Neuropsychology Review

, 19:415 | Cite as

Cerebral White Matter Integrity and Cognitive Aging: Contributions from Diffusion Tensor Imaging

  • David J. Madden
  • Ilana J. Bennett
  • Allen W. Song


The integrity of cerebral white matter is critical for efficient cognitive functioning, but little is known regarding the role of white matter integrity in age-related differences in cognition. Diffusion tensor imaging (DTI) measures the directional displacement of molecular water and as a result can characterize the properties of white matter that combine to restrict diffusivity in a spatially coherent manner. This review considers DTI studies of aging and their implications for understanding adult age differences in cognitive performance. Decline in white matter integrity contributes to a disconnection among distributed neural systems, with a consistent effect on perceptual speed and executive functioning. The relation between white matter integrity and cognition varies across brain regions, with some evidence suggesting that age-related effects exhibit an anterior–posterior gradient. With continued improvements in spatial resolution and integration with functional brain imaging, DTI holds considerable promise, both for theories of cognitive aging and for translational application.


Diffusion tensor imaging White matter Cognition Aging Information processing Human development 



Preparation of this article was supported by National Institutes of Health research grants R01 AG011622 (DJM), F31 AG030874 (IJB), and R01 NS050329 (AWS).


The authors declare that no conflicts of interest are associated with the preparation of this article.


  1. Abe, O., Aoki, S., Hayashi, N., Yamada, H., Kunimatsu, A., Mori, H., et al. (2002). Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis. Neurobiology of Aging, 23, 433–441.PubMedGoogle Scholar
  2. Alexander, D. C. (2008). A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magnetic Resonance in Medicine, 60, 439–448.PubMedGoogle Scholar
  3. Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56, 924–935.PubMedGoogle Scholar
  4. Ardekani, S., Kumar, A., Bartzokis, G., & Sinha, U. (2007). Exploratory voxel-based analysis of diffusion indices and hemispheric asymmetry in normal aging. Magnetic Resonance Imaging, 25, 154–167.PubMedGoogle Scholar
  5. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., & Basser, P. J. (2008). AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magnetic Resonance in Medicine, 59, 1347–1354.PubMedGoogle Scholar
  6. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182.PubMedGoogle Scholar
  7. Bartzokis, G. (2004). Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiology of Aging, 25, 5–18.PubMedGoogle Scholar
  8. Bartzokis, G., Sultzer, D., Lu, P. H., Nuechterlein, K. H., Mintz, J., & Cummings, J. L. (2004). Heterogeneous age-related breakdown of white matter structural integrity: Implications for cortical “disconnection” in aging and Alzheimer’s disease. Neurobiology of Aging, 25, 843–851.PubMedGoogle Scholar
  9. Basser, P. J., & Jones, D. K. (2002). Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR in Biomedicine, 15, 456–467.PubMedGoogle Scholar
  10. Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44, 625–632.PubMedGoogle Scholar
  11. Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system—a technical review. NMR in Biomedicine, 15, 435–455.PubMedGoogle Scholar
  12. Behrens, T. E., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R. G., Clare, S., et al. (2003). Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine, 50, 1077–1088.PubMedGoogle Scholar
  13. Bendlin, B. B., Ries, M. L., Lazar, M., Alexander, A. L., Dempsey, R. J., Rowley, H. A., et al. (2008). Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage, 42, 503–514.PubMedGoogle Scholar
  14. Bennett, I. J., Madden, D. J., Vaidya, C. J., Howard, J. H., Jr., & Howard, D. V. (2009). Age-related differences in multiple measures of white matter integrity: A diffusion tensor imaging study of healthy aging. Human Brain Mapping.Google Scholar
  15. Bhagat, Y. A., & Beaulieu, C. (2004). Diffusion anisotropy in subcortical white matter and cortical gray matter: Changes with aging and the role of CSF-suppression. Journal of Magnetic Resonance Imaging, 20, 216–227.PubMedGoogle Scholar
  16. Bozzali, M., Franceschi, M., Falini, A., Pontesilli, S., Cercignani, M., Magnani, G., et al. (2001). Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology, 57, 1135–1137.PubMedGoogle Scholar
