Neuropsychology Review

, 19:436 | Cite as

Beta-Amyloid Deposition and the Aging Brain

  • Karen M. Rodrigue
  • Kristen M. Kennedy
  • Denise C. Park
Review

Abstract

A central issue in cognitive neuroscience of aging research is pinpointing precise neural mechanisms that determine cognitive outcome in late adulthood as well as identifying early markers of less successful cognitive aging. One promising biomarker is beta amyloid (Aβ) deposition. Several new radiotracers have been developed that bind to fibrillar Aβ providing sensitive estimates of amyloid deposition in various brain regions. Aβ imaging has been primarily used to study patients with Alzheimer’s Disease (AD) and individuals with Mild Cognitive Impairment (MCI); however, there is now building data on Aβ deposition in healthy controls that suggest at least 20% and perhaps as much as a third of healthy older adults show significant deposition. Considerable evidence suggests amyloid deposition precedes declines in cognition and may be the initiator in a cascade of events that indirectly leads to age-related cognitive decline. We review studies of Aβ deposition imaging in AD, MCI, and normal adults, its cognitive consequences, and the role of genetic risk and cognitive reserve.

Keywords

Aging Beta-amyloid Brain Cognitive reserve fMRI PET 

References

  1. Aizenstein, H. J., Nebes, R. D., Saxton, J. A., Price, J. C., Mathis, C. A., Tsopelas, N. D., et al. (2008). Frequent amyloid deposition without significant cognitive impairment among the elderly. Archives of Neurology, 65, 1509–1517.CrossRefPubMedGoogle Scholar
  2. Andreasen, N., Minthon, L., Vanmechelen, E., Vanderstichele, H., Davidsson, P., Winblad, B., et al. (1999). Cerebrospinal fluid tau and Abeta42 as predictors of development of Alzheimer’s disease in patients with mild cognitive impairment. Neuroscience Letters, 273, 5–8.CrossRefPubMedGoogle Scholar
  3. Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56, 924–935.CrossRefPubMedGoogle Scholar
  4. Bennett, D. A., Schneider, J. A., Arvanitakis, Z., Kelly, J. F., Aggarwal, N. T., Shah, R. C., et al. (2006). Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology, 66, 1837–1844.CrossRefPubMedGoogle Scholar
  5. Bourgeat, P., Villemagne, V.L., Fripp, J., Pike, K.E., Raniga, P., Acosta, O., et al. (2009). Relation between amyloid burden, brain atrophy and memory in Alzheimer’s disease. Alzheimer’s Association 2009 International Conference on Alzheimer’s Disease (ICAD 2009), July.Google Scholar
  6. Braak, H., & Braak, E. (1996). Evolution of the neuropathology of Alzheimer’s disease. Acta Neurologica Scandinavica, 165, 3–12.Google Scholar
  7. Braskie, M.N., Klunder, A.D., Hayashi, K.M., Protas, H., Kepe, V., Miller, K. J., et al. (2008). Plaque and tangle imaging and cognition in normal aging and Alzheimer’s disease. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2008.09.012.
  8. Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., Fotenos, A. F., et al. (2005). Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. Journal of Neuroscience, 25, 7709–7717.CrossRefPubMedGoogle Scholar
  9. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.CrossRefPubMedGoogle Scholar
  10. Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. Journal of Neuroscience, 29, 1860–1873.CrossRefPubMedGoogle Scholar
  11. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921–923.CrossRefPubMedGoogle Scholar
  12. Dickerson, B. C., Bakkour, A., Salat, D. H., Feczko, E., Pacheco, J., Greve, D. N., et al. (2009). The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cerebral Cortex, 19, 497–510.CrossRefPubMedGoogle Scholar
  13. Dickson, D. W., Crystal, H. A., Mattiace, L. A., Masur, D. M., Blau, A. D., Davies, P., et al. (1992). Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiology of Aging, 13, 179–189.CrossRefPubMedGoogle Scholar
