Neuropsychology Review

, Volume 19, Issue 4, pp 490–503 | Cite as

Implicit Learning in Aging: Extant Patterns and New Directions

  • Anna Rieckmann
  • Lars Bäckman


Research suggests that the striatum plays an important role in implicit learning (IL). The striatum exhibits marked age-related morphological and neurochemical losses. Yet, behavioral studies suggest that IL is generally well preserved in old age, and that age-related differences emerge only when highly complex IL tasks are used. In this review, we integrate behavioral and neuroimaging evidence on IL in aging. We suggest that relative stability of IL in old age may reflect neural reorganization that compensates for age-related losses in striatal functions. Specifically, there may be an age-related increase in reliance on extrastriatal regions (e.g., medial-temporal, frontal) during IL. This reorganization of function may be beneficial under less taxing performance conditions, but not when task demands become more challenging.


Aging Compensation Implicit learning Neural underpinnings 



Preparation of this article was supported by grants from the Swedish Research Council and Swedish Brain Power, and an Alexander von Humboldt Research Award to Lars Bäckman, and a studentship from the Leverhulme Trust to Anna Rieckmann.


  1. Aizenstein, H. J., Butters, M. A., Clark, K. A., Figurski, J. L., Stenger, V. A., Nebes, R. D., et al. (2005). Prefrontal and striatal activation in elderly subjects during concurrent implicit and explicit sequence learning. Neurobiology of Aging, 27, 741–751.PubMedCrossRefGoogle Scholar
  2. Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., Dang-Vu, T., et al. (2008). Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron, 58, 261–272.PubMedCrossRefGoogle Scholar
  3. Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Progress in Brain Research, 85, 119–146.PubMedCrossRefGoogle Scholar
  4. Allen, J. S., Bruss, J., Brown, C. K., & Damasio, H. (2005). Neurobiology of Aging, 26, 1245–1260.PubMedCrossRefGoogle Scholar
  5. Atallah, H. E., Lopez-Paniagua, D., Rudy, J. W., & O’Reilly, R. C. (2007). Separate neural substrates for skill learning and performance in the ventral and dorsal striatum. Nature Neuroscience, 10, 126–131.PubMedCrossRefGoogle Scholar
  6. Bäckman, L., Almkvist, O., Andersson, J., Nordberg, A., Winblad, B., Reineck, R., et al. (1997). Brain activation in young and older adults during implicit and explicit retrieval. Journal of Cognitive Neuroscience, 9, 378–391.CrossRefGoogle Scholar
  7. Bäckman, L., Almkvist, O., Nyberg, L., & Andersson, J. (2000). Functional changes in brain activity during priming in Alzheimer’s disease. Journal of Cognitive Neuroscience, 12, 134–141.PubMedCrossRefGoogle Scholar
  8. Bäckman, L., & Dixon, R. A. (1992). Psychological compensation: a theoretical framework. Psychological Bulletin, 112, 259–283.PubMedCrossRefGoogle Scholar
  9. Bäckman, L., Lindenberger, U., Li, S.C., & Nyberg, L. (in press). Linking cognitive aging to alterations in dopaminergic neurotransmitter functioning: Recent data and future avenues. Neuroscience and Biobehavioral Reviews. Google Scholar
  10. Bäckman, L., Nyberg, L., Lindenberger, U., Li, S. C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neuroscience and Biobehavioral Reviews, 30, 791–807.PubMedCrossRefGoogle Scholar
  11. Bäckman, L., Small, B. J., & Wahlin, Å. (2001). Aging and memory: Cognitive and biological perspectives. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (5th ed., pp. 349–377). San Diego, CA: Academic.Google Scholar
  12. Beauchamp, M. H., Dagher, A., Panisset, M., & Doyon, J. (2008). Neural substrates of cognitive skill learning in Parkinson’s disease. Brain and Cognition, 68, 134–143.PubMedCrossRefGoogle Scholar
  13. Bennett, I. J., Howard, J. H., Jr., & Howard, D. (2007). Age-Related differences in implicit learning of subtle third-order sequential structure. Journal of Gerontology: Psychological Sciences, 62B, 98–103.Google Scholar
