Neuropsychology Review

, 19:336 | Cite as

Memory-Prediction Errors and Their Consequences in Schizophrenia

  • Michael S. KrausEmail author
  • Richard S. E. Keefe
  • Ranga K. R. Krishnan


Cognitive deficits play a central role in the onset of schizophrenia. Cognitive impairment precedes the onset of psychosis in at least a subgroup of patients, and accounts for considerable dysfunction. Yet cognitive deficits as currently measured are not significantly related to hallucinations and delusions. Part of this counterintuitive absence of a relationship may be caused by the lack of an organizing principle of cognitive impairment in schizophrenia research. We review literature suggesting that a system of memory-based prediction is central to human perception, thought and action , and forward the notion that many of the symptoms of schizophrenia are a result of a failure of this system.


Memory-prediction Schizophrenia Cognition Hallucinations Delusions Cortical circuitry Psychosis Cognitive neuroscience 



There was no funding source for this paper.


The authors have no financial conflicts of interest related to this paper.


  1. Addington, J., Addington, D., & Maticka-Tyndale, E. (1991). Cognitive functioning and positive and negative symptoms in schizophrenia. Schizophr Res, 5(2), 123–134.PubMedGoogle Scholar
  2. Alais, D., & Burr, D. (2003). The “Flash-Lag” Effect Occurs in Audition and Cross-Modally. Current Biology, 13(1), 59–63.PubMedGoogle Scholar
  3. Anscombe, R. (1987). The disorder of consciousness in schizophrenia. Schizophr Bull, 13(2), 241–260.PubMedGoogle Scholar
  4. Archer, J., Hay, D. C., & Young, A. W. (1992). Face processing in psychiatric conditions. Br J Clin Psychol, 31(Pt 1), 45–61.PubMedGoogle Scholar
  5. Archer, J., Hay, D. C., & Young, A. W. (1994). Movement, face processing and schizophrenia: evidence of a differential deficit in expression analysis. Br J Clin Psychol, 33(Pt 4), 517–528.PubMedGoogle Scholar
  6. Barch, D. M., Cohen, J. D., Servan-Schreiber, D., Steingard, S., Steinhauer, S. S., & van Kammen, D. P. (1996). Semantic Priming in Schizophrenia: An Examination of Spreading Activation Using Word Pronunciation and Multiple SOAs. J Abnorm Psychol, 105(4), 592–601.PubMedGoogle Scholar
  7. Barsalou, L. W. (1999). Perceptual symbol systems. Behav Brain Sci, 22(4), 577–560.PubMedGoogle Scholar
  8. Bazin, N., Perruchet, P., Hardy-Bayle, M. C., & Feline, A. (2000). Context-dependent information processing in patients with schizophrenia. Schizophrenia Research, 45(1–2), 93–101.PubMedGoogle Scholar
  9. Benton, A. L., & Van Allen, M. W. (1972). Prosopagnosia and facial discrimination. Journal of the Neurological Sciences, 15(2), 167–172.PubMedGoogle Scholar
  10. Berkeley, G. (1975). Philosophical works : including the works on vision. London; Totowa, N.J.: Dent ; Rowman and Littlefield.Google Scholar
  11. Bharucha, J. J., & Stoeckig, K. (1986). Reaction time and musical expectancy: priming of chords. J Exp Psychol Hum Percept Perform, 12(4), 403–410.PubMedGoogle Scholar
  12. Biederman, I., & Cooper, E. E. (1991). Evidence for complete translational and reflectional invariance in visual object priming. Perception, 20(5), 585–593.PubMedGoogle Scholar
  13. Blanchard, J. J., & Neale, J. M. (1994). The neuropsychological signature of schizophrenia: generalized or differential deficit? Am J Psychiatry, 151(1), 40–48.PubMedGoogle Scholar
  14. Bokat, C. E., & Goldberg, T. E. (2003). Letter and category fluency in schizophrenic patients: a meta-analysis. Schizophr Res, 64(1), 73–78.PubMedGoogle Scholar
  15. Booth, M. C., & Rolls, E. T. (1998). View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. 8(6), 510–523.Google Scholar
  16. Boyer, P., Phillips, J. L., Rousseau, F. L., & Ilivitsky, S. (2007). Hippocampal abnormalities and memory deficits: New evidence of a strong pathophysiological link in schizophrenia. Brain Research Reviews, 54(1), 92–112.PubMedGoogle Scholar