  14. Diniz, B. S., Pinto, J. A., & Forlenza, O. V. (2008). Do CSF total tau, phosphorylated tau, and beta-amyloid 42 help to predict progression of mild cognitive impairment to Alzheimer’s disease? A systematic review and meta-analysis of the literature. World Journal of Biological Psychiatry, 9, 172–182.CrossRefPubMedGoogle Scholar
  15. Drzezga, A., Grimmer, T., Henriksen, G., Mühlau, M., Perneczky, R., Miederer, I., et al. (2009). Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology, 72, 1487–1494.CrossRefPubMedGoogle Scholar
  16. Edison, P., Archer, H. A., Hinz, R., Hammers, A., Pavese, N., Tai, Y. F., et al. (2007). Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology, 68, 501–508.CrossRefPubMedGoogle Scholar
  17. Farlow, M. R., He, Y., Tekin, S., Xu, J., Lane, R., & Charles, H. C. (2004). Impact of APOE in mild cognitive impairment. Neurology, 63, 1898–1901.PubMedGoogle Scholar
  18. Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., et al. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease meta analysis consortium. Journal of the American Medical Association, 278, 1349–1356.CrossRefPubMedGoogle Scholar
  19. Forsberg, A., Engler, H., Almkvist, O., Blomquist, G., Hagman, G., Wall, A., et al. (2008). PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiology of Aging, 29, 1456–1465.CrossRefPubMedGoogle Scholar
  20. Fotenos, A. F., Mintun, M. A., Snyder, A. Z., Morris, J. C., & Buckner, R. L. (2008). Brain volume decline in aging: evidence for a relation between socioeconomic status, preclinical Alzheimer disease, and reserve. Archives of Neurology, 65, 113–120.CrossRefPubMedGoogle Scholar
  21. Fripp, J., Bourgeat, P., Acosta, O., Raniga, P., Modat, M., Pike, K. E., et al. (2008). Appearance modeling of 11C PiB PET images: characterizing amyloid deposition in Alzheimer’s disease, mild cognitive impairment and healthy aging. Neuroimage, 43, 430–439.CrossRefPubMedGoogle Scholar
  22. Ghisletta, P., & Lindenberger, U. (2003). Age-based structural dynamics between perceptual speed and knowledge in the Berlin aging study: direct evidence for ability dedifferentiation in old age. Psychology and Aging, 18, 696–713.CrossRefPubMedGoogle Scholar
  23. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258.CrossRefPubMedGoogle Scholar
  24. Grimmer, T., Riemenschneider, M., Förstl, H., Henriksen, G., Klunk, W. E., Mathis, C. A., et al. (2009). Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biological Psychiatry, 65, 927–934.CrossRefPubMedGoogle Scholar
  25. Grundman, M., Sencakova, D., Jack, C. R., Jr., Petersen, R. C., Kim, H. T., Schultz, A., et al. (2002). Brain MRI hippocampal volume and prediction of clinical status in a mild cognitive impairment trial. Journal of Molecular Neuroscience, 19, 23–27.CrossRefPubMedGoogle Scholar
  26. Gutchess, A. H., Welsh, R. C., Hedden, T., Bangert, A., Minear, M., Liu, L. L., et al. (2005). Aging and the neural correlates of successful picture encoding: frontal activations compensate for decreased medial-temporal activity. Journal of Cognitive Neuroscience, 17, 84–96.CrossRefPubMedGoogle Scholar
  27. Hedden, T., & Gabrieli, J. D. E. (2004). Insights into the ageing mind: a view from cognitive neuroscience. Nature Reviews Neuroscience, 5, 87–97.CrossRefPubMedGoogle Scholar
  28. Ichise, M., Plett, S., Joshi, A., Stern, Y., van Heertum, R., Lowe, V., et al. (2008). Quantitative comparison of three novel 18F-labeled ligands for PET imaging of brain amyloid-β plaques in Alzheimer’s disease. Journal of Nuclear Medicine, 49, 214.Google Scholar
  29. Ingelsson, M., Fukumoto, H., Newell, K. L., Growdon, J. H., Hedley-Whyte, E. T., Frosch, M. P., et al. (2004). Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology, 62, 925–931.PubMedGoogle Scholar
  30. Jack, C. R., Lowe, V. J., Senjem, M. L., Weigand, S. D., Kemp, B. J., Shiung, M. M., et al. (2008). 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain, 131, 665–680.CrossRefPubMedGoogle Scholar
