Neuropsychology Review

, Volume 19, Issue 4, pp 451–477

The Impact of Genetic Research on our Understanding of Normal Cognitive Ageing: 1995 to 2009



Identifying the risk factors for individual differences in age-related cognitive ability and decline is amongst the greatest challenges facing the healthcare of older people. Cognitive impairment caused by “normal ageing” is a major contributor towards overall cognitive deficit in the elderly and a process that exhibits substantial inter- and intra-individual differences. Both cognitive ability and its decline with age are influenced by genetic variation that may act independently or via epistasis/gene-environment interaction. Over the past fourteen years genetic research has aimed to identify the polymorphisms responsible for high cognitive functioning and successful cognitive ageing. Unfortunately, during this period a bewildering array of contrasting reports have appeared in the literature that have implicated over 50 genes with effect sizes ranging from 0.1 to 21%. This review will provide a comprehensive account of the studies performed on cognitively healthy individuals, from the first study conducted in 1995 to present. Based on current knowledge the strong and weak methodologies will be identified and suggestions for future study design will be presented.


Cognitive ability Cognitive decline Genetic Polymorphism Elderly 


  1. Ahmed, S., Reynolds, B. A., & Weiss, S. (1995). BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronalprecursors. Journal of Neuroscience, 15, 5765–5778.PubMedGoogle Scholar
  2. Akaboshi, S., Hogema, B. M., Novelletto, A., Malaspina, P., Salomons, G. S., Maropoulos, G. D., et al. (2003). Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Human Mutation, 22, 442–450.PubMedGoogle Scholar
  3. Allen, E. G., Sherman, S., Abramowitz, A., Leslie, M., Novak, G., Rusin, M., et al. (2005). Examination of the effect of the polymorphic CGG repeat in the FMR1 gene on cognitive performance. Behavior Genetics, 35, 435–445.PubMedGoogle Scholar
  4. Almeida, O. P., Schwab, S. G., Lautenschlager, N. T., Morar, B., Greenop, K. R., Flicker, L., et al. (2008). KIBRA genetic polymorphism influences episodic memory in later life, but does not increase the risk of mild cognitive impairment. Journal of Cellular and Molecular Medicine, 12, 1672–1676.PubMedGoogle Scholar
  5. Antonini, A., Leenders, K. L., Reist, H., Thomann, R., Beer, H. F., & Locher, J. (1993). Effect of age on D2 dopamine receptors in normal human brain measured by positron emission tomography and [11C] raclopride. Archives of Neurology, 50, 474–480.PubMedGoogle Scholar
  6. Bäckman, L., Nyberg, L., Lindenberger, U., Li, S. C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neuroscience and Biobehavioral Reviews, 30, 791–807.PubMedGoogle Scholar
  7. Ball, D., Hill, L., Eley, T. C., Chorney, M. J., Chorney, K., Thompson, L. A., et al. (1998). Dopamine markers and general cognitive ability. NeuroReport, 9, 347–349.PubMedGoogle Scholar
  8. Bannon, M. J., & Whitty, C. J. (1997). Age-related and regional differences in dopamine mRNA expression in human midbrain. Neurology, 48, 969–977.PubMedGoogle Scholar
  9. Barbaux, S., Plomin, R., & Whitehead, A. S. (2000). Polymorphisms of genes controlling homocysteine/folate metabolism and cognitive function. NeuroReport, 11, 1133–1136.PubMedGoogle Scholar
  10. Barnett, J. H., Scoriels, L., & Munafò, M. R. (2008). Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biological Psychiatry, 64, 137–144.PubMedGoogle Scholar
  11. Bartrés-Faz, D., Junqué, C., Serra-Grabulosa, J. M., López-Alomar, A., Moya, A., Bargalló, N., et al. (2002). Dopamine DRD2 Taq I polymorphism associates with caudate nucleus volume and cognitive performance in memory impaired subjects. NeuroReport, 13, 1121–1125.PubMedGoogle Scholar
  12. Barzilai, N., Atzmon, G., Derby, C. A., Bauman, J. M., & Lipton, R. B. (2006). A genotype of exceptional longevity is associated with preservation of cognitive function. Neurology, 67, 2170–2175.PubMedGoogle Scholar
  13. Bathum, L., von Bornemann Hjelmborg, J., Christiansen, L., McGue, M., Jeune, B., & Christensen, K. (2007). Methylenetetrahydrofolate reductase 677C > T and methionine synthase 2756A > G mutations: no impact on survival, cognitive functioning, or cognitive decline in nonagenarians. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 62, 196–201.Google Scholar
  14. Batty, G. D., Wennerstad, K. M., Smith, G. D., Gunnell, D., Deary, I. J., & Tynelius, P. (2009). IQ in early adulthood and mortality by middle age: cohort study of 1 million Swedish men. Epidemiology, 20, 100–109.PubMedGoogle Scholar
  15. Baune, B. T., Ponath, G., Rothermundt, M., Riess, O., Funke, H., & Berger, K. (2008). Association between genetic variants of IL-1beta, IL-6 and TNF-alpha cytokines and cognitive performance in the elderly general population of the MEMO-study. Psychoneuroendocrinology, 33, 68–76.PubMedGoogle Scholar
  16. Bendixen, M. H., Nexø, B. A., Bohr, V. A., Frederiksen, H., McGue, M., Kølvraa, S., et al. (2004). A polymorphic marker in the first intron of the Werner gene associates with cognitive function in aged Danish twins. Experimental Gerontology, 39, 1101–1107.PubMedGoogle Scholar
  17. Benson, M. A., Newey, S. E., Martin-Rendon, E., Hawkes, R., & Blake, D. J. (2001). Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. Journal of Biological Chemistry, 276, 24232–24241.PubMedGoogle Scholar
  18. Berman, S. M., & Noble, E. P. (1995). Reduced visuospatial performance in children with the D2 dopamine receptor A1 allele. Behavior Genetics, 25, 45–58.PubMedGoogle Scholar
  19. Blasi, P., Boyl, P. P., Ledda, M., Novelletto, A., Gibson, K. M., Jakobs, C., et al. (2002). Structure of human succinic semialdehyde dehydrogenase gene: identification of promoter region and alternatively processed isoforms. Molecular Genetics and Metabolism, 76, 348–362.PubMedGoogle Scholar
  20. Blinkhorn, S. (2005). Intelligence: a gender bender. Nature, 438, 31–32.PubMedGoogle Scholar
  21. Bochdanovits, Z., Gosso, F. M., van den Berg, L., Rizzu, P., Polderman, T. J., Pardo, L. M., et al. (2009). A Functional polymorphism under positive evolutionary selection in ADRB2 is associated with human intelligence with opposite effects in the young and the elderly. Behavior Genetics, 39, 15–23.PubMedGoogle Scholar
  22. Bombin, I., Arango, C., Mayoral, M., Castro-Fornieles, J., Gonzalez-Pinto, A., Gonzalez-Gomez, C., et al. (2008). DRD3, but not COMT or DRD2, genotype affects executive functions in healthy and first-episode psychosis adolescents. Am J Med Genet B Neuropsychiatr Genet, 147B, 873–879.PubMedGoogle Scholar
  23. Borg, J., Henningsson, S., Saijo, T., Inoue, M., Bah, J., Westberg, L., et al. (2009). Serotonin transporter genotype is associated with cognitive performance but not regional 5-HT1A receptor binding in humans. Int J Neuropsychopharmacol, 1-10, (in press) PMID: 19500776.Google Scholar
  24. Bouchard, T. J., Jr., & McGue, M. (2003). Genetic and environmental influences on human psychological differences. Journal of Neurobiology, 54, 4–45.PubMedGoogle Scholar
  25. Brandi, M. L., Becherini, L., Gennari, L., Racchi, M., Bianchetti, A., Nacmias, B., et al. (1999). Association of the estrogen receptor alpha gene polymorphisms with sporadic Alzheimer's disease. Biochemical and Biophysical Research Communications, 265, 335–338.PubMedGoogle Scholar
  26. Brosh, R. M., Jr., Opresko, P. L., & Bohr, V. A. (2006). Enzymatic mechanism of the WRN helicase/nuclease. Methods in Enzymology, 409, 52–85.PubMedGoogle Scholar
  27. Broughton, S., & Partridge, L. (2009). Insulin/IGF-like signalling, the central nervous system and aging. Biochemical Journal, 418, 1–12.PubMedGoogle Scholar
  28. Bueller, J. A., Aftab, M., Sen, S., Gomez-Hassan, D., Burmeister, M., & Zubieta, J. K. (2006). BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biological Psychiatry, 59, 812–815.PubMedGoogle Scholar
  29. Burdick, K. E., Lencz, T., Funke, B., Finn, C. T., Szeszko, P. R., Kane, J. M., et al. (2006). Genetic variation in DTNBP1 influences general cognitive ability. Human Molecular Genetics, 15, 1563–1568.PubMedGoogle Scholar
  30. Butcher, L. M., Meaburn, E., Knight, J., Sham, P. C., Schalkwyk, L. C., Craig, I. W., et al. (2005). SNPs, microarrays and pooled DNA: identification of four loci associated with mild mental impairment in a sample of 6000 children. Human Molecular Genetics, 14, 1315–1325.PubMedGoogle Scholar
  31. Butcher, L. M., Davis, O. S., Craig, I. W., & Plomin, R. (2008). Genome-wide quantitative trait locus association scan of general cognitive ability using pooled DNA and 500 K single nucleotide polymorphism microarrays. Genes Brain and Behavior, 7, 435–446.Google Scholar
  32. Büther, K., Plaas, C., Barnekow, A., & Kremerskothen, J. (2004). KIBRA is a novel substrate for protein kinase Czeta. Biochemical and Biophysical Research Communications, 317, 703–707.PubMedGoogle Scholar
  33. Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.PubMedGoogle Scholar
  34. Caspi, A., Williams, B., Kim-Cohen, J., Craig, I. W., Milne, B. J., Poulton, R., et al. (2007). Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proceedings of the National Academy of Sciences of the United States of America, 104, 18860–18865.PubMedGoogle Scholar
  35. Chen, Z. Y., Patel, P. D., Sant, G., Meng, C. X., Teng, K. K., Hempstead, B. L., et al. (2004). Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. Journal of Neuroscience, 24, 4401–4411.PubMedGoogle Scholar
  36. Chorney, M. J., Chorney, K., Seese, N., Owen, M. J., Daniels, J., McGuffin, P., et al. (1998). A quantitative trait locus associated with cognitive ability in children. Psychological Science, 9, 159–166.Google Scholar
  37. Comas-Herrera, A., Wittenberg, R., Pickard, L., & Knapp, M. (2007). Cognitive impairment in older people: future demand for long-term care services and the associated costs. International Journal of Geriatric Psychiatry, 22, 1037–1045.PubMedGoogle Scholar
  38. Comings, D. E., Comings, B. G., Muhleman, D., Dietz, G., Shahbahrami, B., Tast, D., et al. (1991). The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders. JAMA, 266, 1793–1800.PubMedGoogle Scholar
  39. Comings, D. E., Wu, S., Rostamkhani, M., McGue, M., Lacono, W. G., Cheng, L. S., et al. (2003). Role of the cholinergic muscarinic 2 receptor (CHRM2) gene in cognition. Molecular Psychiatry, 8, 10–11.PubMedGoogle Scholar
  40. Cook, E. H., Jr., & Scherer, S. W. (2008). Copy-number variations associated with neuropsychiatric conditions. Nature, 455, 919–923.PubMedGoogle Scholar
  41. Cope, N., Harold, D., Hill, G., Moskvina, V., Stevenson, J., Holmans, P., et al. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. American Journal of Human Genetics, 76, 581–591.PubMedGoogle Scholar
  42. Corneveaux, J. J., Liang, W. S., Reiman, E. M., Webster, J. A., Myers, A. J., Zismann, V. L., et al. (2009). Evidence for an association between KIBRA and late-onset Alzheimer's disease. Neurobiol Aging, (in press) PMID: 18789830.Google Scholar
  43. Craig, I., & Plomin, R. (2006). Quantitative trait loci for IQ and other complex traits: single-nucleotide polymorphism genotyping using pooled DNA and microarrays. Genes Brain Behav, 5(Suppl 1), 32–37.PubMedGoogle Scholar
  44. Crawford, D. C., Acuna, J. M., & Sherman, S. L. (2001). FMR1 and the fragile X syndrome: human genome epidemiology review. Genetics in Medicine, 3, 359–371.PubMedGoogle Scholar
  45. Deary, I. J. (2001). Human intelligence differences: a recent history. Trends in Cognitive Sciences, 5, 127–130.PubMedGoogle Scholar
  46. Deary, I. J., Hamilton, G., Hayward, C., Whalley, L. J., Powell, J., Starr, J. M., et al. (2005). Nicastrin gene polymorphisms, cognitive ability level and cognitive ageing. Neuroscience Letters, 373, 110–114.PubMedGoogle Scholar
  47. Deary, I. J., Johnson, W., & Houlihan, L. M. (2009). Genetic foundations of human intelligence. Hum Genet, (in press) PMID: 19294424.Google Scholar
  48. Dempster, E. L., Toulopoulou, T., McDonald, C., Bramon, E., Walshe, M., Wickham, H., et al. (2006). Episodic memory performance predicted by the 2 bp deletion in exon 6 of the “alpha 7-like” nicotinic receptor subunit gene. American Journal of Psychiatry, 163, 1832–1834.PubMedGoogle Scholar
  49. Deshmukh, A., Rodrigue, K. M., Kennedy, K. M., Land, S., Jacobs, B. S., & Raz, N. (2009). Synergistic effects of the MTHFR C677T polymorphism and hypertension on spatial navigation. Biological Psychology, 80, 240–245.PubMedGoogle Scholar
  50. de Blasi, S., Montesanto, A., Martino, C., Dato, S., De Rango, F., Bruni, A. C., et al. (2009). APOE polymorphism affects episodic memory among non demented elderly subjects. Experimental Gerontology, 44, 224–227.PubMedGoogle Scholar
  51. de Frias, C. M., Annerbrink, K., Westberg, L., Eriksson, E., Adolfsson, R., & Nilsson, L. G. (2004). COMT gene polymorphism is associated with declarative memory in adulthood and old age. Behavior Genetics, 34, 533–539.PubMedGoogle Scholar
  52. de Frias, C. M., Annerbrink, K., Westberg, L., Eriksson, E., Adolfsson, R., & Nilsson, L. G. (2005). Catechol O-methyltransferase Val158Met polymorphism is associated with cognitive performance in nondemented adults. Journal of Cognitive Neuroscience, 17, 1018–1025.PubMedGoogle Scholar
  53. de Lau, L. M., van Meurs, J. B., Uitterlinden, A. G., Smith, A. D., Refsum, H., Johnston, C.,et al. (2009). Genetic variation in homocysteine metabolism, cognition, and white matter lesions. Neurobiol Aging, 2009, (in press) PMID: 19019492.Google Scholar
  54. de Quervain, D. J., Henke, K., Aerni, A., Coluccia, D., Wollmer, M. A., Hock, C., et al. (2003). A functional genetic variation of the 5-HT2a receptor affects human memory. Nature Neuroscience, 6, 1141–1142.PubMedGoogle Scholar
  55. de Rango, F., Leone, O., Dato, S., Novelletto, A., Bruni, A. C., Berardelli, M., et al. (2008). Cognitive functioning and survival in the elderly: the SSADH C538T polymorphism. Annals of Human Genetics, 72, 630–635.PubMedGoogle Scholar
  56. Dick, D. M., Aliev, F., Kramer, J., Wang, J. C., Hinrichs, A., Bertelsen, S., et al. (2007). Association of CHRM2 with IQ: converging evidence for a gene influencing intelligence. Behavior Genetics, 37, 265–272.PubMedGoogle Scholar
  57. Dickstein, D. L., Kabaso, D., Rocher, A. B., Luebke, J. I., Wearne, S. L., & Hof, P. R. (2007). Changes in the structural complexity of the aged brain. Aging Cell, 6, 275–284.PubMedGoogle Scholar
  58. Dröge, W., & Schipper, H. M. (2007). Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell, 6, 361–370.PubMedGoogle Scholar
  59. Durga, J., van Boxtel, M. P., Schouten, E. G., Bots, M. L., Kok, F. J., & Verhoef, P. (2006). Folate and the methylenetetrahydrofolate reductase 677C− > T mutation correlate with cognitive performance. Neurobiology of Aging, 27, 334–343.PubMedGoogle Scholar
  60. Duron, E., & Hanon, O. (2008). Vascular risk factors, cognitive decline, and dementia. Vascular Health and Risk Management, 4, 363–381.PubMedGoogle Scholar
  61. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.PubMedGoogle Scholar
  62. Epstein, C. J., Martin, G. M., Schultz, A. L., & Motulsky, A. G. (1966). Werner’s syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine, 45, 177–221.PubMedGoogle Scholar
  63. Erickson, K. I., Kim, J. S., Suever, B. L., Voss, M. W., Francis, B. M., & Kramer, A. F. (2008). Genetic Contributions to Age-Related Decline in Executive Function: A 10-Year Longitudinal Study of COMT and BDNF Polymorphisms. Frontiers in Human Neuroscience, 2, 11.PubMedGoogle Scholar
  64. Espeseth, T., Greenwood, P. M., Reinvang, I., Fjell, A. M., Walhovd, K. B., Westlye, L. T., et al. (2006). Interactive effects of APOE and CHRNA4 on attention and white matter volume in healthy middle-aged and older adults. Cognitive Affective & Behavioral Neuroscience, 6, 31–43.Google Scholar
  65. Finkel, D., Reynolds, C. A., McArdle, J. J., & Pedersen, N. L. (2005). The longitudinal relationship between processing speed and cognitive ability: genetic and environmental influences. Behavior Genetics, 35, 535–549.PubMedGoogle Scholar
  66. Finkel, D., Reynolds, C. A., Berg, S., & Pedersen, N. L. (2006). Surprising lack of sex differences in normal cognitive aging in twins. International Journal of Aging and Human Development, 62, 335–357.PubMedGoogle Scholar
  67. Finkel, D., Reynolds, C. A., McArdle, J. J., & Pedersen, N. L. (2007). Age changes in processing speed as a leading indicator of cognitive aging. Psychology and Aging, 22, 558–568.PubMedGoogle Scholar
  68. Finkel, D., Reynolds, C. A., McArdle, J. J., Hamagami, F., & Pedersen, N. L. (2009). Genetic Variance in Processing Speed Drives Variation in Aging of Spatial and Memory Abilities. Developmental Psychology, 45, 820–834.PubMedGoogle Scholar
  69. Fisher, P. J., Turic, D., Williams, N. M., McGuffin, P., Asherson, P., Ball, D., et al. (1999). DNA pooling identifies QTLs on chromosome 4 for general cognitive ability in children. Human Molecular Genetics, 8, 915–922.PubMedGoogle Scholar
  70. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 313, 1419–1420.Google Scholar
  71. Francks, C., Paracchini, S., Smith, S. D., Richardson, A. J., Scerri, T. S., Cardon, L. R., et al. (2004). A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. Am J Hum Genet, 75, 1046 –1058.Google Scholar
  72. Frodl, T., Schule, C., Schmitt, G., Born, C., Baghai, T., Zill, P., et al. (2007). Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression. Archives of General Psychiatry, 64, 410–416.PubMedGoogle Scholar
  73. Froehlich, T. E., Lanphear, B. P., Dietrich, K. N., Cory-Slechta, D. A., Wang, N., & Kahn, R. S. (2007). Interactive effects of a DRD4 polymorphism, lead, and sex on executive functions in children. Biological Psychiatry, 62, 243–249.PubMedGoogle Scholar
  74. Fuster, J. M. (2001). The prefrontal cortex - an update: Time is of the essence. Neuron, 30, 319–333.PubMedGoogle Scholar
  75. Gelernter, J., Yu, Y., Weiss, R., Brady, K., Panhuysen, C., Yang, B. Z., et al. (2006). Haplotype spanning TTC12 and ANKK1, flanked by the DRD2 and NCAM1 loci, is strongly associated to nicotine dependence in two distinct American populations. Human Molecular Genetics, 15, 3498–3507.PubMedGoogle Scholar
  76. Gibson, K. M. (2005). Gamma-hydroxybutyric aciduria: a biochemist’s education from a heritable disorder of GABA metabolism. Journal of Inherited Metabolic Disease, 28, 247–265.PubMedGoogle Scholar
  77. Glymour, M. M., Weuve, J., & Chen, J. T. (2008). Methodological challenges in causal research on racial and ethnic patterns of cognitive trajectories: measurement, selection, and bias. Neuropsychology Review, 18, 194–213.PubMedGoogle Scholar
  78. Goldman-Rakic, P. S., Muly, E. C., & Williams, G. V. (2000). D(1) receptors in prefrontal cells and circuits. Brain Research Brain Research Reviews, 31, 295–301.PubMedGoogle Scholar
  79. Gosso, M. F., van Belzen, M., de Geus, E. J., Polderman, J. C., Heutink, P., Boomsma, D. I., et al. (2006a). Association between the CHRM2 gene and intelligence in a sample of 304 Dutch families. Genes Brain and Behavior, 5, 577–584.Google Scholar
  80. Gosso, M. F., de Geus, E. J., van Belzen, M. J., Polderman, T. J., Heutink, P., Boomsma, D. I., et al. (2006b). The SNAP-25 gene is associated with cognitive ability: evidence from a family-based study in two independent Dutch cohorts. Molecular Psychiatry, 11, 878–886.PubMedGoogle Scholar
  81. Gosso, F. M., de Geus, E. J., Polderman, T. J., Boomsma, D. I., Posthuma, D., & Heutink, P. (2007). Exploring the functional role of the CHRM2 gene in human cognition: results from a dense genotyping and brain expression study. BMC Medical Genetics, 8, 66.PubMedGoogle Scholar
  82. Gosso, M. F., de Geus, E. J., Polderman, T. J., Boomsma, D. I., Heutink, P., & Posthuma, D. (2008). Common variants underlying cognitive ability: further evidence for association between the SNAP-25 gene and cognition using a family-based study in two independent Dutch cohorts. Genes Brain and Behavior, 7, 355–364.Google Scholar
  83. Göthert, M., Propping, P., Bönisch, H., Brüss, M., & Nöthen, M. M. (1998). Genetic variation in human 5-HT receptors: potential pathogenetic and pharmacological role. Annals of the New York Academy of Sciences, 861, 26–30.PubMedGoogle Scholar
  84. Goto, M. (1997). Hierarchical deterioration of body systems in Werner’s syndrome: implications for normal aging. Mechanisms of Ageing and Development, 98, 239–254.PubMedGoogle Scholar
  85. Goto, M., Miller, R. W., Ishikawa, Y., & Sugano, H. (1996). Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiology, Biomarkers and Prevention, 5, 239–246.PubMedGoogle Scholar
  86. Greenwood, P. M., Lin, M. K., Sundararajan, R., Fryxell, K. J., & Parasuraman, R. (2009). Synergistic effects of genetic variation in nicotinic and muscarinic receptors on visual attention but not working memory. Proceedings of the National Academy of Sciences of the United States of America, 106, 3633–3638.PubMedGoogle Scholar
  87. Gustafson, D., Rothenberg, E., Blennow, K., Steen, B., & Skoog, I. (2003). An 18-year follow-up of overweight and risk of Alzheimer disease. Archives of Internal Medicine, 163, 1524–1528.PubMedGoogle Scholar
  88. Hall, J., Whalley, H. C., Job, D. E., Baig, B. J., McIntosh, A. M., Evans, K. L., et al. (2006). A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nature Neuroscience, 9, 1477–1478.PubMedGoogle Scholar
  89. Hansell, N. K., James, M. R., Duffy, D. L., Birley, A. J., Luciano, M., Geffen, G. M., et al. (2007). Effect of the BDNF V166M polymorphism on working memory in healthy adolescents. Genes Brain and Behavior, 6, 260–268.Google Scholar
  90. Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology, 11, 298–300.PubMedGoogle Scholar
  91. Harris, S. E., Fox, H., Wright, A. F., Hayward, C., Starr, J. M., Whalley, L. J., et al. (2006). The brain-derived neurotrophic factor Val66Met polymorphism is associated with age-related change in reasoning skills. Molecular Psychiatry, 11, 505–513.PubMedGoogle Scholar
  92. Harris, S. E., Fox, H., Wright, A. F., Hayward, C., Starr, J. M., Whalley, L. J., et al. (2007). A genetic association analysis of cognitive ability and cognitive ageing using 325 markers for 109 genes associated with oxidative stress or cognition. BMC Genetics, 8, 43.PubMedGoogle Scholar
  93. Hattersley, A. T., & McCarthy, M. I. (2005). What makes a good genetic association study? Lancet, 366, 1315–1323.PubMedGoogle Scholar
  94. Hattiangady, B., Rao, M. S., Shetty, G. A., & Shetty, A. K. (2005). Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Experimental Neurology, 195, 353–371.PubMedGoogle Scholar
  95. Heiman, G. A., Hodge, S. E., Gorroochurn, P., Zhang, J., & Greenberg, D. A. (2004). Effect of population stratification on case-control association studies. I. Elevation in false positive rates and comparison to confounding risk ratios (a simulation study). Human Heredity, 58, 30–39.PubMedGoogle Scholar
  96. Hill, L., Chorney, M. J., Lubinski, D., Thompson, L. A., & Plomin, R. (2002). A quantitative trait locus not associated with cognitive ability in children: a failure to replicate. Psychological Science, 13, 561–562.PubMedGoogle Scholar
  97. Houlihan, L. M., Harris, S. E., Luciano, M., Gow, A. J., Starr, J. M., Visscher, P. M., et al. (2009). Replication study of candidate genes for cognitive abilities: the Lothian Birth Cohort 1936. Genes Brain and Behavior, 8, 238–247.Google Scholar
  98. Hranilovic, D., Stefulj, J., Schwab, S., Borrmann-Hassenbach, M., Albus, M., Jernej, B., et al. (2004). Serotonin transporter promoter and intron 2 polymorphisms: relationship between allelic variants and gene expression. Biological Psychiatry, 55, 1090–1094.PubMedGoogle Scholar
  99. Huang, W., Payne, T. J., Ma, J. Z., Beuten, J., Dupont, R. T., Inohara, N., et al. (2009a). Significant association of ANKK1 and detection of a functional polymorphism with nicotine dependence in an African-American sample. Neuropsychopharmacology, 34, 319–330.PubMedGoogle Scholar
  100. Huang, L., Li, Y., Singleton, A. B., Hardy, J. A., Abecasis, G., Rosenberg, N. A., et al. (2009b). Genotype-imputation accuracy across worldwide human populations. American Journal of Human Genetics, 84, 235–250.PubMedGoogle Scholar
  101. Huppert, F. A., Cabelli, S. T., & Matthews, F. E. (2005). MRC Cognitive Function and Ageing Study. Brief cognitive assessment in a UK population sample — distributional properties and the relationship between the MMSE and an extended mental state examination. BMC Geriatric, 5, 7.Google Scholar
  102. Iizuka, Y., Sei, Y., Weinberger, D. R., & Straub, R. E. (2007). Evidence that the BLOC-1 protein dysbindin modulates dopamine D2 receptor internalization and signaling but not D1 internalization. Journal Neuroscience, 27, 12390–12395.Google Scholar
  103. Irwing, P., & Lynn, R. (2005). Sex differences in means and variability on the progressive matrices in university students: a meta-analysis. British Journal of Psychology, 96, 505–524.PubMedGoogle Scholar
  104. Irwing, P., & Lynn, R. (2006). Intelligence: is there a sex difference in IQ scores? Nature, 442, E1–E2.PubMedGoogle Scholar
  105. Izumi, A., Iijima, Y., Noguchi, H., Numakawa, T., Okada, T., Hori, H., et al. (2008). Genetic variations of human neuropsin gene and psychiatric disorders: polymorphism screening and possible association with bipolar disorder and cognitive functions. Neuropsychopharmacology, 33, 3237–3245.PubMedGoogle Scholar
  106. Johannsen, S., Duning, K., Pavenstädt, H., Kremerskothen, J., & Boeckers, T. M. (2008). Temporal-spatial expression and novel biochemical properties of the memory-related protein KIBRA. Neuroscience, 155, 1165–1173.PubMedGoogle Scholar
  107. Johnson, W., Harris, S. E., Collins, P., Starr, J. M., Whalley, L. J., & Deary, I. J. (2007). No association of CETP genotype with cognitive function or age-related cognitive change. Neuroscience Letters, 420, 189–192.PubMedGoogle Scholar
  108. Johnson, W., Harris, S. E., Starr, J. M., Whalley, L. J., & Deary, I. J. (2008). PPARG Pro12Ala genotype and risk of cognitive decline in elders? Maybe with diabetes. Neuroscience Letters, 434, 50–55.PubMedGoogle Scholar
  109. Kaasinen, V., Vilkman, H., Hietala, J., Nagren, K., Helenius, H., Olsson, H., et al. (2000). Age-related D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiology of Aging, 21, 683–688.PubMedGoogle Scholar
  110. Kachiwala, S. J., Harris, S. E., Wright, A. F., Hayward, C., Starr, J. M., Whalley, L. J., et al. (2005). Genetic influences on oxidative stress and their association with normal cognitive ageing. Neuroscience Letters, 386, 116–120.PubMedGoogle Scholar
  111. Kavvoura, F. K., & Ioannidis, J. P. (2008). Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls. Human Genetics, 123, 1–14.PubMedGoogle Scholar
  112. Kearney-Schwartz, A., Rossignol, P., Bracard, S., Felblinger, J., Fay, R., Boivin, J. M., et al. (2009). Vascular structure and function is correlated to cognitive performance and white matter hyperintensities in older hypertensive patients with subjective memory complaints. Stroke, 40, 1229–1236.PubMedGoogle Scholar
  113. Kim, J. H., Ellwood, P. E., & Asher, M. I. (2009). Diet and asthma: looking back, moving forward. Respiratory Research, 10, 49.PubMedGoogle Scholar
  114. Kirov, G., Grozeva, D., Norton, N., Ivanov, D., Mantripragada, K. K., Holmans, P., et al. (2009). Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Human Molecular Genetics, 18, 1497–1503.PubMedGoogle Scholar
  115. Kloppenborg, R. P., van den Berg, E., Kappelle, L. J., & Biessels, G. J. (2008). Diabetes and other vascular risk factors for dementia: which factor matters most? A systematic review. European Journal of Pharmacology, 585, 97–108.PubMedGoogle Scholar
  116. Komulainen, P., Pedersen, M., Hänninen, T., Bruunsgaard, H., Lakka, T. A., Kivipelto, M., et al. (2008). BDNF is a novel marker of cognitive function in ageing women: the DR’s EXTRA Study. Neurobiology of Learning and Memory, 90, 596–603.PubMedGoogle Scholar
  117. Kudlow, B. A., Kennedy, B. K., & Monnat, R. J., Jr. (2007). Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nature Reviews Molecular Cell Biology, 8, 394–404.PubMedGoogle Scholar
  118. Kumar, R. A., & Christian, S. L. (2009). Genetics of autism spectrum disorders. Current Neurology and Neuroscience Reports, 9, 188–197.PubMedGoogle Scholar
  119. Kuningas, M., Slagboom, P. E., Westendorp, R. G., & van Heemst, D. (2006). Impact of genetic variations in the WRN gene on age related pathologies and mortality. Mechanisms of Ageing and Development, 127, 307–313.PubMedGoogle Scholar
  120. Lachman, H. M., Papolos, D. F., Saito, T., Yu, Y. M., Szumlanski, C. L., & Weinshilboum, R. M. (1996). Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 6, 243–250.PubMedGoogle Scholar
  121. Lambert, J. C., Ferreira, S., Gussekloo, J., Christiansen, L., Brysbaert, G., Slagboom, E., et al. (2007). Evidence for the association of the S100beta gene with low cognitive performance and dementia in the elderly. Molecular Psychiatry, 12, 870–880.PubMedGoogle Scholar
  122. Lin, B. K., Clyne, M., Walsh, M., Gomez, O., Yu, W., Gwinn, M., et al. (2006). Tracking the epidemiology of human genes in the literature: the HuGE Published Literature database. American Journal of Epidemiology, 164, 1–4.PubMedGoogle Scholar
  123. Lind, P. A., Luciano, M., Horan, M., Marioni, R. E., Wright, M. J., Montgomery, G. W., et al. (2009). No association between cholinergic muscarinic receptor 2 (CHRM2) genetic variation and cognitive abilities in three independent samples. Beh Genet, (in press) PMID: 19418213.Google Scholar
  124. Lindenberger, U., Nagel, I. E., Chicherio, C., Li, S. C., Heekeren, H. R., & Bäckman, L. (2008). Age-related decline in brain resources modulates genetic effects on cognitive functioning. Frontiers in Neuroscience, 2, 234–244.PubMedGoogle Scholar
  125. Luciano, M., Lind, P. A., Duffy, D. L., Castles, A., Wright, M. J., Montgomery, G. W., et al. (2007). A haplotype spanning KIAA0319 and TTRAP is associated with normal variation in reading and spelling ability. Biological Psychiatry, 62, 811–817.PubMedGoogle Scholar
  126. Luciano, M., Lind, P. A., Deary, I. J., Payton, A., Posthuma, D., Butcher, L. M., et al. (2008). Testing replication of a 5-SNP set for general cognitive ability in six population samples. European Journal of Human Genetics, 16, 1388–1395.PubMedGoogle Scholar
  127. Luciano, M., Miyajima, F., Lind, P. A., Bates, T. C., Horan, M., Harris, S. E., et al. (2009a). Variation in the Dysbindin gene and normal cognitive function in three independent population samples. Genes Brain and Behavior, 8, 218–227.Google Scholar
  128. Luciano, M., Gow, A. J., Taylor, M. D., Hayward, C., Harris, S. E., Campbell, H., et al. (2009b). Apolipoprotein E is not related to memory abilities at 70 years of age. Behavior Genetics, 39, 6–14.PubMedGoogle Scholar
  129. Luo, Y., & Roth, G. S. (2000). The roles of dopamine oxidative stress and dopamine receptor signaling in aging and age-related neurodegeneration. Antiox Redox Signal, 2, 449–460.Google Scholar
  130. Ma, S. Y., Ciliax, B. J., Stebbins, G., Jaffar, S., Joyce, J. N., Cochran, E. J., et al. (1999). Dopamine transporter-immunoreactive neurons decrease with age in the human substantia nigra. Journal of Comparative Neurology, 409, 25–37.PubMedGoogle Scholar
  131. Marshall, F. H. (2008). The role of GABA(B) receptors in the regulation of excitatory neurotransmission. Results and Problems in Cell Differentiation, 44, 87–98.PubMedGoogle Scholar
  132. Maruyama, H., Toji, H., Harrington, C. R., Sasaki, K., Izumi, Y., Ohnuma, T., et al. (2000). Lack of an association of estrogen receptor alpha gene polymorphisms and transcriptional activity with Alzheimer disease. Archives of Neurology, 57, 236–240.PubMedGoogle Scholar
  133. Mattson, M. P., Chan, S. L., & Duan, W. (2002). Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiological Reviews, 82, 637–672.PubMedGoogle Scholar
  134. McAllister, T. W., Flashman, L. A., Harker-Rhodes, C., Tyler, A. L., Moore, J. H., Saykin, A. J., et al. (2008). Single nucleotide polymorphisms in ANKK1 and the dopamine D2 receptor gene affect cognitive outcome shortly after traumatic brain injury: a replication and extension study. Brain Injury, 22, 705–714.PubMedGoogle Scholar
  135. McArdle, J. J., Prescott, C. A., Hamagami, F., & Horn, J. L. (1998). A contempory method for developmental-genetic analysis of age changes in intellectual abilities. Developmental Neuropsychology, 14, 69–114.CrossRefGoogle Scholar
  136. McGue, M., & Christensen, K. (2002). The heritability of level and rate-of-change in cognitive functioning in Danish twins aged 70 years and older. Experimental Aging Research, 28, 435–451.PubMedGoogle Scholar
  137. MacKenzie, A., & Quinn, J. (1999). A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. Proceedings of the National Academy of Sciences of the United States of America, 96, 15251–15255.PubMedGoogle Scholar
  138. Meaburn, E. L., Harlaar, N., Craig, I. W., Schalkwyk, L. C., & Plomin, R. (2008). Quantitative trait locus association scan of early reading disability and ability using pooled DNA and 100 K SNP microarrays in a sample of 5760 children. Molecular Psychiatry, 13, 729–740.PubMedGoogle Scholar
  139. Meneses, A. (1999). 5-HT system and cognition. Neuroscience and Biobehavioral Reviews, 23, 1111–1125.PubMedGoogle Scholar
  140. Meyer-Lindenberg, A., Straub, R. E., Lipska, B. K., Verchinski, B. A., Goldberg, T., Callicott, J. H., et al. (2007). Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. Journal of Clinical Investigation, 117, 672–682.PubMedGoogle Scholar
  141. Miyajima, F., Ollier, W., Mayes, A., Jackson, A., Thacker, N., Rabbitt, P., et al. (2008a). Brain-derived neurotrophic factor polymorphism Val66Met influences cognitive abilities in the elderly. Genes Brain Behav, 7, 411–417.PubMedGoogle Scholar
  142. Miyajima, F., Quinn, J. P., Horan, M., Pickles, A., Ollier, W. E., Pendleton, N., et al. (2008b). Additive effect of BDNF and REST polymorphisms is associated with improved general cognitive ability. Genes Brain and Behavior, 7, 714–719.Google Scholar
  143. Moises, H. W., Frieboes, R. M., Spelzhaus, P., Yang, L., Köhnke, M., Herden-Kirchhoff, O., et al. (2001). No association between dopamine D2 receptor gene (DRD2) and human intelligence. Journal of Neural Transmission, 108, 115–121.PubMedGoogle Scholar
  144. Morales, E., Sunyer, J., Castro-Giner, F., Estivill, X., Julvez, J., Ribas-Fitó, N., et al. (2008). Influence of glutathione S-transferase polymorphisms on cognitive functioning effects induced by p, p’-DDT among preschoolers. Environmental Health Perspectives, 116, 1581–1585.PubMedGoogle Scholar
  145. Mori, E., Hirono, N., Yamashita, H., Imamura, T., Ikejiri, Y., Ikeda, M., et al. (1997). Premorbid brain size as a determinant of reserve capacity against intellectual decline in Alzheimer’s disease. American Journal of Psychiatry, 154, 18–24.PubMedGoogle Scholar
  146. Morrison, J. H., & Hof, P. R. (1997). Life and death of neurons in the aging brain. Science, 278, 412–419.PubMedGoogle Scholar
  147. Nacmias, B., Bessi, V., Bagnoli, S., Tedde, A., Cellini, E., Piccini, C., et al. (2008). KIBRA gene variants are associated with episodic memory performance in subjective memory complaints. Neuroscience Letters, 436, 145–147.PubMedGoogle Scholar
  148. Nagel, I. E., Chicherio, C., Li, S. C., von Oertzen, T., Sander, T., Villringer, A., et al. (2008). Human aging magnifies genetic effects on executive functioning and working memory. Frontiers in Human Neuroscience, 2, 1.PubMedGoogle Scholar
  149. Need, A. C., Attix, D. K., McEvoy, J. M., Cirulli, E. T., Linney, K. N., Wagoner, A. P., et al. (2008). Failure to replicate effect of Kibra on human memory in two large cohorts of European origin. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B, 667–668.Google Scholar
  150. Neubauer, A. C., Grabner, R. H., Fink, A., & Neuper, C. (2005). Intelligence and neural efficiency: further evidence of the influence of task content and sex on the brain-IQ relationship. Brain Research Cognitive Brain Research, 25, 217–225.PubMedGoogle Scholar
  151. Neville, M. J., Johnstone, E. C., & Walton, R. T. (2004). Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Human Mutation, 23, 540–545.PubMedGoogle Scholar
  152. Nicodemus, K. K., Luna, A., Vakkalanka, R., Goldberg, T., Egan, M., Straub, R. E., et al. (2006). Further evidence for association between ErbB4 and schizophrenia and influence on cognitive intermediate phenotypes in healthy controls. Molecular Psychiatry, 11, 1062–1065.PubMedGoogle Scholar
  153. Okada, T., Hashimoto, R., Numakawa, T., Iijima, Y., Kosuga, A., Tatsumi, M., et al. (2006). A complex polymorphic region in the brain-derived neurotrophic factor (BDNF) gene confers susceptibility to bipolar disorder and affects transcriptional activity. Molecular Psychiatry, 11, 695–703.PubMedGoogle Scholar
  154. Opgen-Rhein, C., Lencz, T., Burdick, K. E., Neuhaus, A. H., DeRosse, P., Goldberg, T. E., et al. (2008). Genetic variation in the DAOA gene complex: impact on susceptibility for schizophrenia and on cognitive performance. Schizophrenia Research, 103, 169–177.PubMedGoogle Scholar
  155. Papassotiropoulos, A., Henke, K., Aerni, A., Coluccia, D., Garcia, E., Wollmer, M. A., et al. (2005). Age-dependent effects of the 5-hydroxytryptamine-2a-receptor polymorphism (His452Tyr) on human memory. NeuroReport, 16, 839–842.PubMedGoogle Scholar
  156. Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., Hoerndli, F. J., Craig, D. W., Pearson, J. V., et al. (2006). Common Kibra alleles are associated with human memory performance. Science, 314, 475–478.PubMedGoogle Scholar
  157. Parasuraman, R., Greenwood, P. M., Kumar, R., & Fossella, J. (2005). Beyond heritability: neurotransmitter genes differentially modulate visuospatial attention and working memory. Psychological Science, 16, 200–207.PubMedGoogle Scholar
  158. Payton, A., Holland, F., Diggle, P., Rabbitt, P., Horan, M., Davidson, Y., et al. (2003). Cathepsin D exon 2 polymorphism associated with general intelligence in a healthy older population. Molecular Psychiatry, 8, 14–18.PubMedGoogle Scholar
  159. Payton, A., Gibbons, L., Davidson, Y., Ollier, W., Rabbitt, P., Worthington, J., et al. (2005). Influence of serotonin transporter gene polymorphisms on cognitive decline and cognitive abilities in a non-demented elderly population. Molecular Psychiatry, 10, 1133–1139.PubMedGoogle Scholar
  160. Payton, A., Horan, M., Davidson, Y., Gibbons, L., Ollier, W., Rabbitt, P., et al. (2006). Influence and interactions of cathepsin D, HLA-DRB1 and APOE on cognitive abilities in an older non-demented population. Genes Brain and Behavior, 5, 23–31.Google Scholar
  161. Peper, J. S., Brouwer, R. M., Boomsma, D. I., Kahn, R. S., & Hulshoff, H. E. (2007). Genetic influences on human brain structure: a review of brain imaging studies in twins. Human Brain Mapping, 28, 464–473.PubMedGoogle Scholar
  162. Peters, K., Wiltshire, S., Henders, A. K., Dragović, M., Badcock, J. C., Chandler, D., et al. (2008). Comprehensive analysis of tagging sequence variants in DTNBP1 shows no association with schizophrenia or with its composite neurocognitive endophenotypes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics , 147B, 1159–1166.Google Scholar
  163. Petrill, S. A., Plomin, R., McClearn, G. E., Smith, D. L., Vignetti, S., Chorney, M. J., et al. (1997). No association between general cognitive ability and the A1 allele of the D2 dopamine receptor gene. Behavior Genetics, 27, 29–31.PubMedGoogle Scholar
  164. Petryshen, T. L., Kaplan, B. J., Liu, M. F., & Field, L. L. (2000). Absence of significant linkage between phonological coding dyslexia and chromosome 6p23-21.3, as determined by use of quantitative-trait methods: confirmation of qualitative analyses. American Journal of Human Genetics, 66, 708–714.PubMedGoogle Scholar
  165. Pezawas, L., Verchinski, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, R. E., et al. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. Journal of Neuroscience, 24, 10099–10102.PubMedGoogle Scholar
  166. Pfefferbaum, A., Sullivan, E. V., Swan, G. E., & Carmelli, D. (2000). Brain structure in men remains highly heritable in the seventh and eighth decades of life. Neurobiology of Aging, 21, 63–74.PubMedGoogle Scholar
  167. Pierce, G. L., Lesniewski, L. A., Lawson, B. R., Beske, S. D., & Seals, D. R. (2009). Nuclear factor-{kappa}B activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circulation, 119, 1284–1292.PubMedGoogle Scholar
  168. Pietiläinen, O. P., Paunio, T., Loukola, A., Tuulio-Henriksson, A., Kieseppä, T., Thompson, P., et al. (2009). Association of AKT1 with verbal learning, verbal memory, and regional cortical gray matter density in twins. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150B, 683–692.Google Scholar
  169. Platko, J. V., Wood, F. B., Pelser, I., Meyer, M., Gericke, G. S., O’Rourke, J., et al. (2008). Association of reading disability on chromosome 6p22 in the Afrikaner population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B, 1278–1287.Google Scholar
  170. Plomin, R. (2003). Genetics, genes, genomics and g. Molecular Psychiatry, 8, 1–5.PubMedGoogle Scholar
  171. Plomin, R., Turic, D. M., Hill, L., Turic, D. E., Stephens, M., Williams, J., et al. (2004). A functional polymorphism in the succinate-semialdehyde dehydrogenase (aldehyde dehydrogenase 5 family, member A1) gene is associated with cognitive ability. Molecular Psychiatry, 9, 582–586.PubMedGoogle Scholar
  172. Poo, M. M. (2001). Neurotrophins as synaptic modulators. Nature Reviews Neuroscience, 2, 24–32.PubMedGoogle Scholar
  173. Posthuma, D., Baaré, W. F., Hulshoff Pol, H. E., Kahn, R. S., Boomsma, D. I., & De Geus, E. J. (2003). Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed. Twin Research, 6, 131–139.PubMedGoogle Scholar
  174. Pruunsild, P., Kazantseva, A., Aid, T., Palm, K., & Timmusk, T. (2007). Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics, 90, 397–406.PubMedGoogle Scholar
  175. Qi, L., & Cho, Y. A. (2008). Gene-environment interaction and obesity. Nutrition Reviews, 66, 684–694.PubMedGoogle Scholar
  176. Rabbitt, P., & Lowe, C. (2000). Patterns of cognitive ageing. Psychological Research, 63, 308–316.PubMedGoogle Scholar
  177. Rabbitt, P., Diggle, P., Holland, F., & McInnes, L. (2004a). Practice and drop-out effects during a 17-year longitudinal study of cognitive aging. Journal of Gerontology B Psychological Sciences Social Sciences, 59, 84–97.Google Scholar
  178. Rabbitt, P. M. A., Diggle, P., Holland, F., McInnes, L., Bent, N., Abson, V., et al. (2004b). The University of Manchester longitudinal study of cognition in normal healthy old age, 1983 through 2003. Aging, Neuropsychology and Cognition, 11, 245–279.Google Scholar
  179. Ravaglia, G., Forti, P., Maioli, F., Scali, R. C., Arnone, G., Talerico, T., et al. (2004). Common polymorphisms in methylenetetrahydrofolate reductase (MTHFR): relationships with plasma homocysteine concentrations and cognitive status in elderly northern italian subjects. Archives Gerontology and Geriatrics Supplement, 9, 339–348.Google Scholar
  180. Raz, N., Dahle, C. L., Rodrigue, K. M., Kennedy, K. M., Land, S. J., & Jacobs, B. S. (2008). Brain-derived neurotrophic factor Val66Met and blood glucose: a synergistic effect on memory. Frontiers in Human Neuroscience, 2, 12.PubMedGoogle Scholar
  181. Raz, N., Rodrigue, K. M., Kennedy, K. M., & Land, S. (2009). Genetic and vascular modifiers of age-sensitive cognitive skills: effects of COMT, BDNF, ApoE, and hypertension. Neuropsychology, 23, 105–116.PubMedGoogle Scholar
  182. Reeves, S., Bench, C., & Howard, R. (2002). Aging and the nigrostriatal dopamine system. International Journal of Geriatric Psychiatry, 17, 359–370.PubMedGoogle Scholar
  183. Rehman, H. U., & Masson, E. A. (2001). Neuroendocrinology of ageing. Age and Ageing, 30, 279–287.PubMedGoogle Scholar
  184. Reynolds, C. A., Finkel, D., Gatz, M., & Pedersen, N. L. (2002). Sources of influence on rate of cognitive change over time in Swedish twins: an application of latent growth models. Experimental Aging Research, 28, 407–433.PubMedGoogle Scholar
  185. Reynolds, C. A., Jansson, M., Gatz, M., & Pedersen, N. L. (2006). Longitudinal change in memory performance associated with HTR2A polymorphism. Neurobiology of Aging, 27, 150–154.PubMedGoogle Scholar
  186. Ridley, M. (2003). Nature via nurture. New York: Harper Collins.Google Scholar
  187. Rinne, J. O., Lonnberg, P., & Marjamaki, P. (1990). Age-dependent decline of dopamine-D1 and dopamine-D2 receptor. Brain Research, 508, 349–352.PubMedGoogle Scholar
  188. Rodgers, J. T., Lerin, C., Haas, W., Cygi, S. P., Spiegelman, B. M., & Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature, 434, 113–118.PubMedGoogle Scholar
  189. Rodriguez-Murillo, L., & Greenberg, D. A. (2008). Genetic association analysis: a primer on how it works, its strengths and its weaknesses. International Journal of Andrology, 31, 546–556.PubMedGoogle Scholar
  190. Rodríguez-Rodríguez, E., Infante, J., Llorca, J., Mateo, I., Sánchez-Quintana, C., García-Gorostiaga, I., et al. (2009). Age-dependent association of KIBRA genetic variation and Alzheimer’s disease risk. Neurobiology of Aging, 30, 322–324.PubMedGoogle Scholar
  191. Ropers, H. H., & Hamel, B. C. (2005). X-linked mental retardation. Nature Reviews Genetics, 6, 46–57.PubMedGoogle Scholar
  192. Roth, T. L., Lubin, F. D., Funk, A. J., & Sweatt, J. D. (2009). Lasting epigenetic influence of early-life adversity on the BDNF gene. Biological Psychiatry, 65, 760–769.PubMedGoogle Scholar
  193. Rujescu, D., Hartmann, A. M., Gonnermann, C., Möller, H. J., & Giegling, I. (2003). M129V variation in the prion protein may influence cognitive performance. Molecular Psychiatry, 8, 937–941.PubMedGoogle Scholar
  194. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403–428.PubMedGoogle Scholar
  195. Sanderson, T. H., Kumar, R., Sullivan, J. M., & Krause, G. S. (2008). Insulin blocks cytochrome c release in the reperfused brain through PI3-K signaling and by promoting Bax/Bcl-XL binding. Journal of Neurochemistry, 106, 1248–1258.PubMedGoogle Scholar
  196. Sarter, M., & Bruno, J. P. (2004). Developmental origins of the age-related decline in cortical cholinergic function and associated cognitive abilities. Neurobiology of Aging, 25, 1127–1139.PubMedGoogle Scholar
  197. Savitz, J., Solms, M., & Ramesar, R. (2006). Apolipoprotein E variants and cognition in healthy individuals: a critical opinion. Brain Research Reviews, 51, 125–135.PubMedGoogle Scholar
  198. Schaper, K., Kolsch, H., Popp, J., Wagner, M., & Jessen, F. (2008). KIBRA gene variants are associated with episodic memory in healthy elderly. Neurobiology of Aging, 29, 1123–1125.PubMedGoogle Scholar
  199. Seshadri, S., DeStefano, A. L., Au, R., Massaro, J. M., Beiser, A. S., Kelly-Hayes, M., et al. (2007). Genetic correlates of brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in the Framingham Study. BMC Medical Genetics, 8, S15.PubMedGoogle Scholar
  200. Sgaravatti, A. M., Sgarbi, M. B., Testa, C. G., Durigon, K., Pederzolli, C. D., Prestes, C. C., et al. (2007). Gamma-hydroxybutyric acid induces oxidative stress in cerebral cortex of young rats. Neurochemistry International, 50, 564–570.PubMedGoogle Scholar
  201. Shenkin, S. D., Rivers, C. S., Deary, I. J., Starr, J. M., & Wardlaw, J. M. (2009). Maximum (prior) brain size, not atrophy, correlates with cognition in community-dwelling older people: a cross-sectional neuroimaging study. BMC Geriatric, 9, 12.Google Scholar
  202. Shepherd, C. E., Piguet, O., Broe, G. A., Creasey, H., Waite, L. M., Brooks, W. S., et al. (2004). Histocompatibility antigens, aspirin use and cognitive performance in non-demented elderly subjects. Journal of Neuroimmunology, 148, 178–182.PubMedGoogle Scholar
  203. Shimokata, H., Ando, F., Niino, N., Miyasaka, K., & Funakoshi, A. (2005). Cholecystokinin A receptor gene promoter polymorphism and intelligence. Annals of Epidemiology, 15, 196–201.PubMedGoogle Scholar
  204. Sild, M., Koca, C., Bendixen, M. H., Frederiksen, H., McGue, M., Kølvraa, S., et al. (2006). Possible associations between successful aging and polymorphic markers in the Werner gene region. Annals of the New York Academy of Sciences, 1067, 309–310.PubMedGoogle Scholar
  205. Spearman, C. (1904). ‘General Intelligence’ objectively determined and measured. American Journal of Psychology, 15, 201–293.Google Scholar
  206. Starr, J. M., Fox, H., Harris, S. E., Deary, I. J., & Whalley, L. J. (2007). COMT genotype and cognitive ability: a longitudinal aging study. Neuroscience Letters, 421, 57–61.PubMedGoogle Scholar
  207. Stefanis, N. C., Trikalinos, T. A., Avramopoulos, D., Smyrnis, N., Evdokimidis, I., Ntzani, E. E., et al. (2007). Impact of schizophrenia candidate genes on schizotypy and cognitive endophenotypes at the population level. Biological Psychiatry, 62, 784–792.PubMedGoogle Scholar
  208. Sullivan, E. V., Pfefferbaum, A., Swan, G. E., & Carmelli, D. (2001). Heritability of hippocampal size in elderly twin men: equivalent influence from genes and environment. Hippocampus, 11, 754–762.PubMedGoogle Scholar
  209. Tan, H. Y., Nicodemus, K. K., Chen, Q., Li, Z., Brooke, J. K., Honea, R., et al. (2008). Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. Journal of Clinical Investigation, 118, 2200–2208.PubMedGoogle Scholar
  210. Tannenbaum, C., Mayo, N., & Ducharme, F. (2005). Older women's health priorities and perceptions of care delivery: results of the WOW health survey. Canadian Medical Association Journal, 173, 153–159.PubMedGoogle Scholar
  211. Thompson, R. F., & Kim, J. J. (1996). Memory systems in the brain and localization of a memory. Proceedings of the National Academy of Sciences of the United States of America, 93, 13438–13444.PubMedGoogle Scholar
  212. Thomson, P. A., Harris, S. E., Starr, J. M., Whalley, L. J., Porteous, D. J., & Deary, I. J. (2005). Association between genotype at an exonic SNP in DISC1 and normal cognitive aging. Neuroscience Letters, 389, 41–45.PubMedGoogle Scholar
  213. Thorgeirsson, T. E., Geller, F., Sulem, P., Rafnar, T., Wiste, A., Magnusson, K. P., et al. (2008). A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature, 452, 638–642.PubMedGoogle Scholar
  214. Togsverd, M., Werge, T. M., Tankó, L. B., Bagger, Y. Z., Qin, G. G., Hansen, T., et al. (2007). Cognitive performance in elderly women: significance of the 19 bp insertion/deletion polymorphism in the 5' flank of the dopamine beta-hydroxylase gene, educational level, body fat measures, serum triglyceride, alcohol consumption and age. International Journal of Geriatric Psychiatry, 22, 883–889.PubMedGoogle Scholar
  215. Tombaugh, T. N., & McIntyre, N. J. (1992). The mini-mental state examination: a comprehensive review. Journal of the American Geriatrics Society, 40, 922–935.PubMedGoogle Scholar
  216. Tsai, S. J., Yu, Y. W., Lin, C. H., Chen, T. J., Chen, S. P., & Hong, C. J. (2002). Dopamine D2 receptor and N-methyl-D-aspartate receptor 2B subunit genetic variants and intelligence. Neuropsychobiology, 45, 128–130.PubMedGoogle Scholar
  217. Tsai, S. J., Gau, Y. T., Liu, M. E., Hsieh, C. H., Liou, Y. J., & Hong, C. J. (2008). Association study of brain-derived neurotrophic factor and apolipoprotein E polymorphisms and cognitive function in aged males without dementia. Neuroscience Letters, 433, 158–162.PubMedGoogle Scholar
  218. van den Berg, E., Kloppenborg, R. P., Kessels, R. P., Kappelle, L. J., & Biessels, G. J. (2009). Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: A systematic comparison of their impact on cognition. Biochimica et Biophysica Acta, 1792, 470–481.PubMedGoogle Scholar
  219. van Kesteren, R. E., & Spencer, G. E. (2003). The role of neurotransmitters in neurite outgrowth and synapse formation. Reviews in the Neurosciences, 14, 217–231.PubMedGoogle Scholar
  220. Versijpt, J., Van Laere, K. J., Dumont, F., Decoo, D., Vandecapelle, M., Santens, P., et al. (2003). Imaging of the 5-HT2A system: age-, gender-, and Alzheimer's disease-related findings. Neurobiology of Aging, 24, 553–561.PubMedGoogle Scholar
  221. Visscher, P. M., Tynan, M., Whiteman, M. C., Pattie, A., White, I., Hayward, C., et al. (2003). Lack of association between polymorphisms in angiotensin-converting-enzyme and methylenetetrahydrofolate reductase genes and normal cognitive ageing in humans. Neuroscience Letters, 347, 175–178.PubMedGoogle Scholar
  222. Volkow, N. D., Gur, R. C., Wang, G. J., Fowler, J. S., Moberg, P. J., Ding, Y. S., et al. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of Psychiatry, 155, 344–349.PubMedGoogle Scholar
  223. Wacholder, S., Rothman, N., & Caporaso, N. (2002). Counterpoint: bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer. Cancer Epidemiology Biomarkers Prevention, 11, 513–520.Google Scholar
  224. Wang, H., Yuan, G., Prabhakar, N. R., Boswell, M., & Katz, D. M. (2006). Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. Journal of Neurochemistry, 96, 694–705.PubMedGoogle Scholar
  225. Wang, F. T., Hu, H., Schwartz, J., Weuve, J., Spiro, A. S., Sparrow, D., et al. (2007). Modifying effects of the HFE polymorphisms on the association between lead burden and cognitive decline. Environmental Health Perspectives, 115, 1210–1215.PubMedCrossRefGoogle Scholar
  226. Webster, M. J., Weickert, C. S., Herman, M., & Kleinman, J. E. (2002). BDNF mRNA expression during postnatal development, maturation and aging of the human prefrontal cortex. Developmental Brain Research, 139, 139–150.PubMedGoogle Scholar
  227. West, M. J., Coleman, P. D., Flood, D. G., & Troncoso, J. C. (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet, 344, 769–772.PubMedGoogle Scholar
  228. Whitmer, R. A., Gunderson, E. P., Quesenberry, C. P., Jr., Zhou, J., & Yaffe, K. (2007). Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Current Alzheimer Research, 4, 103–109.PubMedGoogle Scholar
  229. Wisdom, N. M., Callahan, J. L., & Hawkins, K. A. (2009). The effects of apolipoprotein E on non-impaired cognitive functioning: A meta-analysis. Neurobiol Aging, (in press) PMID: 19285755.Google Scholar
  230. Yaffe, K., Kanaya, A. M., Lindquist, K., Hsueh, W. C., Cummings, S. R., Beamer, B., et al. (2008). Health ABC Study. PPAR-gamma Pro12Ala genotype and risk of cognitive decline in elders. Neurobiology of Aging, 29(1), 78–83.PubMedGoogle Scholar
  231. Yaffe, K., Lindquist, K., Sen, S., Cauley, J., Ferrell, R., Penninx, B., et al. (2009). Estrogen receptor genotype and risk of cognitive impairment in elders: Findings from the Health ABC study. Neurobiology of Aging, 30, 607–614.PubMedGoogle Scholar
  232. Yang, B. Z., Kranzler, H. R., Zhao, H., Gruen, J. R., Luo, X., & Gelernter, J. (2008). Haplotypic variants in DRD2, ANKK1, TTC12, and NCAM1 are associated with comorbid alcohol and drug dependence. Alcoholism, Clinical and Experimental Research, 32, 2117–2127.PubMedGoogle Scholar
  233. Yu, Y. W., Tsai, S. J., Hong, C. J., Chen, M. C., Yang, C. W., & Chen, T. J. (2005). Association study of a functional MAOA-uVNTR gene polymorphism and cognitive function in healthy females. Neuropsychobiology, 52, 77–82.PubMedGoogle Scholar
  234. Zinkstok, J. R., de Wilde, O., van Amelsvoort, T. A., Tanck, M. W., Baas, F., & Linszen, D. H. (2007). Association between the DTNBP1 gene and intelligence: a case-control study in young patients with schizophrenia and related disorders and unaffected siblings. Behavioral and Brain Functions, 3, 19.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Centre for Integrated Genomic Medical ResearchUniversity of ManchesterManchesterUK

Personalised recommendations