  17. Brent, M. R., & Cartwright, T. A. (1996). Distributional regularity and phonotactic constraints are useful for segmentation. Cognition, 61(1–2), 93–125.PubMedGoogle Scholar
  18. Brewer, W. J., Francey, S. M., Wood, S. J., Jackson, H. J., Pantelis, C., Phillips, L. J., et al. (2005). Memory impairments identified in people at ultra-high risk for psychosis who later develop first-episode psychosis. Am J Psychiatry, 162(1), 71–78.PubMedGoogle Scholar
  19. Brewer, W. J., Wood, S. J., McGorry, P. D., Francey, S. M., Phillips, L. J., Yung, A. R., et al. (2003). Impairment of Olfactory Identification Ability in Individuals at Ultra-High Risk for Psychosis Who Later Develop Schizophrenia. Am J Psychiatry, 160(10), 1790–1794.PubMedGoogle Scholar
  20. Bruce, C. J., & Goldberg, M. E. (1985). Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol, 53(3), 603–635.PubMedGoogle Scholar
  21. Calhoun, P. S., Stechuchak, K. M., Strauss, J., Bosworth, H. B., Marx, C. E., & Butterfield, M. I. (2007). Interpersonal trauma, war zone exposure, and posttraumatic stress disorder among veterans with schizophrenia. Schizophr Res, 91(1–3), 210–216.PubMedGoogle Scholar
  22. Cavezian, C., Danckert, J., Lerond, J., Dalery, J., d’Amato, T., & Saoud, M. (2007). Visual-perceptual abilities in healthy controls, depressed patients, and schizophrenia patients. Brain Cogn, 64(3), 257–264.PubMedGoogle Scholar
  23. Chambon, V., Baudouin, J.-Y., & Franck, N. (2006). The role of configural information in facial emotion recognition in schizophrenia. Neuropsychologia, 44(12), 2437–2444.PubMedGoogle Scholar
  24. Christiansen, M. H., Allen, J., & Seidenberg, M. S. (1998). Learning to Segment Speech Using Multiple Cues: A Connectionist Model. Language and Cognitive Processes, 13(2/3), 221–268.Google Scholar
  25. Clemmer, E. J. (1980). Psycholinguistic aspects of pauses and temporal patterns in schizophrenic speech. J Psycholinguist Res, 9(2), 161–185.PubMedGoogle Scholar
  26. Cohen, J. D. J. D. (1999). Context-processing deficits in schizophrenia : Converging evidence from three theoretically motivated cognitive tasks. J Abnorm Psychol, 108(1), 120–133.PubMedGoogle Scholar
  27. Corcoran, C., Malaspina, D., & Hercher, L. (2005). Prodromal interventions for schizophrenia vulnerability: the risks of being “at risk”. Schizophr Res, 73(2–3), 173–184.PubMedGoogle Scholar
  28. Corlett, P. R., Murray, G. K., Honey, G. D., Aitken, M. R. F., Shanks, D. R., Robbins, T. W., et al. (2007). Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions., 130(9), 2387–2400.Google Scholar
  29. Craik, F. I. M. (2002). Levels of processing: Past, present ... and future? Memory, 10(5), 305–318.PubMedGoogle Scholar
  30. Davidson, M., Reichenberg, A., Rabinowitz, J., Weiser, M., Kaplan, Z., & Mark, M. (1999). Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. Am J Psychiatry, 156(9), 1328–1335.PubMedGoogle Scholar
  31. Davis, M. H., & Johnsrude, I. S. (2007). Hearing speech sounds: Top-down influences on the interface between audition and speech perception. Hearing Research, 229(1–2), 132–147.PubMedGoogle Scholar
  32. Doniger, G. M., Silipo, G., Rabinowicz, E. F., Snodgrass, J. G., & Javitt, D. C. (2001). Impaired Sensory Processing as a Basis for Object-Recognition Deficits in Schizophrenia. Am J Psychiatry, 158(11), 1818–1826.PubMedGoogle Scholar
  33. Douglas, R. J., & Martin, K. A. C. (2004). Neuronal circuits of the neocortex. Annual Review of Neuroscience, 27(1), 419–451.PubMedGoogle Scholar
  34. Dreyfus, H. L. (1992). What computers still can’t do a critique of artificial reason. Cambridge, Mass.: MIT.Google Scholar
  35. Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255(5040), 90–92.PubMedGoogle Scholar
  36. Edelman, G. M. (1989). The remembered present a biological theory of consciousness. New York: Basic Books.Google Scholar