  31. Jack, C. R., Jr., Lowe, V. J., Weigand, S. D., Wiste, H. J., Senjem, M. L., Knopman, D. S., et al. (2009). Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain, 132, 1355–1365.CrossRefPubMedGoogle Scholar
  32. Jagust, W. (2009a). Mapping brain beta-amyloid. Current Opinion in Neurology, 22, 356–361.CrossRefPubMedGoogle Scholar
  33. Jagust, W. (2009b). Amyloid + activation = Alzheimer’s? Neuron, 63, 141–143.CrossRefPubMedGoogle Scholar
  34. Jiang, Q., Lee, C. Y., Mandrekar, S., Wilkinson, B., Cramer, P., Zelcer, N., et al. (2008). ApoE promotes the proteolytic degradation of Abeta. Neuron, 58, 681–693.CrossRefPubMedGoogle Scholar
  35. Josephs, K. A., Whitwell, J. L., Ahmed, Z., Shiung, M. M., Weigand, S. D., Knopman, D. S., et al. (2008). Beta-amyloid burden is not associated with rates of brain atrophy. Annals of Neurology, 63, 204–212.CrossRefPubMedGoogle Scholar
  36. Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., et al. (2003). APP processing and synaptic function. Neuron, 37, 925–937.CrossRefPubMedGoogle Scholar
  37. Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., et al. (1988). Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23, 138–144.CrossRefPubMedGoogle Scholar
  38. Kemppainen, N. M., Aalto, S., Wilson, I. A., Någren, K., Helin, S., Brück, A., et al. (2006). Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology, 67, 1575–1580.CrossRefPubMedGoogle Scholar
  39. Kemppainen, N. M., Aalto, S., Wilson, I. A., Någren, K., Helin, S., Brück, A., et al. (2007). PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology, 68, 1603–1606.CrossRefPubMedGoogle Scholar
  40. Kemppainen, N. M., Aalto, S., Karrasch, M., Någren, K., Savisto, N., Oikonen, V., et al. (2008). Cognitive reserve hypothesis: Pittsburgh Compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild Alzheimer’s disease. Annals of Neurology, 63, 112–118.CrossRefPubMedGoogle Scholar
  41. Klunk, W. E., & Mathis, C. A. (2008). The future of amyloid-beta imaging: a tale of radionuclides and tracer proliferation. Current Opinion in Neurology, 21, 683–687.CrossRefPubMedGoogle Scholar
  42. Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., et al. (2004). Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Annals of Neurology, 55, 306–319.CrossRefPubMedGoogle Scholar
  43. Li, Y., Rinne, J. O., Mosconi, L., Pirraglia, E., Rusinek, H., DeSanti, S., et al. (2008). Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 35, 2169–2181.CrossRefPubMedGoogle Scholar
  44. Linazasoro, G. (2008). Imaging beta-amyloid burden in aging and dementia. Neurology, 70, 1649–1650.CrossRefPubMedGoogle Scholar
  45. Lopresti, B. J., Klunk, W. E., Mathis, C. A., Hoge, J. A., Ziolko, S. K., Lu, X., et al. (2005). Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. Journal of Nuclear Medicine, 46, 1959–1972.PubMedGoogle Scholar
  46. Mintun, M. A., Larossa, G. N., Sheline, Y. I., Dence, C. S., Lee, S. Y., Mach, R. H., et al. (2006). [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology, 67, 446–452.CrossRefPubMedGoogle Scholar
  47. Mormino, E. C., Kluth, J. T., Madison, C. M., Rabinovici, G. D., Baker, S. L., Miller, B. L., et al. (2009). Episodic memory loss is related to hippocampal-mediated {beta}-amyloid deposition in elderly subjects. Brain, 132, 1310–1323.CrossRefPubMedGoogle Scholar
  48. Morris, J. C., Roe, C. M., & Mintun, M. A. (2009). APOE status predicts PiB-positivity in nondemented aging: evidence for Preclinical Alzheimer’s disease. Neurology, 72, A92.CrossRefGoogle Scholar
  49. Nelissen, N., Vandenbulcke, M., Fannes, K., Verbruggen, A., Peeters, R., Dupont, P., et al. (2007). Abeta amyloid deposition in the language system and how the brain responds. Brain, 130, 2055–2069.CrossRefPubMedGoogle Scholar
  50. Nitsch, R. M., Farber, S. A., Growdon, J. H., & Wurtman, R. J. (1993). Release of amyloid beta-protein precursor derivatives by electrical depolarization of rat hippocampal slices. Proceedings of the National Academy of Sciences, 90, 5191–5193.CrossRefGoogle Scholar
