. W. (1985). Cognitive training in a longitudinal sample. Gerontologist, 25, 10–10.Google Scholar
  116. Willis, S. L., & Nesselroade, C. S. (1990). Long-term effects of fluid ability training in old-old age. Developmental Psychology, 26(6), 905–910.Google Scholar
  117. Willis, S. L., Tennstedt, S. L., Marsiske, M., Ball, K., Elias, J., Koepke, K. M., et al. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. Journal of the American Medical Association, 296(23), 2805–2814.PubMedGoogle Scholar
  118. Winocur, G., Craik, F. I. M., Levine, B., Robertson, I. H., Binns, M. A., Alexander, M., et al. (2007). Cognitive rehabilitation in the elderly: overview and future directions. Journal of the International Neuropsychological Society, 13(1), 166–171.PubMedGoogle Scholar
  119. Winocur, G., Palmer, H., Dawson, D., Binns, M. A., Bridges, K., & Stuss, D. T. (2007). Cognitive rehabilitation in the elderly: an evaluation of psychosocial factors. Journal of the International Neuropsychological Society, 13(1), 153–165.PubMedGoogle Scholar
  120. Yaffe, K., Fiocco, A. J., Lindquist, K., Vittinghof, E., Simonsock, E. M., Newman, A. B., et al. (2009). Predictors of maintaining cognitive function in older adults: the Health ABC study. Neurology, 72, 2029–2035.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Cindy Lustig
    • 1
    Email author
  • Priti Shah
    • 2
  • Rachael Seidler
    • 3
  • Patricia A. Reuter-Lorenz
    • 1
  1. 1.Department of PsychologyUniversity of MichiganAnn ArborUSA
  2. 2.Departments of Psychology and Combined Program in Education and PsychologyUniversity of MichiganAnn ArborUSA
  3. 3.Department of Psychology and School of KinesiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations