Neuropsychology Review

, Volume 19, Issue 2, pp 169–185 | Cite as

Neuropsychological Functioning and Antiretroviral Treatment in HIV/AIDS: A Review

Review

Abstract

This article presents a review of studies that have investigated the neuropsychological effects of antiretroviral treatment (ART) for HIV-1 infection. It provides a brief overview of the era of monotherapy, dual-therapy, and an extended overview of the current era of combination antiretroviral therapy (CART). This review highlights that while CART has had a dramatic effect on the incidence and the severity of HIV-associated neurocognitive disorders (HAND), HAND, in its mild form, still remains prevalent. New causes of this sustained prevalence are poor CNS penetration of some antiretroviral agents, drug resistance, poor adherence, potential neurotoxicity, co-morbidities such as the long-term CART side effects in relation to cardio-vascular disease, and chronic HIV brain infection that may facilitate the expression of new forms of neurodegenerative processes. The review emphasizes the need to address methodological limitations of published studies and the need for large and representative cross-disciplinary longitudinal investigations across the HIV illness span.

Keywords

Neuropsychological functioning HIV/AIDS HIV-associated neurocognitive disorders Antiretroviral treatment Longitudinal studies 

References

  1. American Academy of Neurology, & Dana Consortium. (1996). Clinical confirmation of the American academy of neurology algorithm for HIV-1-associated cognitive/motor disorder (Dana Consortium on therapy for HIV dementia and related cognitive disorders). Neurology, 47, 1247–1253.Google Scholar
  2. Antinori, A., Arendt, G., Becker, J. T., Brew, B. J., Byrd, D. A., Cherner, M., et al. (2007). Updated research nosology for HIV-associated neurocognitive disorders. Neurology, 69(18), 1789–1799.CrossRefPubMedGoogle Scholar
  3. Arendt, G., von Giesen, H.-J., Hefter, H., & Theisen, A. (2001). Therapeutic effects of nucleoside analogues on psychomotor slowing in HIV infection. AIDS, 15, 493–500.CrossRefPubMedGoogle Scholar
  4. Ayers, M., Abrams, D., Newell, T., & Frieddrich, F. (1987). Performance of individuals with AIDS on the Luria-Nebraska Neuropsychological Battery. The International Journal of Clinical Neuropsychology, 9(3), 101–104.Google Scholar
  5. Baldeweg, T., Catalan, J., Lovett, E., Gruzelier, J., Riccio, M., & Hawkins, D. (1995). Long-term Zidovudine reduces neurocognitive deficits in HIV-1 infection. AIDS, 9, 589–596.CrossRefPubMedGoogle Scholar
  6. Bangsberg, D. R. (2008). Preventing HIV antiretroviral resistance through better monitoring of treatment adherence. Journal of Infectious Diseases, 197(Suppl 3), S272–278.CrossRefPubMedGoogle Scholar
  7. Bangsberg, D. R., Kroetz, D. L., & Deeks, S. G. (2007). Adherence-resistance relationships to combination HIV antiretroviral therapy. Current HIV/AIDS Reports, 4(2), 65–72.CrossRefPubMedGoogle Scholar
  8. Berger, J. R., & Avison, M. (2004). The blood brain barrier in HIV infection. Frontiers Biosciences, 9, 2680–2685.CrossRefGoogle Scholar
  9. Bhaskaran, K., Mussini, C., Antinori, A., Walker, A. S., Dorrucci, M., Sabin, C., et al. (2008). Changes in the incidence and predictors of Human Immunodeficiency Virus-associated Dementia in the era of highly active antiretroviral therapy. Annals of Neurology, 63(2), 213–221.CrossRefPubMedGoogle Scholar
  10. Brew, B. J. (2001). Markers of AIDS Dementia Complex: The role of cerebrospinal fluid assays. AIDS, 15(14), 1883–1884.CrossRefPubMedGoogle Scholar
  11. Brew, B. J. (2004). Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS Dementia Complex. AIDS, 18(suppl 1), S75–S78.PubMedGoogle Scholar