  17. Brickman, A. M., Zimmerman, M. E., Paul, R. H., Grieve, S. M., Tate, D. F., Cohen, R. A., et al. (2006). Regional white matter and neuropsychological functioning across the adult lifespan. Biological Psychiatry, 60, 444–453.PubMedGoogle Scholar
  18. Bucur, B., Madden, D. J., Spaniol, J., Provenzale, J. M., Cabeza, R., White, L. E., et al. (2008). Age-related slowing of memory retrieval: contributions of perceptual speed and cerebral white matter integrity. Neurobiology of Aging, 29, 1070–1079.PubMedGoogle Scholar
  19. Burzynska, A. Z., Preuschhof, C., Bäckman, L., Nyberg, L., Li, S.-C., Lindenberger, U., et al. (2009). Age-related differences in white-matter microstructure: Region-specific patterns of diffusivity. Manuscript submitted for publication.Google Scholar
  20. Cabeza, R., Nyberg, L., & Park, D. (eds). (2005). Cognitive neuroscience of aging: Linking cognitive and cerebral aging. Oxford: Oxford University Press.Google Scholar
  21. Catani, M. (2006). Diffusion tensor magnetic resonance imaging tractography in cognitive disorders. Current Opinion in Neurology, 19, 599–606.PubMedGoogle Scholar
  22. Catani, M. (2007). From hodology to function. Brain, 130, 602–605.PubMedGoogle Scholar
  23. Catani, M., & Ffytche, D. H. (2005). The rises and falls of disconnection syndromes. Brain, 128, 2224–2239.PubMedGoogle Scholar
  24. Catani, M., Howard, R. J., Pajevic, S., & Jones, D. K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage, 17, 77–94.PubMedGoogle Scholar
  25. Charlton, R. A., Barrick, T. R., McIntyre, D. J., Shen, Y., O’Sullivan, M., Howe, F. A., et al. (2006). White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology, 66, 217–222.PubMedGoogle Scholar
  26. Charlton, R. A., Landau, S., Schiavone, F., Barrick, T. R., Clark, C. A., Markus, H. S., et al. (2008). A structural equation modeling investigation of age-related variance in executive function and DTI measured white matter damage. Neurobiology of Aging, 29, 1547–1555.PubMedGoogle Scholar
  27. Chen, Z. G., Li, T. Q., & Hindmarsh, T. (2001). Diffusion tensor trace mapping in normal adult brain using single-shot EPI technique. A methodological study of the aging brain. Acta Radiologica, 42, 447–458.PubMedGoogle Scholar
  28. Chen, B., Guo, H., & Song, A. W. (2006). Correction for direction-dependent distortions in diffusion tensor imaging using matched magnetic field maps. Neuroimage, 30, 121–129.PubMedGoogle Scholar
  29. Chen, N.-K., Chou, Y.-H., & Madden, D. J. (2009). Measurement of spontaneous signal fluctuations in fMRI: Adult age differences in intrinsic functional connectivity. Brain Structure and Function.Google Scholar
  30. Ciccarelli, O., Catani, M., Johansen-Berg, H., Clark, C., & Thompson, A. (2008). Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurology, 7, 715–727.PubMedGoogle Scholar
  31. Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., et al. (2003). Aerobic fitness reduces brain tissue loss in aging humans. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58, 176–180.Google Scholar
  32. Colcombe, S. J., Kramer, A. F., Erickson, K. I., & Scalf, P. (2005). The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychology and Aging, 20, 363–375.PubMedGoogle Scholar
  33. Conturo, T. E., Lori, N. F., Cull, T. S., Akbudak, E., Snyder, A. Z., Shimony, J. S., et al. (1999). Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences of the United States of America, 96, 10422–10427.PubMedGoogle Scholar
  34. Corouge, I., Fletcher, P. T., Joshi, S., Gouttard, S., & Gerig, G. (2006). Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. Medical Image Analysis, 10, 786–798.PubMedGoogle Scholar
  35. Correia, S., Lee, S. Y., Voorn, T., Tate, D. F., Paul, R. H., Zhang, S., et al. (2008). Quantitative tractography metrics of white matter integrity in diffusion-tensor MRI. Neuroimage, 42, 568–581.PubMedGoogle Scholar
  36. Damoiseaux, J. S., Beckmann, C. F., Arigita, E. J., Barkhof, F., Scheltens, P., Stam, C. J., et al. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex, 18, 1856–1864.PubMedGoogle Scholar
  37. Damoiseaux, J. S., Smith, S. M., Witter, M. P., Arigita, E. J., Barkhof, F., Scheltens, P., et al. (2009). White matter tract integrity in aging and Alzheimer’s disease. Human Brain Mapping, 30, 1051–1059.PubMedGoogle Scholar
  38. Dauguet, J., Peled, S., Berezovskii, V., Delzescaux, T., Warfield, S. K., Born, R., et al. (2007). Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. Neuroimage, 37, 530–538.PubMedGoogle Scholar
  39. Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior–anterior shift in aging. Cerebral Cortex, 18, 1201–1209.PubMedGoogle Scholar
  40. Davis, S. W., Dennis, N. A., Buchler, N. G., White, L. E., Madden, D. J., & Cabeza, R. (2009). Assessing the effects of age on long white matter tracts using diffusion tensor tractography. Neuroimage, 46, 530–541.PubMedGoogle Scholar
  41. Deary, I. J., Bastin, M. E., Pattie, A., Clayden, J. D., Whalley, L. J., Starr, J. M., et al. (2006). White matter integrity and cognition in childhood and old age. Neurology, 66, 505–512.PubMedGoogle Scholar
  42. DeCarli, C., Murphy, D. G., Tranh, M., Grady, C. L., Haxby, J. V., Gillette, J. A., et al. (1995). The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults. Neurology, 45, 2077–2084.PubMedGoogle Scholar
  43. Dennis, N. A., & Cabeza, R. (2008). Neuroimaging of healthy cognitive aging. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (3rd ed., pp. 1–54). New York: Psychology.Google Scholar
  44. Filippi, M., Cercignani, M., Inglese, M., Horsfield, M. A., & Comi, G. (2001). Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology, 56, 304–311.PubMedGoogle Scholar
  45. Filley, C. M. (2005). White matter and behavioral neurology. Annals of the New York Academy of Sciences, 1064, 162–183.PubMedGoogle Scholar
  46. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 9673–9678.PubMedGoogle Scholar
  47. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences of the United States of America, 103, 10046–10051.PubMedGoogle Scholar
  48. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189–210.Google Scholar
  49. Galvin, R. J., Heron, J. R., & Regan, D. (1977). Subclinical optic neuropathy in multiple sclerosis. Archives of Neurology, 34, 666–670.PubMedGoogle Scholar
  50. Ge, Y., Law, M., & Grossman, R. I. (2005). Applications of diffusion tensor MR imaging in multiple sclerosis. Annals of the New York Academy of Sciences, 1064, 202–219.PubMedGoogle Scholar
  51. Geschwind, N. (1965a). Disconnexion syndromes in animals and man. I. Brain, 88, 237–294.PubMedGoogle Scholar
  52. Geschwind, N. (1965b). Disconnexion syndromes in animals and man. II. Brain, 88, 585–644.PubMedGoogle Scholar
  53. Gold, B. T., Powell, D. K., Xuan, L., Jiang, Y., & Hardy, P. A. (2007). Speed of lexical decision correlates with diffusion anisotropy in left parietal and frontal white matter: evidence from diffusion tensor imaging. Neuropsychologia, 45, 2439–2446.PubMedGoogle Scholar
  54. Gold, B. T., Powell, D. K., Xuan, L., Jicha, G. A., & Smith, C. D. (2008). Age-related slowing of task switching is associated with decreased integrity of frontoparietal white matter. Neurobiology of Aging.Google Scholar
  55. Goldberg-Zimring, D., Mewes, A. U., Maddah, M., & Warfield, S. K. (2005). Diffusion tensor magnetic resonance imaging in multiple sclerosis. Journal of Neuroimaging, 15, 68S–81S.PubMedGoogle Scholar
  56. Grady, C. L. (2008). Cognitive neuroscience of aging. Annals of the New York Academy of Sciences, 1124, 127–144.PubMedGoogle Scholar
  57. Greenwood, P. M. (2000). The frontal aging hypothesis evaluated. Journal of the International Neuropsychological Society, 6, 705–726.PubMedGoogle Scholar
  58. Greenwood, P. M. (2007). Functional plasticity in cognitive aging: review and hypothesis. Neuropsychology, 21, 657–673.PubMedGoogle Scholar
  59. Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101, 4637–4642.PubMedGoogle Scholar
  60. Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19, 72–78.PubMedGoogle Scholar
  61. Grieve, S. M., Williams, L. M., Paul, R. H., Clark, C. R., & Gordon, E. (2007). Cognitive aging, executive function, and fractional anisotropy: a diffusion tenor MR imaging study. American Journal of Neuroradiology, 28, 226–235.PubMedGoogle Scholar
  62. Gunning-Dixon, F. M., & Raz, N. (2000). The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology, 14, 224–232.PubMedGoogle Scholar
  63. Gunning-Dixon, F. M., & Raz, N. (2003). Neuroanatomical correlates of selected executive functions in middle-aged and older adults: a prospective MRI study. Neuropsychologia, 41, 1929–1941.PubMedGoogle Scholar
  64. Gunning-Dixon, F. M., Brickman, A. M., Cheng, J. C., & Alexopoulos, G. S. (2009). Aging of cerebral white matter: a review of MRI findings. International Journal of Geriatric Psychiatry, 24, 109–117.PubMedGoogle Scholar
  65. Guttmann, C. R., Jolesz, F. A., Kikinis, R., Killiany, R. J., Moss, M. B., Sandor, T., et al. (1998). White matter changes with normal aging. Neurology, 50, 972–978.PubMedGoogle Scholar
  66. Halligan, F. R., Reznikoff, M., Friedman, H. P., & La Rocca, N. G. (1988). Cognitive dysfunction and change in multiple sclerosis. Journal of Clinical Psychology, 44, 540–548.PubMedGoogle Scholar
  67. Head, D., Buckner, R. L., Shimony, J. S., Williams, L. E., Akbudak, E., Conturo, T. E., et al. (2004). Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cerebral Cortex, 14, 410–423.PubMedGoogle Scholar
  68. Holland, C. M., Smith, E. E., Csapo, I., Gurol, M. E., Brylka, D. A., Killiany, R. J., et al. (2008). Spatial distribution of white-matter hyperintensities in alzheimer disease, cerebral amyloid angiopathy, and healthy aging. Stroke, 39, 1127–1133.PubMedGoogle Scholar
  69. Jennekens-Schinkel, A., Laboyrie, P. M., Lanser, J. B., & van der Velde, E. A. (1990). Cognition in patients with multiple sclerosis after four years. Journal of the Neurological Sciences, 99, 229–247.PubMedGoogle Scholar
  70. Jernigan, T. L., Archibald, S. L., Fennema-Notestine, C., Gamst, A. C., Stout, J. C., Bonner, J., et al. (2001). Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiology of Aging, 22, 581–594.PubMedGoogle Scholar
  71. Johansen-Berg, H., & Behrens, T. E. (2006). Just pretty pictures? What diffusion tractography can add in clinical neuroscience. Current Opinion in Neurology, 19, 379–385.PubMedGoogle Scholar
  72. Johansen-Berg, H., & Behrens, T. E. (eds). (2009). Diffusion MRI: From quantitative measurement to In vivo neuroanatomy. San Diego: Elsevier.Google Scholar
  73. Jones, D. K. (2008). Studying connections in the living human brain with diffusion MRI. Cortex, 44, 936–952.PubMedGoogle Scholar
  74. Kail, R. (1998). Speed of information processing in patients with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 20, 98–106.PubMedGoogle Scholar
  75. Kealey, S. M., Kim, Y., Whiting, W. L., Madden, D. J., & Provenzale, J. M. (2005). Determination of multiple sclerosis plaque size with diffusion-tensor MR Imaging: comparison study with healthy volunteers. Radiology, 236, 615–620.PubMedGoogle Scholar
  76. Kennedy, K. M., & Raz, N. (2009). Aging white matter and cognition: differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia., 47, 916–927.PubMedGoogle Scholar
  77. Keys, B. A., & White, D. A. (2000). Exploring the relationship between age, executive abilities, and psychomotor speed. Journal of the International Neuropsychological Society, 6, 76–82.PubMedGoogle Scholar
  78. Kramer, A. F., & Hillman, C. H. (2006). Aging, physical activity, and neurocognitive function. In E. Acevedo & P. Ekekakis (Eds.), Psychobiology of physical activity (pp. 45–60). Champaign: Human Kinetics.Google Scholar
  79. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418–419.PubMedGoogle Scholar
  80. LaBerge, D. (2000). Networks of attention. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (2nd ed., pp. 711–723). Cambridge: MIT.Google Scholar
  81. Lawes, I. N., Barrick, T. R., Murugam, V., Spierings, N., Evans, D. R., Song, M., et al. (2008). Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage, 39, 62–79.PubMedGoogle Scholar
  82. Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews. Neuroscience, 4, 469–480.PubMedGoogle Scholar
  83. Lindenberger, U., & Pötter, U. (1998). The complex nature of unique and shared effects in hierarchical linear regression: implications for developmental psychology. Psychological Methods, 3, 218–230.Google Scholar
  84. Litvan, I., Grafman, J., Vendrell, P., & Martinez, J. M. (1988). Slowed information processing in multiple sclerosis. Archives of Neurology, 45, 281–285.PubMedGoogle Scholar
  85. Liu, C., Bammer, R., Kim, D. H., & Moseley, M. E. (2004). Self-navigated interleaved spiral (SNAILS): application to high-resolution diffusion tensor imaging. Magnetic Resonance in Medicine, 52, 1388–1396.PubMedGoogle Scholar
  86. Liu, C., Mang, S., & Moseley, M. E. (2009). In vivo generalized diffusion tensor imaging (GDTI) using higher-order tensors (HOT). Magnetic Resonance in Medicine.Google Scholar
  87. Madden, D. J. (2001). Speed and timing of behavioral processes. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (5th ed., pp. 288–312). San Diego: Academic.Google Scholar
  88. Madden, D. J. (2007). Aging and visual attention. Current Directions in Psychological Science, 16, 70–74.PubMedGoogle Scholar
  89. Madden, D. J., Whiting, W. L., Huettel, S. A., White, L. E., MacFall, J. R., & Provenzale, J. M. (2004). Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. Neuroimage, 21, 1174–1181.PubMedGoogle Scholar
  90. Madden, D. J., Whiting, W. L., & Huettel, S. A. (2005). Age-related changes in neural activity during visual perception and attention. In R. Cabeza, L. Nyberg & D. Park (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 157–185). Oxford: Oxford University Press.Google Scholar
  91. Madden, D. J., Spaniol, J., Whiting, W. L., Bucur, B., Provenzale, J. M., Cabeza, R., et al. (2007). Adult age differences in the functional neuroanatomy of visual attention: a combined fMRI and DTI study. Neurobiology of Aging, 28, 459–476.PubMedGoogle Scholar
  92. Madden, D. J., Spaniol, J., Costello, M. C., Bucur, B., White, L. E., Cabeza, R., et al. (2009). Cerebral white matter integrity mediates adult age differences in cognitive performance. Journal of Cognitive Neuroscience, 21, 289–302.PubMedGoogle Scholar
  93. Malloy, P., Correia, S., Stebbins, G., & Laidlaw, D. H. (2007). Neuroimaging of white matter in aging and dementia. The Clinical Neuropsychologist, 21, 73–109.PubMedGoogle Scholar
  94. Marks, B. L., Madden, D. J., Bucur, B., Provenzale, J. M., White, L. E., Cabeza, R., et al. (2007). Role of aerobic fitness and aging on cerebral white matter integrity. Annals of the New York Academy of Sciences, 1097, 171–174.PubMedGoogle Scholar
  95. Mesulam, M. M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28, 597–613.PubMedGoogle Scholar
  96. Mori, S. (2007). Introduction to diffusion tensor imaging. Amsterdam: Elsevier.Google Scholar
  97. Mori, S., & van Zijl, P. C. (2002). Fiber tracking: principles and strategies—a technical review. NMR in Biomedicine, 15, 468–480.PubMedGoogle Scholar
  98. Mori, S., & Zhang, J. (2006). Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron, 51, 527–539.PubMedGoogle Scholar
  99. Mori, S., Crain, B. J., Chacko, V. P., & van Zijl, P. C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45, 265–269.PubMedGoogle Scholar
  100. Moseley, M. (2002). Diffusion tensor imaging and aging—a review. NMR in Biomedicine, 15, 553–560.PubMedGoogle Scholar
  101. Mukherjee, P. (2005). Diffusion tensor imaging and fiber tractography in acute stroke. Neuroimaging Clinics of North America, 15, 655–665.PubMedGoogle Scholar
  102. Nitkunan, A., Charlton, R. A., McIntyre, D. J., Barrick, T. R., Howe, F. A., & Markus, H. S. (2008). Diffusion tensor imaging and MR spectroscopy in hypertension and presumed cerebral small vessel disease. Magnetic Resonance in Medicine, 59, 528–534.PubMedGoogle Scholar
  103. Nordahl, C. W., Ranganath, C., Yonelinas, A. P., Decarli, C., Fletcher, E., & Jagust, W. J. (2006). White matter changes compromise prefrontal cortex function in healthy elderly individuals. Journal of Cognitive Neuroscience, 18, 418–429.Google Scholar
  104. Nucifora, P. G., Verma, R., Lee, S. K., & Melhem, E. R. (2007). Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology, 245, 367–384.PubMedGoogle Scholar
  105. Nusbaum, A. O., Tang, C. Y., Buchsbaum, M. S., Wei, T. C., & Atlas, S. W. (2001). Regional and global changes in cerebral diffusion with normal aging. AJNR. American Journal of Neuroradiology, 22, 136–142.PubMedGoogle Scholar
  106. Oosterman, J. M., Sergeant, J. A., Weinstein, H. C., & Scherder, E. J. (2004). Timed executive functions and white matter in aging with and without cardiovascular risk factors. Reviews in the Neurosciences, 15, 439–462.PubMedGoogle Scholar
  107. O’Sullivan, M., Jones, D. K., Summers, P. E., Morris, R. G., Williams, S. C., & Markus, H. S. (2001). Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology, 57, 632–638.PubMedGoogle Scholar
  108. Parker, G. J., Haroon, H. A., & Wheeler-Kingshott, C. A. (2003). A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. Journal of Magnetic Resonance Imaging, 18, 242–254.PubMedGoogle Scholar
  109. Paus, T., Collins, D. L., Evans, A. C., Leonard, G., Pike, B., & Zijdenbos, A. (2001). Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Research Bulletin, 54, 255–266.PubMedGoogle Scholar
  110. Peled, S. (2007). New perspectives on the sources of white matter DTI signal. IEEE Transactions on Medical Imaging, 26, 1448–1455.PubMedGoogle Scholar