  14. Berry, D. C. (1997). How implicit is implicit learning? Oxford: Oxford University Press.Google Scholar
  15. Berry, D. C., & Dienes, Z. (1993). Implicit learning: Theoretical and empirical issues. Hove, UK: Lawrence Erlbaum Associates.Google Scholar
  16. Brooks, D. N., & Baddeley, A. D. (1976). What can amnesic patients learn? Neuropsychologia, 14, 111–122.PubMedCrossRefGoogle Scholar
  17. Cabeza, R. (2001). Cognitive neuroscience of aging: contributions of functional neuroimaging. Scandinavian Journal of Psychology, 42, 277–286.PubMedCrossRefGoogle Scholar
  18. Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage, 17, 1394–1402.PubMedCrossRefGoogle Scholar
  19. Chang, Q., & Gold, P. E. (2003). Switching memory systems during learning: changes in patterns of brain acetylcholine release in the hippocampus and striatum in rats. The Journal of Neuroscience, 23, 3001–3005.PubMedGoogle Scholar
  20. Cherry, K. E., & Stadler, M. A. (1995). Implicit learning of a nonverbal sequence in younger and older adults. Psychology & Aging, 10, 379–394.CrossRefGoogle Scholar
  21. Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: News from the front. Trends in Cognitive Sciences, 2, 406–416.CrossRefGoogle Scholar
  22. Cohen, N. J., Eichenbaum, H., DeAcedo, B. S., & Corkin, S. (1985). Different memory systems underlying acquisition of procedural and declarative knowledge. In D. S. Olton, E. Gamzu & S. Corkin (Eds.), Memory dysfunctions: An integration of animal and human research from preclinical and clinical perspectives (pp. 54–71). New York: New York Academy of Sciences.Google Scholar
  23. Cohen, N. J., Poldrack, R. A., & Eichenbaum, H. (1997). Memory for items and memory for relations in the procedural/declarative memory framework. Memory, 5, 131–178.PubMedCrossRefGoogle Scholar
  24. Curran, T. (1997). Effects of aging on implicit sequence learning: accounting for sequence structure and explicit knowledge. Psychological Research, 60, 24–41.PubMedCrossRefGoogle Scholar
  25. Curran, T., & Keele, S. W. (1993). Attentional and nonattentional forms of sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 189–202.CrossRefGoogle Scholar
  26. Daselaar, S. M., Rombouts, S. A. R. B., Veltman, D. J., Raaijmakers, J. G. W., & Jonker, C. (2003). Similar network activated by young and old adults during the acquisition of a motor sequence. Neurobiology of Aging, 24, 1013–1019.PubMedCrossRefGoogle Scholar
  27. Davis, H. P., Klebe, K. J., Bever, B., & Spring, A. (1998). The effect of age on the learning of a nondeclarative category classification task. Experimental Aging Research, 24, 273–287.PubMedCrossRefGoogle Scholar
  28. Dennis, N. A., Howard, J. H., Jr., & Howard, D. V. (2003). Age deficits in learning sequences of spoken words. Journal of Gerontology Series B: Psychological Sciences and Social Sciences, 58B, 224–227.Google Scholar
  29. Dennis, N. A., Howard, J. H., Jr., & Howard, D. V. (2006). Implicit sequence learning without motor sequencing in young and old adults. Experimental Brain Research, 175, 153–164.CrossRefGoogle Scholar
  30. D’Eredita, M. A., & Hoyer, W. J. (1999). An examination of the effects of adult age on explicit and implicit learning of figural sequences. Memory & Cognition, 27, 890–895.Google Scholar
  31. Dixon, R. A., Wahlin, Å., Maitland, S. B., Hultsch, D. F., Hertzog, C., & Bäckman, L. (2004). Episodic memory change in late adulthood: Generalizability across samples and performance indices. Memory & Cognition, 32, 768–778.Google Scholar
  32. Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1, 41–50.PubMedCrossRefGoogle Scholar
  33. Exner, C., Koschack, J., & Irle, E. (2002). The differential role of premotor frontal cortex and basal ganglia in motor sequence learning: evidence from focal basal ganglia lesions. Learning & Memory, 9, 376–386.CrossRefGoogle Scholar