  37. Edelman, G. M., & Mountcastle, V. B. (1978). The Mindful Brain: The MIT Press.Google Scholar
  38. Fear, C. F., & Healy, D. (1997). Probabilistic reasoning in obsessive-compulsive and delusional disorders. Psychol Med, 27(1), 199–208.PubMedGoogle Scholar
  39. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1(1), 1–47.PubMedGoogle Scholar
  40. Fenske, M. J., Aminoff, E., Gronau, N., Bar, M., S. Martinez-Conde, S. L. M. L. M. M. J. M. A., & Tse, P. U. (2006). Chapter 1 Top-down facilitation of visual object recognition: object-based and context-based contributions Progress in Brain Research (Vol. Volume 155, Part 2, pp. 3–21): Elsevier.Google Scholar
  41. Fiser, J., & Biederman, I. (2001). Invariance of long-term visual priming to scale, reflection, translation, and hemisphere. Vision Research, 41(2), 221–234.PubMedGoogle Scholar
  42. Fried, I., MacDonald, K. A., & Wilson, C. L. (1997). Single Neuron Activity in Human Hippocampus and Amygdala during Recognition of Faces and Objects. Neuron, 18(5), 753–765.PubMedGoogle Scholar
  43. Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836.Google Scholar
  44. Fukushima, K., Yamanobe, T., Shinmei, Y., & Fukushima, J. (2002). Predictive responses of periarcuate pursuit neurons to visual target motion. Experimental Brain Research, 145(1), 104–120.Google Scholar
  45. Gal, G., Mendlovic, S., Bloch, Y., Beitler, G., Levkovitz, Y., Young, A. M., et al. (2005). Learned irrelevance is disrupted in first-episode but not chronic schizophrenia patients. Behavioural Brain Research, 159(2), 267–275.PubMedGoogle Scholar
  46. Ganong, W. F., 3rd. (1980). Phonetic categorization in auditory word perception. J Exp Psychol Hum Percept Perform, 6(1), 110–125.PubMedGoogle Scholar
  47. Garety, P. A., Hemsley, D. R., & Wessely, S. (1991). Reasoning in deluded schizophrenic and paranoid patients. Biases in performance on a probabilistic inference task. J Nerv Ment Dis, 179(4), 194–201.PubMedGoogle Scholar
  48. George, D., & Hawkins, J. (2005). A Hierarchical Bayesian Model of Invariant Pattern Recognition in the Visual Cortex. Paper presented at the International Joint Conference on Neural Networks 2005, Montreal, Canada.Google Scholar
  49. Giray, E. F., Altkin, W. M., Vaught, G. M., & Roodin, P. A. (1976). The Incidence of Eidetic Imagery as a Function of Age. Child Development, 47(4), 1207–1210.PubMedGoogle Scholar
  50. Gregory, R. L. (1968). Perceptual Illusions and Brain Models. Proceedings of the Royal Society of London. Series B, Biological Sciences, 171(1024), 279–296.Google Scholar
  51. Gregory, R. L. (1980). Perceptions as Hypotheses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 290(1038), 181–197.Google Scholar
  52. Gregory, R. L. (1997). Knowledge in perception and illusion. Philos Trans R Soc Lond B Biol Sci, 352(1358), 1121–1127.PubMedGoogle Scholar
  53. Gregory, R. L. (2001). Perceptions of knowledge. Nature, 410(6824), 21–21.PubMedGoogle Scholar
  54. Grossberg, S. (1982). Processing of expected and unexpected events during conditioning and attention: a psychophysiological theory. Psychol Rev, 89(5), 529–572.PubMedGoogle Scholar
  55. Grossberg, S. (2000). How hallucinations may arise from brain mechanisms of learning, attention, and volition. Journal of the International Neuropsychological Society, 6(05), 583–592.PubMedGoogle Scholar
  56. Hamann, S. (2001). Cognitive and neural mechanisms of emotional memory. Trends in Cognitive Sciences, 5(9), 394–400.PubMedGoogle Scholar
  57. Harrington, A., Oepen, G., & Spitzer, M. (1989). Disordered recognition and perception of human faces in acute schizophrenia and experimental psychosis. Comprehensive Psychiatry, 30(5), 376–384.PubMedGoogle Scholar
  58. Harrison, P. J. (1999). The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain; a journal of neurology, 122(Pt 4), 593–624.PubMedGoogle Scholar