  12. Brew, B. J. (2007). Lost in translation: again, another failed neuroprotection trial. Neurology, 69(13), 1308–1309.CrossRefPubMedGoogle Scholar
  13. Brew, B. J., Halman, M., Catalan, J., Sacktor, N., Price, R. W., Brown, S., et al. (2007). Factors in AIDS dementia complex trial design: Results and lessons from the abacavir trial. PLoS Clinical Trials, 2(3), e13.CrossRefPubMedGoogle Scholar
  14. Brew, B., Crowe, S. M., Landay, A., Cysique, L., & Guillemin, G. (2008). Neurodegeneration and Ageing in the HAART Era. Journal of Neuroimmune Pharmacology, 6, 6.Google Scholar
  15. Brouwers, P., Hendricks, M., Lietzau, J. A., Pluda, J. M., Mitsuya, H., Broder, S., et al. (1997). Effect of combination therapy with zidovudine and didanosine on neuropsychological functionning in patients with symptomatic HIV disease: A comparison of simultaneous and alternating regimens. AIDS, 11, 59–66.CrossRefPubMedGoogle Scholar
  16. Center for Diseases Control [CDC]. (1993). 1993 Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. Mortality and Morbidity Weekly Report, 41, No. RR-17.Google Scholar
  17. Cherry, C. L., Lala, L., & Wesselingh, S. L. (2005). Mitochondrial toxicity of nucleoside analogues: mechanism, monitoring and management. Sexual Health, 2(1), 1–11.CrossRefPubMedGoogle Scholar
  18. Chesney, M. (2003). Adherence to HAART regimens. AIDS Patient Care and STDs, 17(4), 169–177.CrossRefPubMedGoogle Scholar
  19. Childers, M. E., Woods, S. P., Letendre, S., McCutchan, J. A., Rosario, D., Grant, I., et al. (2008). Cognitive functioning during highly active antiretroviral therapy interruption in Human Immunodeficiency Virus type-1 infection. Journal of Neurovirology, 18, 1–8.Google Scholar
  20. Clifford, D. B., McArthur, J. C., Schifitto, G., Kieburtz, K., McDermott, M. P., Letendre, S., et al. (2002). A randomized clinical trial of CPI-1189 for HIV-associated cognitive-motor impairment. Neurology, 59(10), 1568–1573.PubMedGoogle Scholar
  21. Cohen, R., Boland, R., Paul, R., Tashima, K. T., Schoenbaum, E. E., Celentano, D. D., et al. (2001). Neurocognitive performance enhanced by highly active antiretroviral therapy in HIV-infected women. AIDS, 15, 341–345.CrossRefPubMedGoogle Scholar
  22. Cole, M. A., Margolick, J. B., Cox, C., Li, X., Selnes, O. A., Martin, E. M., et al. (2007). Longitudinally preserved psychomotor performance in long-term asymptomatic HIV-infected individuals. Neurology, 69(24), 2213–2220.CrossRefPubMedGoogle Scholar
  23. Cunningham, P., Smith, D., Satchell, C., Cooper, D. A., & Brew, B. (2000). Evidence for independent development of resistance to HIV-1 reverse transcriptase inhibitors in the cerebrospinal fluid. AIDS, 14, 1949–1954.CrossRefPubMedGoogle Scholar
  24. Cysique, L., & Brew, B. (2009). The assessment of HIV-associated neurocognitive disorders: New challenges in the HAART era. In R. Paul, N. Sacktor, V. Valcour & K. Tashima (Eds.), HIV and the Brain: New Challenges in the Modern Era. Totowa, NJ: Humana Press Inc.Google Scholar
  25. Cysique, L., Maruff, P., & Brew, B. (2004a). Antiretroviral therapy in HIV infection: are neurologically active drugs important? Archives of Neurology, 61(11), 1699–1704.CrossRefPubMedGoogle Scholar
  26. Cysique, L., Maruff, P., & Brew, B. (2004b). Prevalence and pattern of neuropsychological impairment in HIV/AIDS-infection across pre and post- Highly Active Antiretroviral Therapy eras: a combined study of 2 cohorts. Journal of Neurovirology, 10, 350–357.CrossRefPubMedGoogle Scholar
  27. Cysique, L., Maruff, P., & Brew, B. (2006a). The neuropsychological profile of symptomatic, AIDS and ADC patients in the pre-HAART era: a meta-analysis. Journal of the International Neuropsychological Society, 12, 1–15.CrossRefGoogle Scholar