  34. Feeney, J. J., Howard, J. H., Jr., & Howard, D. V. (2002). Implicit learning of higher order sequences in middle age. Psychology & Aging, 17, 351–355.CrossRefGoogle Scholar
  35. Fera, F., Weickert, T. W., Goldberg, T. E., Tessitore, A., Hariri, A., Das, S., et al. (2005). Neural mechanisms underlying probabilistic category learning in normal aging. Journal of Neuroscience, 25, 11340–11348.PubMedCrossRefGoogle Scholar
  36. Fletcher, P. C., Zafiris, O., Frith, C. D., Honey, R. A. E., Corlett, P. R., Zilles, K., et al. (2005). On the benefits of not trying: Brain activity and connectivity reflecting the interactions of explicit and implicit sequence learning. Cerebral Cortex, 15, 1002–1015.PubMedCrossRefGoogle Scholar
  37. Foerde, K., Knowlton, B. J., & Poldrack, R. A. (2006). Modulation of competing memory systems by distraction. Proceedings of the National Academy of Sciences, 103, 11778–11783.CrossRefGoogle Scholar
  38. Frensch, P. A. (1998). One concept, multiple meanings: On how to define the concept of implicit learning. In M. A. Stadler & P. A. Frensch (Eds.), Handbook of implicit learning (pp. 47–105). Thousand Oaks, CA: Sage.Google Scholar
  39. Frensch, P. A., & Miner, C. S. (1994). Effects of presentation rate and individual differences in short-term memory capacity on an indirect measure of serial learning. Memory & Cognition, 22, 95–110.Google Scholar
  40. Frensch, P. A., & Rünger, D. (2003). Implicit learning. Current Directions in Psychological Science, 12, 13–18.CrossRefGoogle Scholar
  41. Gabrieli, J. D. (1998). Cognitive neuroscience of human memory. Annual Review of Psychology, 49, 87–115.PubMedCrossRefGoogle Scholar
  42. Gagnon, S., Bedard, M. J., & Turcotte, J. (2005). The effect of old age on supra-span learning of visuo-spatial sequences under incidental and intentional encoding instructions. Brain and Cognition, 59, 225–235.PubMedCrossRefGoogle Scholar
  43. Gaillard, V., Arnaud, D., Michiels, S., & Cleeremans, A. (2009). Effects of age and practice in sequence learning: A graded account of ageing, learning, and control. European Journal of Cognitive Psychology., 21, 255–282.CrossRefGoogle Scholar
  44. Gaillard, V., Vandenberghe, M., Destrebecqz, A., & Cleeremans, A. (2006). First- and third-person approaches in implicit learning research. Consciousness and Cognition, 15, 709–722.PubMedCrossRefGoogle Scholar
  45. Gluck, M. A., & Bower, G. H. (1988). From conditioning to category learning: an adaptive network model. Journal of Experimental Psychology: General, 117, 227–247.CrossRefGoogle Scholar
  46. Grafton, S. T., Hazeltine, E., & Ivry, R. B. (1998). Abstract and effector-specific representations of motor sequences identified with PET. Journal of Neuroscience, 18, 9420–9428.PubMedGoogle Scholar
  47. Grieve, S. M., Clark, C. R., Williams, L. M., Peduto, A. J., & Gordon, E. (2005). Preservation of limbic and paralimbic structures in aging, 25, 391–401.Google Scholar
  48. Hackert, V. H., den Heijer, T., Oudkerk, M., Koudstaal, P. J., Hofman, A., & Breteler, M. M. B. (2002). Hippocampal head size associated with verbal memory performance in nondemented elderly. NeuroImage, 17, 1356–1372.CrossRefGoogle Scholar
  49. Harrington, D. L., & Haaland, K. Y. (1992). Skill learning in the elderly: diminished implicit and explicit memory for a motor sequence. Psychology & Aging, 7, 425–434.CrossRefGoogle Scholar
  50. Head, D., Raz, N., Gunning-Dixon, F., Williamson, A., & Acker, J. (2002). Age-Related differences in the course of cognitive skill acquisition: The role of regional cortical shrinkage and cognitive resources. Psychology and Aging, 17, 72–84.PubMedCrossRefGoogle Scholar
  51. Head, D., Rodrigue, K. M., Kennedy, K. M., & Raz, N. (2008). Neuroanatomical and cognitive mediators of age-related differences in episodic memory. Neuropsychology, 22, 491–507.PubMedCrossRefGoogle Scholar