  59. Harvey, P. D., & Keefe, R. S. (1997). Cognitive impairment in schizophrenia and implications of atypical neuroleptic treatment. CNS Spectr., 2, 1–11.Google Scholar
  60. Hasselmo, M. E., Rolls, E. T., & Baylis, G. C. (1989). The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behav Brain Res, 32(3), 203–218.PubMedGoogle Scholar
  61. Hawkins, J., & Blakeslee, S. (2004). On intelligence. New York: Times Books.Google Scholar
  62. Heinrichs, R. W., & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12(3), 426–445.PubMedGoogle Scholar
  63. Helmholtz, H. V. (1866). Concerning the perceptions in general (J. P. C. Southall, Trans.) Treatise on physiological optics, vol. III (3rd ed.). New York: Dover.Google Scholar
  64. Hoffman, R. E., Woods, S. W., Hawkins, K. A., Pittman, B., Tohen, M., Preda, A., et al. (2007). Extracting spurious messages from noise and risk of schizophrenia-spectrum disorders in a prodromal population. Br J Psychiatry, 191(4), 355–356.PubMedGoogle Scholar
  65. Holahan, A.-L. V., & O’Driscoll, G. A. (2005). Antisaccade and smooth pursuit performance in positive– and negative-symptom schizotypy. Schizophr Res, 76(1), 43–54.PubMedGoogle Scholar
  66. Holzman, P. S., Kringlen, E., Levy, D. L., & Haberman, S. J. (1980). Deviant eye tracking in twins discordant for psychosis. A replication. Arch Gen Psychiatry, 37(6), 627–631.PubMedGoogle Scholar
  67. Hong, L. E., Avila, M. T., Adami, H., Elliot, A., & Thaker, G. K. (2003). Components of the smooth pursuit function in deficit and nondeficit schizophrenia. Schizophr Res, 63(1–2), 39–48.PubMedGoogle Scholar
  68. Hong, L. E., Avila, M. T., & Thaker, G. K. (2005). Response to unexpected target changes during sustained visual tracking in schizophrenic patients. Experimental Brain Research, 165(1), 125–131.Google Scholar
  69. Hong, L. E., Turano, K. A., O’Neill, H., Hao, L., Wonodi, I., McMahon, R. P., et al. (2008). Refining the Predictive Pursuit Endophenotype in Schizophrenia. Biol Psychiatry, 63(5), 458–464.PubMedGoogle Scholar
  70. Howe, C. Q., & Purves, D. (2005). Natural-scene geometry predicts the perception of angles and line orientation. Proceedings of the National Academy of Sciences, 102(4), 1228–1233.Google Scholar
  71. Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Percept Psychophys, 44(3), 211–221.PubMedGoogle Scholar
  72. Hubel, D. H., & Wiesel, T. N. (1972). Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol, 146(4), 421–450.PubMedGoogle Scholar
  73. Iaria, G., Fox, C. J., Chen, J.-K., Petrides, M., & Barton, J. J. S. (2008). Detection of unexpected events during spatial navigation in humans: bottom-up attentional system and neural mechanisms. European Journal of Neuroscience, 27(4), 1017–1025.PubMedGoogle Scholar
  74. Irani, F., Platek, S. M., Panyavin, I. S., Calkins, M. E., Kohler, C., Siegel, S. J., et al. (2006). Self-face recognition and theory of mind in patients with schizophrenia and first-degree relatives. Schizophrenia Research, 88(1–3), 151–160.PubMedGoogle Scholar
  75. Ito, M., & Gilbert, C. D. (1999). Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron, 22(3), 593–604.PubMedGoogle Scholar
  76. James, T. W., & Gauthier, I. (2003). Auditory and Action Semantic Features Activate Sensory-Specific Perceptual Brain Regions. Current Biology, 13(20), 1792–1796.PubMedGoogle Scholar
  77. Janssen, J., Reig, S., Parellada, M., Moreno, D., Graell, M., Fraguas, D., et al. (2008). Regional gray matter volume deficits in adolescents with first-episode psychosis. J Am Acad Child Adolesc Psychiatry, 47(11), 1311–1320.PubMedGoogle Scholar
  78. John, C., & Hemsley, D. (1992). Gestalt perception in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 241(4), 215–221.PubMedGoogle Scholar
  79. Kapur, S. (2003). Psychosis as a State of Aberrant Salience: A Framework Linking Biology, Phenomenology, and Pharmacology in Schizophrenia. Am J Psychiatry, 160(1), 13–23.PubMedGoogle Scholar
  80. Karklin, Y., & Lewicki, M. S. (2005). A Hierarchical Bayesian Model for Learning Nonlinear Statistical Regularities in Nonstationary Natural Signals. Neural Computation, 17(2), 397–423.PubMedGoogle Scholar
  81. Kee, K. S., Horan, W. P., Wynn, J. K., Mintz, J., & Green, M. F. (2006). An analysis of categorical perception of facial emotion in schizophrenia. Schizophr Res, 87(1–3), 228–237.PubMedGoogle Scholar
  82. Kee, K. S., Kern, R. S., & Green, M. F. (1998). Perception of emotion and neurocognitive functioning in schizophrenia: what’s the link? Psychiatry Research, 81(1), 57–65.PubMedGoogle Scholar
  83. Keefe, R. S., Bilder, R. M., Harvey, P. D., Davis, S. M., Palmer, B. W., Gold, J. M., et al. (2006). Baseline neurocognitive deficits in the CATIE schizophrenia trial. Neuropsychopharmacology, 31(9), 2033–2046.PubMedGoogle Scholar
  84. Keefe, R. S., & Kraus, M. S. (2009). Measuring Memory-Prediction Errors and their Consequences in Youth at Risk for Schizophrenia. Ann Acad Med Singapore, 38, In Press.Google Scholar
  85. Keefe, R. S. E., & Harvey, P. D. (2008). Implementation Considerations for Multisite Clinical Trials with Cognitive Neuroscience Tasks. Schizophr Bull, 34(4), 656–663.PubMedGoogle Scholar
  86. Kerr, S. L., & Neale, J. M. (1993). Emotion perception in schizophrenia: specific deficit or further evidence of generalized poor performance? J Abnorm Psychol, 102(2), 312–318.PubMedGoogle Scholar
  87. Kiang, M., Kutas, M., Light, G. A., & Braff, D. L. (2008). An Event-Related Brain Potential Study of Direct and Indirect Semantic Priming in Schizophrenia. Am J Psychiatry, 165(1), 74–81.PubMedGoogle Scholar
  88. Kilner, J. M., Vargas, C., Duval, S., Blakemore, S.-J., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nat Neurosci, 7(12), 1299–1301.PubMedGoogle Scholar
  89. Klatt, D. H. (1980). A model of acoustic-phonetic analysis and lexical access. In R. A. Cole (Ed.), Perception and production of fluent speech (pp. 243–288). Hillsdale, N.J.: Lawrence Erlbaum Associates.Google Scholar
  90. Klosterkotter, J., Hellmich, M., Steinmeyer, E. M., & Schultze-Lutter, F. (2001). Diagnosing Schizophrenia in the Initial Prodromal Phase. Arch Gen Psychiatry, 58(2), 158–164.PubMedGoogle Scholar
  91. Koethe, D., Gerth, C. W., Neatby, M. A., Haensel, A., Thies, M., Schneider, U., et al. (2006). Disturbances of visual information processing in early states of psychosis and experimental delta-9-tetrahydrocannabinol altered states of consciousness. Schizophrenia Research, 88(1–3), 142–150.PubMedGoogle Scholar
  92. Kovacs, G., Vogels, R., & Orban, G. (1995). Selectivity of macaque inferior temporal neurons for partially occluded shapes. J. Neurosci., 15(3), 1984–1997.PubMedGoogle Scholar
  93. Lencz, T., Smith, C. W., Auther, A. M., Correll, C. U., & Cornblatt, B. A. (2003). The Assessment of “Prodromal Schizophrenia”: Unresolved Issues and Future Directions. Schizophr Bull, 29(4), 717–728.PubMedGoogle Scholar
  94. Lim, K., Tew, W., Kushner, M., Chow, K., Matsumoto, B., & DeLisi, L. (1996). Cortical gray matter volume deficit in patients with first-episode schizophrenia. Am J Psychiatry, 153(12), 1548–1553.PubMedGoogle Scholar
  95. Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95(4), 492–527.Google Scholar
  96. Long, F., & Purves, D. (2003). Natural scene statistics as the universal basis of color context effects. Proc Natl Acad Sci U S A, 100(25), 15190–15193.PubMedGoogle Scholar
  97. Lopez-Moliner, J., & Linares, D. (2006). The flash-lag effect is reduced when the flash is perceived as a sensory consequence of our action. Vision Research, 46(13), 2122–2129.PubMedGoogle Scholar
  98. Lorente de No, R. (1949). The cerebral cortex: architecture, intracortical connections, motor projections. In J. F. Fulton (Ed.), Physiology of the nervous system (pp. 288–330). New York: Oxford University.Google Scholar