  28. Cysique, L. A., Maruff, P., & Brew, B. J. (2006b). Variable benefit in neuropsychological function in HIV-infected HAART-treated patients. Neurology, 66(9), 1447–1450.CrossRefPubMedGoogle Scholar
  29. Cysique, L., Vaida, F., Letendre, S., Gibson, S., Woods, S., Cherner, M., et al. (in press). Dynamics of cognitive change in impaired HIV + individuals initiating antiretroviral therapy. Neurology.Google Scholar
  30. Deeks, S. G., Wrin, T., Liegler, T., Hoh, R., Hayden, M., Barbour, J. D., et al. (2001). Virologic and immunologic consequences of discontinuing combination antiretroviral-drug therapy in HIV-infected patients with detectable viremia. New England Journal of Medicine, 344(7), 472–480.CrossRefPubMedGoogle Scholar
  31. Dore, G. J., McDonald, A., Li, Y., Kaldo, J. M., & Brew, B. J. (2003). Marked improvement in survival following AIDS Dementia Complex in the era of highly active antiretroviral therapy. AIDS, 17, 1539–1545.CrossRefPubMedGoogle Scholar
  32. El-Sadr, W. M., Lundgren, J. D., Neaton, J. D., Gordin, F., Abrams, D., Arduino, R. C., et al. (2006). CD4 + count-guided interruption of antiretroviral treatment. New England Journal of Medicine, 355(22), 2283–2296.CrossRefPubMedGoogle Scholar
  33. Enting, R., Hoetelmans, R., Lange, J., Burger, D. M., Beijnen, J. H., & Portegies, P. (1998). Antiretroviral drugs and the central nervous system. AIDS, 12, 1941–1953.CrossRefPubMedGoogle Scholar
  34. Evans, S. R., Yeh, T. M., Sacktor, N., Clifford, D. B., Simpson, D., Miller, E. N., et al. (2007). Selegiline transdermal system (STS) for HIV-associated cognitive impairment: open-label report of ACTG 5090. HIV Clinical Trials, 8(6), 437–446.CrossRefPubMedGoogle Scholar
  35. Ferrando, S., Van Gorp, W., McElhiney, M., Goggin, K., Sewell, M., & Rabkin, J. (1998). Highly active antiretroviral treatment in HIV infection: benefits for neuropsychological function. AIDS, 12(8), F65–F70.CrossRefPubMedGoogle Scholar
  36. Ferrando, S. J., Rabkin, J. G., van Gorp, W. G., Lin, S.-H., & McElhiney, M. (2003). Longitudinal improvement in psychomotor processing is associated with potent antiretroviral therapy in HIV-1 infection. Journal of Neuropsychiatry and Clinical Neurosciences, 15(2), 208–214.PubMedGoogle Scholar
  37. Gao, P., Ware, J. H., & Mehta, C. (2008). Sample size re-estimation for adaptive sequential design in clinical trials. Journal of Biopharmaceutical Statistics, 18(6), 1184–1196.CrossRefPubMedGoogle Scholar
  38. Gimenez, F., Fernandez, C., & Mabondzo, A. (2004). Transport of HIV protease inhibitors through the blood-brain barrier and interactions with the efflux proteins, P-glycoprotein and multidrug resistance proteins. Journal of Acquired Immune Deficiency Syndrome, 36(2), 649–658.CrossRefGoogle Scholar
  39. Gray, F., Bazille, C., Adle-Biassette, H., Mikol, J., Moulignier, A., & Scaravilli, F. (2005). Central nervous system immune reconstitution disease in Acquired Immunodeficiency Syndrome patients receiving highly active antiretroviral treatment. Journal of Neurovirology, 11(Suppl 3), 16–22.CrossRefPubMedGoogle Scholar
  40. Heaton, R., Temkin, N., Dikmen, S., Avitable, N., Taylor, M., Marcotte, T., et al. (2001). Detecting change: A comparison of three neuropsychological methods, using normal and clinical samples. Archives of Clinical Neuropsychology, 16(1), 75–91.PubMedGoogle Scholar
  41. Heaton, R. K., Cysique, L. A., Jin, H., Shi, C., Yu, X., Letendre, S., et al. (2008). Neurobehavioral effects of human immunodeficiency virus infection among former plasma donors in rural China. Journal of Neurovirology, 7, 1–14.Google Scholar
  42. Hedeker, D., & Gibbons, R. D. (2006). Longitudinal Data Analysis. Hoboken, NJ: Wiley.Google Scholar