  52. Heyes, C. M., & Foster, C. L. (2002). Motor learning by observation: evidence from a serial reaction time task. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 55, 593–607.PubMedGoogle Scholar
  53. Hicks, L. H. (1964). Effects of overtraining on acquisition and reversal of place and response learning. Psychological Reports, 15, 49–462.Google Scholar
  54. Howard, D. V., & Howard, J. H., Jr. (1989). Age differences in learning serial patterns: direct versus indirect measures. Psychology and Aging, 4, 357–364.PubMedCrossRefGoogle Scholar
  55. Howard, D. V., & Howard, J. H., Jr. (1992). Adult age differences in the rate of learning serial patterns: evidence from direct and indirect tests. Psychology and Aging, 7, 232–241.PubMedCrossRefGoogle Scholar
  56. Howard, J. H., Jr., & Howard, D. V. (1997). Age differences in implicit learning of higher order dependencies in serial patterns. Psychology and Aging, 12, 634–656.PubMedCrossRefGoogle Scholar
  57. Howard, D. V., & Howard, J. H., Jr. (2001). When it does hurt to try: Adult age differences in the effects of instructions on implicit pattern learning. Psychonomic Bulletin & Review, 8, 798–805.Google Scholar
  58. Howard, J. H., Jr., Howard, D. V., Dennis, N. A., & Kelly, A. J. (2008a). Implicit learning of predicitive relationships in three-element visual sequences by young and old adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1139–1157.CrossRefGoogle Scholar
  59. Howard, J. H., Jr., Howard, D. V., Dennis, N. A., LaVine, S., & Valentino, K. (2008b). Aging and implicit learning of an invariant association. Journal of Gerontology: Psychological Sciences, 63B, 100–105.Google Scholar
  60. Howard, J. H., Jr., Howard, D. V., Dennis, N. A., & Yankovich, H. (2007). Event timing and age deficits in higher-order sequence learning. Aging, Neuropsychology, and Cognition, 14, 1–22.CrossRefGoogle Scholar
  61. Howard, J. H., Jr., Howard, D. V., Dennis, N. A., Yankovich, H., & Vaidya, C. J. (2004a). Implicit spatial contextual learning in healthy aging. Neuropsychology, 18, 124–134.CrossRefGoogle Scholar
  62. Howard, D. V., Howard, J. H., Jr., Japikse, K., DiYanni, C., Thompson, A., & Somberg, R. (2004b). Implicit sequence learning: effects of level of structure, adult age, and extended practice. Psychology and Aging, 19, 79–92.CrossRefGoogle Scholar
  63. Hoyer, W. J., & Lincourt, A. E. (1998). Aging and the development of learning. In M. A. Stadler & P. A. Frensch (Eds.), Handbook of implicit learning (pp. 445–470). Thousand Oaks, CA: Sage.Google Scholar
  64. Jackson, G. M., Jackson, S. R., Harrison, J., Henderson, L., & Kennard, C. (1995). Serial reaction time learning and Parkinson’s disease: evidence for a procedural learning deficit. Neuropsychologia, 33, 577–593.PubMedCrossRefGoogle Scholar
  65. Jimenez, L. (2008). Taking patterns for chunks: Is there any evidence of chunk learning in continuous serial reaction-time tasks? Psychological Research, 71, 387–396.CrossRefGoogle Scholar
  66. Kelly, S. W., & Burton, A. M. (2001). Learning complex sequences: No role for observation? Psychological Research, 65, 15–23.PubMedCrossRefGoogle Scholar
  67. Kemper, T. L. (1994). Neuroanatomical and neuropathological changes during aging and dementia. In M. L. Albert & J. E. Knoefel (Eds.), Clinical Neurology of Aging (2nd ed., pp. 3–67). New York: Oxford University Press.Google Scholar
  68. Kemps, E., & Newson, R. (2006). Comparison of adult age differences in verbal and visuo-spatial memory: the importance of ‘pure’, parallel and validated measures. Journal of Clinical and Experimental Neuropsychology, 28, 341–356.PubMedCrossRefGoogle Scholar
  69. Knopman, D., & Nissen, M. J. (1991). Procedural learning is impaired in Huntington’s disease: evidence from the serial reaction time task. Neuropsychologia, 29, 245–254.PubMedCrossRefGoogle Scholar