  99. Loughland, C. M., Williams, L. M., & Gordon, E. (2002). Schizophrenia and affective disorder show different visual scanning behavior for faces: a trait versus state-based distinction? Biological Psychiatry, 52(4), 338–348.PubMedGoogle Scholar
  100. Lueschow, A., Miller, E. K., & Desimone, R. (1994). Inferior Temporal Mechanisms for Invariant Object Recognition. Cereb Cortex, 4(5), 523–531.PubMedGoogle Scholar
  101. Mackintosh, N. J. (1975). A Theory of Attention: Variations in the Associability of Stimuli with Reinforcement. Psychological Review, 82(4), 276–298.Google Scholar
  102. Martin, F., Baudouin, J.-Y., Tiberghien, G., & Franck, N. (2005). Processing emotional expression and facial identity in schizophrenia. Psychiatry Research, 134(1), 43–53.PubMedGoogle Scholar
  103. Marwick, K., & Hall, J. (2008). Social cognition in schizophrenia: a review of face processing. Br Med Bull, 88(1), 43–58.PubMedGoogle Scholar
  104. McGurk, S. R., Twamley, E. W., Sitzer, D. I., McHugo, G. J., & Mueser, K. T. (2007). A Meta-Analysis of Cognitive Remediation in Schizophrenia. Am J Psychiatry, 164(12), 1791–1802.PubMedGoogle Scholar
  105. Moritz, S., & Woodward, T. S. (2005). Jumping to conclusions in delusional and non-delusional schizophrenic patients. British Journal of Clinical Psychology, 44, 193–207.PubMedGoogle Scholar
  106. Morrison, A. P., French, P., Walford, L., Lewis, S. W., Kilcommons, A., Green, J., et al. (2004). Cognitive therapy for the prevention of psychosis in people at ultra-high risk: Randomised controlled trial. Br J Psychiatry Suppl, 185(4), 291–297.Google Scholar
  107. Mountcastle, V. B. (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol, 20(4), 408–434.PubMedGoogle Scholar
  108. Naatanen, R., Paavilainen, P., Tiitinen, H., Jiang, D., & Alho, K. (1993). Attention and mismatch negativity. Psychophysiology, 30(5), 436–450.PubMedGoogle Scholar
  109. Newby, D. (1998). ‘Cloze’ procedure refined and modified. ‘Modified Cloze’, ‘reverse Cloze’ and the use of predictability as a measure of communication problems in psychosis. Br J Psychiatry, 172, 136–141.PubMedGoogle Scholar
  110. Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370(6487), 256–257.PubMedGoogle Scholar
  111. Nkam, I., Denise, P., Brazo, P., Paoletti, X., Etard, O., Dolfuss, S., et al. (2007, Mar 28 – Apr 1). Unpredictability and saccadic component of ocular pursuit is influenced by the target motion in schizophrenics [abstract]. Paper presented at the International Congress on Schizophrenia Research, Colorado Springs, CO.Google Scholar
  112. Orosz, A., Feldon, J., Gal, G., Simon, A., & Cattapan-Ludewig, K. (2007). Repeated measurements of learned irrelevance by a novel within-subject paradigm in humans. Behavioural Brain Research, 180(1), 1–3.PubMedGoogle Scholar
  113. Orosz, A. T., Feldon, J., Gal, G., Simon, A. E., & Cattapan-Ludewig, K. (2008). Deficient associative learning in drug-naive first-episode schizophrenia: Results obtained using a new visual within-subjects learned irrelevance paradigm. Behavioural Brain Research, 193(1), 101–107.PubMedGoogle Scholar
  114. Paavilainen, P., Jaramillo, M., Naatanen, R., & Winkler, I. (1999). Neuronal populations in the human brain extracting invariant relationships from acoustic variance. Neurosci Lett, 265(3), 179–182.PubMedGoogle Scholar
  115. Paine, P. A. (1980). Eidetic imagery and recall accuracy in preschool children. Journal of Psychology, 105(2), 253.Google Scholar
  116. Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., et al. (2003). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. The Lancet, 361(9354), 281–288.Google Scholar
  117. Parnas, J., & Handest, P. (2003). Phenomenology of anomalous self-experience in early schizophrenia. Comprehensive Psychiatry, 44(2), 121–134.PubMedGoogle Scholar