  43. Hightower, G., Letendre, S., Cherner, M., Gibson, S., Ellis, R., Ignacio, C., et al. (2008). ART Resistance Influences CSF HIV RNA Levels and Neuropsychological Performance in HIV-infected Individuals Poster presented at the 15th Conference on Retroviruses and Opportunistic Infections, February 3-6.Google Scholar
  44. Hinkin, C. H., Castellon, S. A., Durvasula, R. S., Hardy, D. J., Lam, M. N., Mason, K. I., et al. (2002). Medication adherence among HIV + adults: Effects of cognitive dysfunction and regimen complexity. Neurology, 59(12), 1944–1950.PubMedGoogle Scholar
  45. Hinkin, C. H., Hardy, D. J., Mason, K. I., Castellon, S. A., Durvasula, R. S., Lam, M. N., et al. (2004). Medication adherence in HIV-infected adults: effect of patient age, cognitive status and substance. AIDS, 18(suppl 1), S19–S25.PubMedGoogle Scholar
  46. Lekakis, J., Tsiodras, S., Ikonomidis, I., Palios, J., Poulakou, G., Rallidis, L., et al. (2008). HIV positive patients treated with protease inhibitors have vascular changes resembling those observed in atherosclerotic cardiovascular disease. Clinical Science (London, England), 5, 5.Google Scholar
  47. Letendre, S., Marquie-Beck, J., Capparelli, E., Best, B., Clifford, D., Collier, A. C., et al. (2008). Validation of the CNS penetration-effectiveness rank for qualifying antiretroviral penetration into the central nervous system. Archives of Neurology, 65(1), 65–70.CrossRefPubMedGoogle Scholar
  48. Letendre, S., McCutchan, J., Childers, M., Woods, S., Lazzaretto, D., Heaton, R., et al. (2004). Enhancing antiretroviral therapy for Human Immunodeficiency Virus cognitive disorders. Annals of Neurology, 56(3), 416–423.CrossRefPubMedGoogle Scholar
  49. Lewis, W. (2005). Nucleoside reverse transcriptase inhibitors, mitochondrial DNA and AIDS therapy. Antiviral Therapy, 10(Suppl 2), M13–27.PubMedGoogle Scholar
  50. Llorente, A. M., van Gorp, W. G., Stern, M. J., George, L., Satz, P., Marcotte, T. D., et al. (2001). Long-term effects of high-dose zidovudine treatment on neuropsychological performance in mildly symptomatic HIV-positive patients: results of a randomized, double-blind, placebo-controlled investigation. Journal of the International Neuropsychological Society, 7, 27–32.CrossRefPubMedGoogle Scholar
  51. Marra, C. M., Lockhart, D., Zunt, J. R., Perrin, M., Coombs, R. W., & Collier, A. C. (2003). Changes in CSF and plasma HIV-1 RNA and cognition after starting potent antiretroviral therapy. Neurology, 60, 1388–1390.PubMedGoogle Scholar
  52. May, S., Letendre, S., Haubrich, R., McCutchan, J. A., Heaton, R., Capparelli, E., et al. (2007). Meeting practical challenges of a trial involving a multitude of treatment regimens: an example of a multi-center randomized controlled clinical trial in neuroAIDS. Journal of Neuroimmune Pharmacology, 2(1), 97–104.CrossRefPubMedGoogle Scholar
  53. McCutchan, J. A., Wu, J. W., Robertson, K., Koletar, S. L., Ellis, R. J., Cohn, S., et al. (2007). HIV suppression by HAART preserves cognitive function in advanced, immune-reconstituted AIDS patients. AIDS, 21(9), 1109–1117.CrossRefPubMedGoogle Scholar
  54. Miller, V., & Larder, B. A. (2001). Mutational patterns in the HIV genome and cross-resistance following nucleoside and nucleotide analogue drug exposure. Antiviral Therapy, 6(Suppl 3), 25–44.PubMedGoogle Scholar
  55. Mollica, C., Maruff, P., & Vance, A. (2004). Development of a statistical approach to classifying treatment response in individual children with ADHD. Human Psychopharmacology, 19(7), 445–456.CrossRefPubMedGoogle Scholar
  56. Pialoux, G., Fournier, S., Moulignier, A., Poveda, J., Clavel, F., & Dupont, B. (1997). Central nervous system as a sanctuary for HIV-1 infection despite treatment with zidovudine, lamivudine and indinavir. AIDS, 11(10), 1302–1303.PubMedGoogle Scholar