  70. Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science, 273, 1399–1402.PubMedCrossRefGoogle Scholar
  71. Kreitzer, A. C., & Malenka, R. C. (2007). Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature, 445, 643–647.PubMedCrossRefGoogle Scholar
  72. Langley, L. K., & Madden, D. J. (2000). Functional neuroimaging of memory: implications for cognitive aging. Microscopy Research and Technique, 51, 75–84.PubMedCrossRefGoogle Scholar
  73. Lee, A. S., Duman, R. S., & Pittenger, C. (2008). A double dissociation revealing bidirectional competition between striatum and hippocampus during learning. Proceedings of the National Academy of Sciences of the United States of America, 105, 17163–17168.PubMedCrossRefGoogle Scholar
  74. Lieberman, M. D., Chang, G. Y., Chiao, J., Bookheimer, S. Y., & Knowlton, B. J. (2004). An event-related fMRI study of artificial grammar learning in a balanced chunk strength design. Journal of Cognitive Neuroscience, 16, 427–438.PubMedCrossRefGoogle Scholar
  75. Locascio, J. J., Corkin, S., & Growdon, J. H. (2003). Relation between clinical characteristics of Parkinson’s disease and cognitive decline. Journal of Clinical and Experimental Neuropsychology, 25, 94–109.PubMedCrossRefGoogle Scholar
  76. Lungu, O. V., Wächter, T., Liu, T., Willinghamn, D. T., & Ashe, J. (2004). Probability detection mechanisms and motor learning. Experimental Brain Research, 159, 135–150.CrossRefGoogle Scholar
  77. Merikle, P. M., & Daneman, M. (1996). Memory for unconsciously perceived events: evidence from anesthetized patients. Consciousness and Cognition, 5, 525–541.PubMedCrossRefGoogle Scholar
  78. Meulemans, T., & Van Der Linden, M. (1997). Does the artificial grammar learning paradigm involve the acquisition of complex information? Psychologica Belgica, 37, 69–88.Google Scholar
  79. Meulemans, T., Van Der Linden, M., & Perruchet, P. (1998). Implicit sequence learning in children. Journal of Experimental Child Psychology, 69, 199–221.PubMedCrossRefGoogle Scholar
  80. Midford, R., & Kirsner, K. (2005). Implicit and explicit learning in aged and young adults. Aging, Neuropsychology, and Cognition, 12, 359–387.CrossRefGoogle Scholar
  81. Miller, A. K. H., Alston, R. L., & Corselllis, J. A. N. (1980). Variation with age in the volumes of grey and white matter in the cerebral hemispheres. Neuropathology & Applied Neurobiology, 6, 119–132.CrossRefGoogle Scholar
  82. Moody, T. D., Bookheimer, S. Y., Vanek, Z., & Knowlton, B. J. (2004). An implicit learning task activates medial temporal lobe in patients with Parkinson’s disease. Behavioral Neuroscience, 118, 438–442.PubMedCrossRefGoogle Scholar
  83. Myerson, J., Hale, S., Rhee, S. H., & Jenkins, L. (1999). Selective interference with verbal and spatial working memory in young and older adults. Journal of Gerontology Series B: Psychological Sciences and Social Sciences, 54B, 161–164.Google Scholar
  84. Negash, S., Howard, D. V., Japikse, K. C., & Howard, J. H., Jr. (2003). Age-related differences in implicit learning of non-spatial sequences. Aging, Neuropsychology and Cognition, 10, 108–121.CrossRefGoogle Scholar
  85. Nejati, V., Garusi Farshi, M. T., Ashayeri, H., & Aghdasi, M. T. (2008). Dual task interference in implicit sequence learning by young and old adults. International Journal of Geriatric Psychiatry, 23, 801–804.PubMedCrossRefGoogle Scholar
  86. Nissen, M. J., & Bullemer, P. T. (1987). Attentional requirements for learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32.CrossRefGoogle Scholar
  87. Nyberg, L., Maitland, S. B., Rönnlund, M., Bäckman, L., Dixon, R. A., Wahlin, Å., et al. (2003). Selective adult age differences in an age-invariant multi-factor model of declarative memory. Psychology and Aging, 18, 149–160.PubMedCrossRefGoogle Scholar
  88. Packard, M. G. (1999). Glutamate infused post-training into the hippocampus or caudate-putamen differentially strengthens place and response learning. Proceedings of the National Academy of Sciences of the United States of America, 93, 8683–8687.Google Scholar