  111. Pfefferbaum, A., & Sullivan, E. V. (2003). Increased brain white matter diffusivity in normal adult aging: relationship to anisotropy and partial voluming. Magnetic Resonance in Medicine, 49, 953–961.PubMedGoogle Scholar
  112. Pfefferbaum, A., Sullivan, E. V., Hedehus, M., Lim, K. O., Adalsteinsson, E., & Moseley, M. (2000). Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magnetic Resonance in Medicine, 44, 259–268.PubMedGoogle Scholar
  113. Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36, 893–906.PubMedGoogle Scholar
  114. Pierpaoli, C., Barnett, A., Pajevic, S., Chen, R., Penix, L. R., Virta, A., et al. (2001). Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage, 13, 1174–1185.PubMedGoogle Scholar
  115. Prins, N. D., van Dijk, E. J., den Heijer, T., Vermeer, S. E., Jolles, J., Koudstaal, P. J., et al. (2005). Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain, 128, 2034–2041.PubMedGoogle Scholar
  116. Rabbitt, P., Scott, M., Lunn, M., Thacker, N., Lowe, C., Pendleton, N., et al. (2007). White matter lesions account for all age-related declines in speed but not in intelligence. Neuropsychology, 21, 363–370.PubMedGoogle Scholar
  117. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682.PubMedGoogle Scholar
  118. Ramnani, N., Behrens, T. E., Penny, W., & Matthews, P. M. (2004). New approaches for exploring anatomical and functional connectivity in the human brain. Biological Psychiatry, 56, 613–619.Google Scholar
  119. Rao, S. M. (1995). Neuropsychology of multiple sclerosis. Current Opinion in Neurology, 8, 216–220.PubMedGoogle Scholar
  120. Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In F. I. M. Craik & T. A. Salthouse (Eds.), Handbook of aging and cognition (2nd ed., pp. 1–90). Mahwah: Erlbaum.Google Scholar
  121. Raz, N., Rodrigue, K. M., & Acker, J. D. (2003). Hypertension and the brain: vulnerability of the prefrontal regions and executive functions. Behavioral Neuroscience, 117, 1169–1180.PubMedGoogle Scholar
  122. Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 15, 1676–1689.PubMedGoogle Scholar
  123. Raz, N., Rodrigue, K. M., Kennedy, K. M., & Acker, J. D. (2007). Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults. Neuropsychology, 21, 149–157.PubMedGoogle Scholar
  124. Reese, T. G., Heid, O., Weisskoff, R. M., & Wedeen, V. J. (2003). Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magnetic Resonance in Medicine, 49, 177–182.PubMedGoogle Scholar
  125. Regan, D., Silver, R., & Murray, T. J. (1977). Visual acuity and contrast sensitivity in multiple sclerosis-hidden visual loss: an auxiliary diagnostic test. Brain, 100, 563–579.PubMedGoogle Scholar
  126. Rocca, M. A., Pagani, E., Absinta, M., Valsasina, P., Falini, A., Scotti, G., et al. (2007). Altered functional and structural connectivities in patients with MS: a 3-T study. Neurology, 69, 2136–2145.PubMedGoogle Scholar
  127. Rodriguez-Aranda, C., & Sundet, K. (2006). The frontal hypothesis of cognitive aging: factor structure and age effects on four frontal tests among healthy individuals. Journal of Genetic Psychology, 167, 269–287.PubMedGoogle Scholar
  128. Rosenthal, R., & DiMatteo, M. R. (2001). Meta-analysis: recent developments in quantitative methods for literature reviews. Annual Review of Psychology, 52, 59–82.PubMedGoogle Scholar
  129. Rovaris, M., Iannucci, G., Cercignani, M., Sormani, M. P., De Stefano, N., Gerevini, S., et al. (2003). Age-related changes in conventional, magnetization transfer, and diffusion-tensor MR imaging findings: study with whole-brain tissue histogram analysis. Radiology, 227, 731–738.PubMedGoogle Scholar
  130. Salat, D. H., Kaye, J. A., & Janowsky, J. S. (1999). Prefrontal gray and white matter volumes in healthy aging and Alzheimer disease. Archives of Neurology, 56, 338–344.PubMedGoogle Scholar
  131. Salat, D. H., Tuch, D. S., Greve, D. N., van der Kouwe, A. J., Hevelone, N. D., Zaleta, A. K., et al. (2005). Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiology of Aging, 26, 1215–1227.PubMedGoogle Scholar
  132. Salthouse, T. A. (1992). Mechanisms of age-cognition relations in adulthood. Hillsdale: Erlbaum.Google Scholar
  133. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403–428.PubMedGoogle Scholar
  134. Salthouse, T. A., & Madden, D. J. (2007). Information processing speed and aging. In J. Deluca & J. Kalmar (Eds.), Information processing speed in clinical populations (pp. 221–241). New York: Psychology.Google Scholar
  135. Salthouse, T. A., Fristoe, N., & Rhee, S. H. (1996). How localized are age-related effects on neuropsychological measures? Neuropsychology, 10, 272–285.Google Scholar
  136. Salthouse, T. A., Atkinson, T. M., & Berish, D. E. (2003). Executive functioning as a potential mediator of age-related cognitive decline in normal adults. Journal of Experimental Psychology: General, 132, 566–594.Google Scholar
  137. Sambataro, F., Murty, V. P., Callicott, J. H., Tan, H. Y., Das, S., Weinberger, D. R., et al. (2008). Age-related alterations in default mode network: Impact on working memory performance. Neurobiology of Aging.Google Scholar
  138. Schmahmann, J. D., Pandya, D. N., Wang, R., Dai, G., D’Arceuil, H. E., de Crespigny, A. J., et al. (2007). Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain, 130, 630–653.PubMedGoogle Scholar
  139. Schulte, T., Sullivan, E. V., Muller-Oehring, E. M., Adalsteinsson, E., & Pfefferbaum, A. (2005). Corpus callosal microstructural integrity influences interhemispheric processing: a diffusion tensor imaging study. Cerebral Cortex, 15, 1384–1392.PubMedGoogle Scholar
  140. Shenkin, S. D., Bastin, M. E., MacGillivray, T. J., Deary, I. J., Starr, J. M., & Wardlaw, J. M. (2003). Childhood and current cognitive function in healthy 80-year-olds: a DT-MRI study. Neuroreport, 14, 345–349.PubMedGoogle Scholar
  141. Shenkin, S. D., Bastin, M. E., Macgillivray, T. J., Deary, I. J., Starr, J. M., Rivers, C. S., et al. (2005). Cognitive correlates of cerebral white matter lesions and water diffusion tensor parameters in community-dwelling older people. Cerebrovascular Disorders, 20, 310–318.Google Scholar
  142. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208–219.PubMedGoogle Scholar
  143. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31, 1487–1505.PubMedGoogle Scholar
  144. Smith, S. M., Johansen-Berg, H., Jenkinson, M., Rueckert, D., Nichols, T. E., Miller, K. L., et al. (2007). Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nature Protocols, 2, 499–503.PubMedGoogle Scholar
  145. Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage, 17, 1429–1436.PubMedGoogle Scholar
  146. Song, S. K., Kim, J. H., Lin, S. J., Brendza, R. P., & Holtzman, D. M. (2004). Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition. Neurobiology of Disease, 15, 640–647.PubMedGoogle Scholar
  147. Stufflebeam, S. M., Witzel, T., Mikulski, S., Hamalainen, M. S., Temereanca, S., Barton, J. J., et al. (2008). A non-invasive method to relate the timing of neural activity to white matter microstructural integrity. Neuroimage, 42, 710–716.PubMedGoogle Scholar
  148. Sullivan, E. V., & Pfefferbaum, A. (2006). Diffusion tensor imaging and aging. Neuroscience and Biobehavioral Reviews, 30, 749–761.PubMedGoogle Scholar
  149. Sullivan, E. V., & Pfefferbaum, A. (2007). Neuroradiological characterization of normal adult ageing. British Journal of Radiology, 80, S99–108.PubMedGoogle Scholar
  150. Sullivan, E. V., Adalsteinsson, E., Hedehus, M., Ju, C., Moseley, M., Lim, K. O., et al. (2001). Equivalent disruption of regional white matter microstructure in ageing healthy men and women. Neuroreport, 12, 99–104.PubMedGoogle Scholar
  151. Sullivan, E. V., Adalsteinsson, E., & Pfefferbaum, A. (2006). Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. Cerebral Cortex, 16, 1030–1039.PubMedGoogle Scholar
  152. Sullivan, E. V., Rohlfing, T., & Pfefferbaum, A. (2008). Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiology of Aging.Google Scholar
  153. Sun, S. W., Liang, H. F., Le, T. Q., Armstrong, R. C., Cross, A. H., & Song, S. K. (2006). Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. Neuroimage, 32, 1195–1204.PubMedGoogle Scholar
  154. Sun, S. W., Liang, H. F., Schmidt, R. E., Cross, A. H., & Song, S. K. (2007). Selective vulnerability of cerebral white matter in a murine model of multiple sclerosis detected using diffusion tensor imaging. Neurobiology of Disease, 28, 30–38.PubMedGoogle Scholar
  155. Thomas, C., Moya, L., Avidan, G., Humphreys, K., Jung, K. J., Peterson, M. A., et al. (2008). Reduction in white matter connectivity, revealed by diffusion tensor imaging, may account for age-related changes in face perception. Journal of Cognitive Neuroscience, 20, 268–284.PubMedGoogle Scholar
  156. Thornton, A. E., & Raz, N. (1997). Memory impairment in multiple sclerosis: a quantitative review. Neuropsychology, 11, 357–366.PubMedGoogle Scholar