  51. Nordberg, A. (2008). Amyloid imaging in Alzheimer’s disease. Neuropsychologia, 46, 1636–1641.CrossRefPubMedGoogle Scholar
  52. Nordlund, A., Rolstad, S., Klang, O., Lind, K., Pedersen, M., Blennow, K., et al. (2008). Episodic memory and speed/attention deficits are associated with Alzheimer-typical CSF abnormalities in MCI. Journal of the International Neuropsychological Society, 14, 582–590.CrossRefPubMedGoogle Scholar
  53. Park, D. C., & Goh, J. O. (2009). Successful aging. In J. Cacioppo & G. Berntson (Eds.), Handbook of Cognitive Neuroscience for the Behavioral Sciences, Ch. 61 (pp. 1203–1219). Hoboken: Wiley.Google Scholar
  54. Park, D. C., & Reuter-Lorenz, P. A. (2009). The adaptive brain: aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196.CrossRefPubMedGoogle Scholar
  55. Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17, 299–320.CrossRefPubMedGoogle Scholar
  56. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56, 303–308.CrossRefPubMedGoogle Scholar
  57. Pike, K. E., Savage, G., Villemagne, V. L., Ng, S., Moss, S. A., Maruff, P., et al. (2007). Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain, 130, 2837–2844.CrossRefPubMedGoogle Scholar
  58. Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: patterns, cognitive correlates and modifiers. Neuroscience & Biobehavioral Reviews, 30, 730–748.CrossRefGoogle Scholar
  59. Raz, N., & Kennedy, K. M. (2009). A systems approach to age-related change: Neuroanatomical changes, their modifiers, and cognitive correlates. In W. Jagust & M. D’Esposito (Eds.), Imaging the aging brain, Ch 4 (pp. 43–70). Oxford UP: NYC.Google Scholar
  60. Reiman, E. M., Chen, K., Liu, X., Bandy, D., Yu, M., Lee, W., et al. (2009). Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences, 106, 6820–6825.CrossRefGoogle Scholar
  61. Rodrigue, K. M., & Raz, N. (2004). Shrinkage of the entorhinal cortex over five years predicts memory performance in healthy adults. Journal of Neuroscience, 24, 956–963.CrossRefPubMedGoogle Scholar
  62. Rolstad, S., Nordlund, A., Eckerström, C., Gustavsson, M. H., Zetterberg, H., & Wallin, A. (2009). Biomarkers in relation to cognitive reserve in patients with mild cognitive impairment—proof of concept. Dementia and Geriatric Cognitive Disorders, 27, 194–200.CrossRefPubMedGoogle Scholar
  63. Rowe, C. C., Ng, S., Ackermann, U., Gong, S. J., Pike, K., Savage, G., et al. (2007). Imaging beta-amyloid burden in aging and dementia. Neurology, 68, 1718–1725.CrossRefPubMedGoogle Scholar
  64. Rowe, C. C., Ackerman, U., Browne, W., Mulligan, R., Pike, K. L., O’Keefe, G., et al. (2008). Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurology, 7, 129–135.CrossRefPubMedGoogle Scholar
  65. Samuels, S. C., Silverman, J. M., Marin, D. B., Peskind, E. R., Younki, S. G., Greenberg, D. A., et al. (1999). CSF beta-amyloid, cognition, and APOE genotype in Alzheimer’s disease. Neurology, 52, 547–551.PubMedGoogle Scholar
  66. Scheinin, N.M., Aalto, S., Koikkalainen, J., Lötjönen, J., Karrasch, M., Kemppainen, N., et al. (2009). Follow-up of [11C]PIB uptake and brain volume in patients with Alzheimer disease and controls. Neurology, 73, 1186–1192.Google Scholar
  67. Schmidt, M. L., Lee, V. M., & Trojanowski, J. Q. (1990). Relative abundance of tau and neurofilament epitopes in hippocampal neurofibrillary tangles. American Journal of Pathology, 136, 1069–1075.Google Scholar
  68. Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298, 789–791.CrossRefPubMedGoogle Scholar
  69. Shoghi-Jadid, K., Small, G. W., Agdeppa, E. D., Kepe, V., Ercoli, L. M., Siddarth, P., et al. (2002). Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. American Journal of Geriatric Psychiatry, 10, 24–35.PubMedGoogle Scholar
  70. Skovronsky, D. (2008). Use of eINDs for evaluation of multiple related PET amyloid plaque imaging agents. Journal of Nuclear Medicine, 49, 47N–48N.PubMedGoogle Scholar