  89. Packard, M. G. (2009). Exhumed from thought: Basal ganglia and response learning in the plus-maze. Behavioral Brain Research, 199, 24–31.CrossRefGoogle Scholar
  90. Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25, 563–593.PubMedCrossRefGoogle Scholar
  91. Packard, M. G., & McGaugh, J. L. (1996). Inactivation of the hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65, 65–72.PubMedCrossRefGoogle Scholar
  92. Park, D. C. (2000). The basic mechanisms accounting for age-related decline in cognitive function. In D. C. Park & N. Schwarz (Eds.), Cognitive aging: A primer Vol. 11 (pp. 3–19). Philadelphia: Psychology Press.Google Scholar
  93. Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: one phenomenon, two approaches. Trends in Cognitive Sciences, 10, 233–238.PubMedCrossRefGoogle Scholar
  94. Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L. H., Ingvar, M., et al. (2006). Structure-function correlates of cognitive decline in aging. Cerebral Cortex, 16, 907–815.PubMedCrossRefGoogle Scholar
  95. Poldrack, R. A., Clark, J., Pare-Blagoev, E. J., Shohamy, D., Creso Moyano, J., Myers, C., et al. (2001). Interactive memory systems in the human brain. Nature, 414, 546–550.PubMedCrossRefGoogle Scholar
  96. Poldrack, R. A., Prabhakaran, V., Seger, C. A., & Gabrieli, J. D. (1999). Striatal activation during acquisition of a cognitive skill. Neuropsychology, 13, 564–574.PubMedCrossRefGoogle Scholar
  97. Poldrack, R. A., & Rodriguez, P. (2004). How do memory systems interact? Evidence from human classification learning. Neurobiology of Learning and Memory, 82, 324–332.PubMedCrossRefGoogle Scholar
  98. Price, A. L. (2005). Cortico-striatal contributions to category learning: dissociating the verbal and implicit systems. Behavorial Neuroscience, 119, 1438–1447.CrossRefGoogle Scholar
  99. Prull, M. W., Gabrieli, J. D. E., & Bunge, S. A. (2000). Age-related changes in memory: A cognitive neuroscience perspective. In F. I. M. Craik & T. A. Salthouse (Eds.), Handbook of aging and cognition (2nd ed., pp. 91–153). Mahwah: Erlbaum.Google Scholar
  100. Rajah, M. N., & D'Esposito, M. (2005). Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain, 128, 1964–1983.PubMedCrossRefGoogle Scholar
  101. Rakshi, J. S., Uema, T., Ito, K., Bailey, D. L., Morrish, P. K., Ashburner, J., et al. (1999). Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson's disease A 3D [(18)F]dopa-PET study. Brain, 122, 1637–1650.PubMedCrossRefGoogle Scholar
  102. Rauch, S. L., Wedig, M. M., Wright, C. I., Martis, B., McMullin, K. G., Shin, L. M., et al. (2007). Functional magnetic resonance imaging study of regional brain activation during implicit sequence learning in obsessive-compulsive disorder. Biological Psychiatry, 61, 330–336.PubMedCrossRefGoogle Scholar
  103. Rauch, S. L., Whalen, P. J., Savage, C. R., Curran, T., Kendrick, A., Brown, H. D., et al. (1997). Striatal recruitment during an implicit sequence learning task as measured by functional magnetic resonance imaging. Human Brain Mapping, 5, 124–132.PubMedCrossRefGoogle Scholar
  104. Rausch, R., & Ary, C. M. (1990). Supraspan learning in patients with unilateral anterior temporal lobe resections. Neuropsychologia, 28, 111–120.PubMedCrossRefGoogle Scholar
  105. Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15, 1676–1689.PubMedCrossRefGoogle Scholar
  106. Raz, N., Rodrigue, K. M., Kennedy, K. M., Head, D., Gunning-Dixon, F., & Acker, J. D. (2003). Differential aging of the human striatum: longitudinal evidence. American Journal of Neuroradiology, 24, 1849–1856.PubMedGoogle Scholar
  107. Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6, 855–863.CrossRefGoogle Scholar
  108. Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: General, 118, 219–235.CrossRefGoogle Scholar