  157. Truong, T. K., Chen, B., & Song, A. W. (2008). Integrated SENSE DTI with correction of susceptibility- and eddy current-induced geometric distortions. Neuroimage, 40, 53–58.PubMedGoogle Scholar
  158. Tuch, D. S., Reese, T. G., Wiegell, M. R., & Wedeen, V. J. (2003). Diffusion MRI of complex neural architecture. Neuron, 40, 885–895.PubMedGoogle Scholar
  159. Tuch, D. S., Salat, D. H., Wisco, J. J., Zaleta, A. K., Hevelone, N. D., & Rosas, H. D. (2005). Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proceedings of the National Academy of Sciences of the United States of America, 102, 12212–12217.PubMedGoogle Scholar
  160. Turken, A., Whitfield-Gabrieli, S., Bammer, R., Baldo, J. V., Dronkers, N. F., & Gabrieli, J. D. (2008). Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. Neuroimage, 42, 1032–1044.PubMedGoogle Scholar
  161. van den Heuvel, D. M., ten Dam, V. H., de Craen, A. J., Admiraal-Behloul, F., Olofsen, H., Bollen, E. L., et al. (2006). Increase in periventricular white matter hyperintensities parallels decline in mental processing speed in a non-demented elderly population. Journal of Neurology, Neurosurgery and Psychiatry, 77, 149–153.Google Scholar
  162. van den Heuvel, M., Mandl, R., Luigjes, J., & Hulshoff Pol, H. (2008). Microstructural organization of the cingulum tract and the level of default mode functional connectivity. Journal of Neuroscience, 28, 10844–10851.PubMedGoogle Scholar
  163. Vernooij, M. W., de Groot, M., van der Lugt, A., Ikram, M. A., Krestin, G. P., Hofman, A., et al. (2008). White matter atrophy and lesion formation explain the loss of structural integrity of white matter in aging. Neuroimage, 43, 470–477.PubMedGoogle Scholar
  164. Vernooij, M. W., Ikram, M. A., Vrooman, H. A., Wielopolski, P. A., Krestin, G. P., Hofman, A., et al. (2009). White matter microstructural integrity and cognitive function in a general elderly population. Archives of General Psychiatry, 66, 545–553.PubMedGoogle Scholar
  165. Virta, A., Barnett, A., & Pierpaoli, C. (1999). Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. Magnetic Resonance Imaging, 17, 1121–1133.PubMedGoogle Scholar
  166. Wakana, S., Jiang, H., Nagae-Poetscher, L. M., van Zijl, P. C., & Mori, S. (2004). Fiber tract-based atlas of human white matter anatomy. Radiology, 230, 77–87.PubMedGoogle Scholar
  167. Wheeler-Kingshott, C. A., & Cercignani, M. (2009). About “axial” and “radial” diffusivities. Magnetic Resonance in Medicine, 61, 1255–1260.PubMedGoogle Scholar
  168. Wozniak, J. R., & Lim, K. O. (2006). Advances in white matter imaging: a review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging. Neuroscience and Biobehavioral Reviews, 30, 762–774.PubMedGoogle Scholar
  169. Wu, T., Zang, Y., Wang, L., Long, X., Hallett, M., Chen, Y., et al. (2007). Aging influence on functional connectivity of the motor network in the resting state. Neuroscience Letters, 422, 164–168.PubMedGoogle Scholar
  170. Yoon, B., Shim, Y. S., Lee, K. S., Shon, Y. M., & Yang, D. W. (2008). Region-specific changes of cerebral white matter during normal aging: a diffusion-tensor analysis. Archives of Gerontology and Geriatrics, 47, 129–138.PubMedGoogle Scholar
  171. Yu, C., Zhu, C., Zhang, Y., Chen, H., Qin, W., Wang, M., et al. (2009). A longitudinal diffusion tensor imaging study on Wallerian degeneration of corticospinal tract after motor pathway stroke. Neuroimage, 47, 451–458.PubMedGoogle Scholar
  172. Zahr, N. M., Rohlfing, T., Pfefferbaum, A., & Sullivan, E. V. (2009). Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: a quantitative fiber tracking study. Neuroimage, 44, 1050–1062.PubMedGoogle Scholar
  173. Zhang, Y., Du, A. T., Hayasaka, S., Jahng, G. H., Hlavin, J., Zhan, W., et al. (2008). Patterns of age-related water diffusion changes in human brain by concordance and discordance analysis. Neurobiology of Aging.Google Scholar
  174. Ziegler, D. A., Piguet, O., Salat, D. H., Prince, K., Connally, E., & Corkin, S. (2008). Cognition in healthy aging is related to regional white matter integrity, but not cortical thickness. Neurobiology of Aging.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David J. Madden
    • 1
    • 3
    • 4
  • Ilana J. Bennett
    • 2
  • Allen W. Song
    • 3
  1. 1.Center for the Study of Aging and Human DevelopmentDuke University Medical CenterDurhamUSA
  2. 2.Department of PsychologyGeorgetown UniversityWashingtonUSA
  3. 3.Brain Imaging and Analysis CenterDuke University Medical CenterDurhamUSA
  4. 4.DurhamUSA

Personalised recommendations