  71. Skovronsky, D., Coleman, R. E., Frey, K., Garg, P., Ichise, M., Lowe, V., et al. (2008). Results of multi-center clinical trials comparing four 18F PET amyloid-imaging agents: preclinical to clinical correlations. Journal of Nuclear Medicine Meeting Abstracts, 49(1), 34P.Google Scholar
  72. Small, G. W., Kepe, V., Ercoli, L. M., Siddarth, P., Bookheimer, S. Y., Miller, K. J., et al. (2006). PET of brain amyloid and tau in mild cognitive impairment. New England Journal of Medicine, 355, 2652–2663.CrossRefPubMedGoogle Scholar
  73. Small, G. W., Bookheimer, S. Y., Thompson, P. M., Cole, G. M., Huang, S., Kepe, V., et al. (2008). Current and future uses of neuroimaging for cognitively impaired patients. Lancet Neurology, 7, 161–172.CrossRefPubMedGoogle Scholar
  74. Small, G. W., Siddarth, P., Burggren, A. C., Kepe, V., Ercoli, L. M., Miller, K. J., et al. (2009). Influence of cognitive status, age, and APOE-4 genetic risk on brain FDDNP positron-emission tomography imaging in persons without dementia. Archives of General Psychiatry, 66, 81–87.CrossRefPubMedGoogle Scholar
  75. Sperling, R. A., Laviolette, P. S., O’Keefe, K., O’Brien, J., Rentz, D. M., Pihlajamaki, M., et al. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 63, 178–188.CrossRefPubMedGoogle Scholar
  76. Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448–460.CrossRefPubMedGoogle Scholar
  77. Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 2015–2028.CrossRefPubMedGoogle Scholar
  78. Strozyk, D., Blennow, K., White, L. R., & Launer, L. J. (2003). CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology, 60, 652–656.PubMedGoogle Scholar
  79. Tapiola, T., Pirttilä, T., Mikkonen, M., Mehta, P. D., Alafuzoff, I., Koivisto, K., et al. (2000). Three-year follow-up of cerebrospinal fluid tau, beta-amyloid 42 and 40 concentrations in Alzheimer’s disease. Neuroscience Letters, 280, 119–122.CrossRefPubMedGoogle Scholar
  80. Thal, D.R., Capetillo-Zarate, E., Del Tredici, K., & Braak, H. (2006). The development of amyloid beta protein deposits in the aged brain. Science of Aging Knowledge Environment: SAGE KE, 2006(6), re1.Google Scholar
  81. Tolboom, N., Yaqub, M., van der Flier, W. M., Boellaard, R., Luurtsema, G., Windhorst, A. D., et al. (2009a). Detection of Alzheimer pathology in vivo using both 11C-PIB and 18F-FDDNP PET. Journal of Nuclear Medicine, 50, 191–197.CrossRefPubMedGoogle Scholar
  82. Tolboom, N., Yaqub, M., Boellaard, R., Luurtsema, G., Windhorst, A.D., Scheltens, P., et al. (2009b). Test-retest variability of quantitative [(11)C]PIB studies in Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 36, 1629–1638.Google Scholar
  83. Villemagne, V. L., Pike, K. E., Darby, D., Maruff, P., Savage, G., Ng, S., et al. (2008). Abeta deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer’s disease. Neuropsychologia, 46, 1688–1697.CrossRefPubMedGoogle Scholar
  84. Wahlund, L. O., & Blennow, K. (2003). Cerebrospinal fluid biomarkers for disease stage and intensity in cognitively impaired patients. Neuroscience Letters, 339, 99–102.CrossRefPubMedGoogle Scholar
  85. Wishart, H. A., Saykin, A. J., McAllister, T. W., Rabin, L. A., McDonald, B. C., Flashman, L. A., et al. (2006). Regional brain atrophy in cognitively intact adults with a single APOE epsilon4 allele. Neurology, 67, 1221–1224.CrossRefPubMedGoogle Scholar
  86. Wong, D., Rosenberg, P., Zhou, Y., Kumar, A., Ravert, H., Brasic, J., et al. (2008). In vivo imaging of amyloid deposition in Alzheimer’s disease using the novel radioligand [18F] AV-45. Journal of Nuclear Medicine Meeting Abstracts, 49(1), 214P.Google Scholar
  87. Zhang, W., Kung, M., Oya, S., Hou, C., & Kung, H. F. (2007). 18F-labeled styrylpyridines as PET agents for amyloid plaque imaging. Nuclear Medicine and Biology, 34, 89–97.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Karen M. Rodrigue
    • 1
  • Kristen M. Kennedy
    • 1
  • Denise C. Park
    • 1
  1. 1.Center for BrainHealth, School of Behavioral and Brain SciencesThe University of Texas at DallasDallasUSA

Personalised recommendations