  109. Reber, P. J., Knowlton, B. J., & Squire, L. R. (1996). Dissociable properties of memory systems: Differences in the flexibility of declarative and nondeclarative knowledge. Behavioral Neuroscience, 110, 861–871.PubMedCrossRefGoogle Scholar
  110. Reber, A. S., & Kotovsky, K. (1992, July). Learning and problem solving under a memory load. Paper presented at the Fourteenth Annual Conference of the Cognitive Science Society, Bloomington, IndianaGoogle Scholar
  111. Reber, P. J., & Squire, L. R. (1994). Parallel brain systems for learning with and without awareness. Learning & Memory, 1, 217–229.Google Scholar
  112. Rieckmann, A., & Fischer, H. (2009). & Bäckman, L. Activation in striatum and medial-temporal lobe during implicit learning in younger and older adults: Relations to performance. Manuscript submitted for publication.Google Scholar
  113. Robertson, E. M., & Pascual-Leone, A. (2001). Aspects of sensory guidance in sequence learning. Experimental Brain Research, 137, 336–345.CrossRefGoogle Scholar
  114. Rose, M., Haider, H., Weiller, C., & Büchel, C. (2002). The role of the medial temporal lobe structures in implicit learning: An event-related fMRI study. Neuron, 36, 1221–1231.PubMedCrossRefGoogle Scholar
  115. Salthouse, T. A. (1995). Differential age-related influences on memory for verbal-symbolic information and visual-spatial information? Journal of Gerontology: Psychological Sciences, 50B, 193–201.Google Scholar
  116. Salthouse, T. A., McGuthry, K. E., & Hambrick, D. Z. (1999). A framework for analyzing and interpreting differential aging patterns: Application to three measures of implicit learning. Aging, Neuropsychology and Cognition, 6, 1–18.CrossRefGoogle Scholar
  117. Schacter, D. L. (1987). Implicit expressions of memory in organic amnesia: learning of new facts and associations. Human Neurobiology, 6, 107–118.PubMedGoogle Scholar
  118. Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37, 1013–1025.PubMedCrossRefGoogle Scholar
  119. Schmitter-Edgecombe, M., & Nissley, H. M. (2002). Effects of aging on implicit covariation learning. Aging, Neuropsychology and Cognition, 9, 61–75.CrossRefGoogle Scholar
  120. Schugens, M. M., Daum, I., Spindler, M., & Birbaumer, N. (1997). Differential effects of aging on explicit and implicit memory. Aging, Neuropsychology, and Cognition, 4, 33–44.CrossRefGoogle Scholar
  121. Seger, C. A. (1994). Implicit learning. Psychological Bulletin, 115, 163–196.PubMedCrossRefGoogle Scholar
  122. Seger, C. A., & Cincotta, C. M. (2006). Dynamics of frontal, striatal, and hippocampal systems during rule learning. Cerebral Cortex, 16, 1546–1555.PubMedCrossRefGoogle Scholar
  123. Seidler, R. D. (2006). Differential effects of age on sequence learning and sensorimotor adaptation. Brain Research Bulletin, 70, 337–346.PubMedCrossRefGoogle Scholar
  124. Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning systems. Behavioral and Brain Sciences, 17, 367–447.CrossRefGoogle Scholar
  125. Shea, C. H., Park, J. H., & Braden, H. W. (2006). Age-related effects in sequential motor learning. Physical Therapy, 86, 478–488.PubMedGoogle Scholar
  126. Shohamy, D., Myers, C. S., Kalanithi, J., & Gluck, M. A. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience & Biobehavioral Reviews, 32, 219–236.CrossRefGoogle Scholar
  127. Smith, J. G., & McDowall, J. (2004). Impaired higher-order implicit sequence learning on the verbal version of the serial reaction time task in patients with Parkinson's disease. Neuropsychology, 18, 679–691.PubMedCrossRefGoogle Scholar
  128. Smith, J. G., & McDowall, J. (2006). The implicit learning deficit in patients with Parkinson´s disease: A matter of impaired sequence integration ? Neuropsychologica, 44, 275–288.CrossRefGoogle Scholar