  118. Pincze, Z., Lakatos, P., Rajkai, C., Ulbert, I., & Karmos, G. (2002). Effect of deviant probability and interstimulus/interdeviant interval on the auditory N1 and mismatch negativity in the cat auditory cortex. Cognitive Brain Research, 13(2), 249–253.PubMedGoogle Scholar
  119. Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435(7045), 1102–1107.PubMedGoogle Scholar
  120. Ramon y Cajal, S. (1966). Recollections of my life: M.I.T.Press.Google Scholar
  121. Rao, R. P. N. (1999). An optimal estimation approach to visual perception and learning. Vision Research, 39(11), 1963–1989.PubMedGoogle Scholar
  122. Regnault, P., Bigand, E., & Besson, M. (2001). Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: evidence from auditory event-related brain potentials. J Cogn Neurosci, 13(2), 241–255.PubMedGoogle Scholar
  123. Reich, S. S., & Cutting, J. (1982). Picture perception and abstract thought in schizophrenia. Psychol Med, 12(1), 91–96.PubMedCrossRefGoogle Scholar
  124. Richardson, A., & Harris, L. J. (1986). Age Trends in Eidetikers. Journal of Genetic Psychology, 147(3), 303.Google Scholar
  125. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annu Rev Neurosci, 27, 169–192.PubMedGoogle Scholar
  126. Rolls, E. T., & Stringer, S. M. (2007). Invariant Global Motion Recognition in the Dorsal Visual System: A Unifying Theory., 19(1), 139–169.Google Scholar
  127. Sachs, G., Steger-Wuchse, D., Kryspin-Exner, I., Gur, R. C., & Katschnig, H. (2004). Facial recognition deficits and cognition in schizophrenia. Schizophr Res, 68(1), 27–35.PubMedGoogle Scholar
  128. Saffran, J. R., & Griepentrog, G. J. (2001). Absolute pitch in infant auditory learning: evidence for developmental reorganization. Dev Psychol, 37(1), 74–85.PubMedGoogle Scholar
  129. Saykin, A. J., Gur, R. C., Gur, R. E., Mozley, P. D., Mozley, L. H., Resnick, S. M., et al. (1991). Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Arch Gen Psychiatry, 48(7), 618–624.PubMedGoogle Scholar
  130. Schneider, U., Borsutzky, M., Seifert, J., Leweke, F. M., Huber, T. J., Rollnik, J. D., et al. (2002). Reduced binocular depth inversion in schizophrenic patients. Schizophrenia Research, 53(1–2), 101–108.PubMedGoogle Scholar
  131. Schneider, F., Gur, R. C., Koch, K., Backes, V., Amunts, K., Shah, N. J., et al. (2006). Impairment in the Specificity of Emotion Processing in Schizophrenia. Am J Psychiatry, 163(3), 442–447.PubMedGoogle Scholar
  132. Schneider, K. (1959). Klinische Psychopathologie. Clinical psychopathology (5th ed.). New York: Grune & Stratton.Google Scholar
  133. Schütz-Bosbach, S., & Prinz, W. (2007). Prospective coding in event representation. Cognitive Processing, 8(2), 93–102.PubMedGoogle Scholar
  134. Sheth, B. R., Nijhawan, R., & Shimojo, S. (2000). Changing objects lead briefly flashed ones. Nat Neurosci, 3(5), 489–495.PubMedGoogle Scholar
  135. Slaghuis, W., Bowling, A., & French, R. (2005). Smooth-pursuit eye movement and directional motion-contrast sensitivity in schizophrenia. Experimental Brain Research, 166(1), 89–101.Google Scholar
  136. Snyder, A. W. (1998). Breaking Mindset. Mind & Language, 13(1), 1.Google Scholar
  137. Snyder, S. (1961). Perceptual closure in acute paranoid schizophrenics. Arch Gen Psychiatry, 5, 406–410.PubMedGoogle Scholar
  138. Tanaka, K. (1997). Mechanisms of visual object recognition: monkey and human studies. Current Opinion in Neurobiology, 7(4), 523–529.PubMedGoogle Scholar
  139. Tanaka, K., Saito, H., Fukada, Y., & Moriya, M. (1991). Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol, 66(1), 170–189.PubMedGoogle Scholar
  140. Thaker, G. K., Ross, D. E., Buchanan, R. W., Adami, H. M., & Medoff, D. R. (1999). Smooth pursuit eye movements to extra-retinal motion signals: deficits in patients with schizophrenia. Psychiatry Research, 88(3), 209–219.PubMedGoogle Scholar
  141. Thaker, G. K., Ross, D. E., Cassady, S. L., Adami, H. M., LaPorte, D., Medoff, D. R., et al. (1998). Smooth Pursuit Eye Movements to Extraretinal Motion Signals: Deficits in Relatives of Patients With Schizophrenia. Arch Gen Psychiatry, 55(9), 830–836.PubMedGoogle Scholar