  129. Smith, J. G., Siegert, R., & McDowall, J. (2001). Preserved implicit learning on both the serial reaction time task and artificial grammar in patients with Parkinson’s disease. Brain and Cognition, 45, 378–391.PubMedCrossRefGoogle Scholar
  130. Song, S., Howard, J. H., Jr., & Howard, D. V. (2007). Implicit probabilistic sequence learning is independent of explicit awareness. Learning and Memory, 14, 167–176.PubMedCrossRefGoogle Scholar
  131. Song, S., Howard, J. H., Jr., & Howard, D. V. (2008). Perceptual sequence learning in a serial reaction time task. Experimental Brain Research, 189, 145–58.CrossRefGoogle Scholar
  132. Song, S., Marks, B., Howard, J. H., Jr., & Howard, D. V. (2009). Evidence for parallel explicit and implicit sequence learning systems in older adults. Behavioral Brain Research, 196, 328–332.CrossRefGoogle Scholar
  133. Squire, L. R., & Frambach, M. (1990). Cognitive skill learning in amnesia. Psychobiology, 18, 109–117.Google Scholar
  134. Squire, L. R., Knowlton, B., & Musen, G. (1993). The structure and organization of memory. Annual Review of Psychology, 44, 453–495.PubMedCrossRefGoogle Scholar
  135. Squire, L. R., Ojemann, J. G., Miezin, F. M., Petersen, S. E., Videen, T. O., & Raichle, M. E. (1992). Activation of the hippocampus in normal humans: a functional anatomical study of memory. Proceedings of the National Academy of Sciences USA, 89, 1837–1841.CrossRefGoogle Scholar
  136. Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences USA, 93, 13515–13522.CrossRefGoogle Scholar
  137. Turcotte, J., Gagnon, S., & Poirier, M. (2005). The effect of old age on the learning of supraspan sequences. Psychology and Aging, 20, 251–260.PubMedCrossRefGoogle Scholar
  138. Verhaeghen, P., Marcoen, A., & Goossens, L. (1993). Facts and fiction about memory aging: A quantitative integration of research findings. Journal of Gerontology: Psychological Sciences, 48B, 157–171.Google Scholar
  139. Voermans, N. C., Petersson, K. M., Daudey, L., Weber, B., Van Spaendonck, K. P., Kremer, H. P., et al. (2004). Interaction between the human hippocampus and the caudate nucleus during route recognition. Neuron, 43, 427–435.PubMedCrossRefGoogle Scholar
  140. Werheid, K., Zysset, S., Muller, A., Reuter, M., & von Cramon, D. Y. (2003). Rule learning in a serial reaction time task: an fMRI study on patients with early Parkinson's disease. Cognitive Brain Research, 16, 273–284.PubMedCrossRefGoogle Scholar
  141. Willingham, D. B. (1999). Implicit motor sequence learning is not purely perceptual. Memory & Cognition, 27, 561–572.Google Scholar
  142. Willingham, D. D., & Goedert-Eschman, K. (1999). The relation between implicit and explicit learning: Evidence for parallel development. Psychological Science, 10, 531–534.CrossRefGoogle Scholar
  143. Willingham, D. B., & Koroshetz, W. J. (1993). Evidence for dissociable motor skills in Huntington’s disease patients. Psychobiology, 21, 173–182.Google Scholar
  144. Willingham, D., Koroshetz, W., & Peterson, E. (1996). Motor skills have diverse neural bases: Spared and impaired skill acquisition in Huntington's disease. Neuropsychology, 10, 315–321.CrossRefGoogle Scholar
  145. Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of procedural knowledge. Journal of Experimental Psychology: Learning, Memory, & Cognition, 15, 1047–1060.CrossRefGoogle Scholar
  146. Willingham, D. B., & Preuss, L. (1995). The death of implicit memory. Psyche, 2, 1–10.Google Scholar
  147. Willingham, D. B., Salidis, J., & Gabrieli, J. D. E. (2002). Direct comparison of neural systems mediating conscious and unconscious skill learning. Journal of Neurophysiology, 88, 1451–1460.PubMedGoogle Scholar
  148. Zacks, R. T., Hasher, L., & Li, K. Z. H. (2000). Human Memory. In T. A. Salthouse & F. I. M. Craik (Eds.), Handbook of aging and cognition (2nd ed., pp. 293–357). Mahwah: Erlbaum.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Aging Research CenterKarolinska InstituteStockholmSweden

Personalised recommendations