  142. Tillmann, B., Janata, P., & Bharucha, J. J. (2003). Activation of the Inferior Frontal Cortex in Musical Priming. Annals of the New York Academy of Sciences, 999(1), 209–211.PubMedGoogle Scholar
  143. Tovee, M. J., Rolls, E. T., & Azzopardi, P. (1994). Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. J Neurophysiol, 72(3), 1049–1060.PubMedGoogle Scholar
  144. Uhlhaas, P. J., Linden, D. E. J., Singer, W., Haenschel, C., Lindner, M., Maurer, K., et al. (2006). Dysfunctional Long-Range Coordination of Neural Activity during Gestalt Perception in Schizophrenia. J Neurosci, 26(31), 8168–8175.PubMedGoogle Scholar
  145. Umbricht, D., & Krljes, S. (2005). Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res, 76(1), 1–23.PubMedGoogle Scholar
  146. Uno, H., Tarara, R., Else, J., Suleman, M., & Sapolsky, R. (1989). Hippocampal damage associated with prolonged and fatal stress in primates. J. Neurosci., 9(5), 1705–1711.PubMedGoogle Scholar
  147. Van Berkum, J. J. A. (2008). Understanding Sentences in Context: What Brain Waves Can Tell Us. Current Directions in Psychological Science, 17, 376–380.Google Scholar
  148. Van Dael, F., Versmissen, D., Janssen, I., Myin-Germeys, I., van Os, J., & Krabbendam, L. (2006). Data Gathering: Biased in Psychosis? Schizophr Bull, 32(2), 341–351.PubMedGoogle Scholar
  149. Vogels, R., & Biederman, I. (2002). Effects of Illumination Intensity and Direction on Object Coding in Macaque Inferior Temporal Cortex. Cereb. Cortex, 12(7), 756–766.PubMedGoogle Scholar
  150. Wager, T. D., Rilling, J. K., Smith, E. E., Sokolik, A., Casey, K. L., Davidson, R. J., et al. (2004). Placebo-Induced Changes in fMRI in the Anticipation and Experience of Pain. Science, 303(5661), 1162–1167.PubMedGoogle Scholar
  151. Wagner, A. D., Pare-Blagoev, E. J., Clark, J., & Poldrack, R. A. (2001). Recovering meaning: Left prefrontal cortex guides controlled semantic retrieval. Neuron, 31(2), 329–338.PubMedGoogle Scholar
  152. Warren, R. M. (1970). Perceptual restoration of missing speech sounds. Science, 167(917), 392–393.PubMedGoogle Scholar
  153. Wertheimer, M. (1976). Principles of perceptual organisation. In G. M. Murch (Ed.), Studies in perception (pp. 301–350). Indianapolis: Bobbs-Merrill.Google Scholar
  154. Whittaker, J. F., Deakin, J. F., & Tomenson, B. (2001). Face processing in schizophrenia: defining the deficit. Psychol Med, 31(3), 499–507.PubMedGoogle Scholar
  155. Williams, S. M., McCoy, A. N., & Purves, D. (1998). An empirical explanation of brightness. Proceedings of the National Academy of Sciences of the United States of America, 95(22), 13301–13306.PubMedGoogle Scholar
  156. Young, M. P., & Yamane, S. (1992). Sparse population coding of faces in the inferotemporal cortex. Science, 256(5061), 1327–1331.PubMedGoogle Scholar
  157. Yung, A. R., Phillips, L. J., Yuen, H. P., Francey, S. M., McFarlane, C. A., Hallgren, M., et al. (2003). Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res, 60(1), 21–32.PubMedGoogle Scholar
  158. Zatorre, R. J. (2003). Absolute pitch: a model for understanding the influence of genes and development on neural and cognitive function. Nat Neurosci, 6(7), 692.PubMedGoogle Scholar
  159. Zwickel, T., Wachtler, T., & Eckhorn, R. (2007). Coding the presence of visual objects in a recurrent neural network of visual cortex. Biosystems, 89(1–3), 216–226.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael S. Kraus
    • 1
    Email author
  • Richard S. E. Keefe
    • 2
  • Ranga K. R. Krishnan
    • 1
    • 3
  1. 1.Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamUSA
  2. 2.Department of Psychiatry and Behavioral Sciences, PsychologyDuke University Medical CenterDurhamUSA
  3. 3.Duke-NUS Graduate Medical SchoolSingaporeSingapore

Personalised recommendations