  57. Piccinini, M., Rinaudo, M. T., Anselmino, A., Buccinna, B., Ramondetti, C., Dematteis, A., et al. (2005). The HIV protease inhibitors nelfinavir and saquinavir, but not a variety of HIV reverse transcriptase inhibitors, adversely affect human proteasome function. Antiviral Therapy, 10(2), 215–223.PubMedGoogle Scholar
  58. Rabbitt, P., Diggle, P., Holland, F., & McInnes, L. (2004). Practice and drop-out effects during a 17-year longitudinal study of cognitive aging. Journal of Gerontology Psychological Sciences, 59B(2), 84–97.Google Scholar
  59. Reinvang, I., Froland, S., Karlsen, N., & Lundervold, A. (1991). Only temporary improvement in impaired neuropsychological function in AIDS patients treated with zidovudine. AIDS, 5(2), 228–229.CrossRefPubMedGoogle Scholar
  60. Riedel, D. J., Pardo, C. A., McArthur, J., & Nath, A. (2006). Therapy Insight: CNS manifestations of HIV-associated immune reconstitution inflammatory syndrome. Nature Clinical Practice Neurology, 2(10), 557–565.CrossRefPubMedGoogle Scholar
  61. Roberston, K., Roberston, T. W., Ford, S., Watson, D., Fiscus, S., Harp, A. G., et al. (2004). Highly Active Antiretroviral Therapy improves neurocognitive functioning. Journal of Acquired Immune Deficiency Syndrome, 36(1), 562–566.CrossRefGoogle Scholar
  62. Robertson, K. R., Smurzynski, M., Parsons, T. D., Wu, K., Bosch, R. J., Wu, J., et al. (2007a). The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS, 21(14), 1915–1921.CrossRefGoogle Scholar
  63. Roberston, K., Su, Z., Krambrink, A., Evans, S. R., Havlir, D., Margolis, D., et al. (2007b). This Is Your Brain off Drugs: Neurocognitive Function before and after ART Discontinuation in Patients with High CD4 Nadir (ACTG A5170). Paper presented at the 14th Conference on Retroviruses and Opportunistic Infections February 25 -February 28.Google Scholar
  64. Sacktor, N. C., Bacellar, H., Hoover, D. R., Nance-Sproson, T. E., Selnes, O. A., Miller, E. N., et al. (1996). Psychomotor slowing in HIV infection: a predictor of dementia, AIDS and death. Journal of Neurovirology, 2, 404–410.CrossRefPubMedGoogle Scholar
  65. Sacktor, N. C., Lyles, R. H., Skolasky, R. L., Anderson, D. E., McArthur, J. C., McFarlane, G., et al. (1999). Combination antiretroviral therapy improves psychomotor speed performance in HIV-seropositive homosexual men. Neurology, 52, 1640–1647.PubMedGoogle Scholar
  66. Sacktor, N., McDermott, M., Marder, K., Schifitto, G., Selnes, O. A., McArthur, J. C., et al. (2002). HIV-associated cognitive impairment before and after the advent of combination therapy. Journal of Neurovirology, 8, 136–142.CrossRefPubMedGoogle Scholar
  67. Sacktor, N., Skolasky, R. L., Tarwater, P. M., McArthur, J. C., Selnes, O. A., Becker, J., et al. (2003). Response to systemic HIV viral load suppression correlates with psychomotor speed performance. Neurology, 61, 567–569.PubMedGoogle Scholar
  68. Sacktor, N., Nakasujja, N., Skolasky, R., Robertson, K., Wong, M., Musisi, S., et al. (2006). Antiretroviral therapy improves cognitive impairment in HIV + individuals in sub-Saharan Africa. Neurology, 67(2), 311–314.CrossRefPubMedGoogle Scholar
  69. Schaie, K. W., & Hofer, S. M. (2001). Handbook of the Psychology of Aging. In K. W. Schaie & J. E. Birren (Eds.), Longitudinal studies in aging research (5th ed.). San Diego: Academic Press.Google Scholar
  70. Schifitto, G., Navia, B. A., Yiannoutsos, C. T., Marra, C. M., Chang, L., Ernst, T., et al. (2007a). Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. AIDS, 21(14), 1877–1886.CrossRefGoogle Scholar
  71. Schifitto, G., Zhang, J., Evans, S. R., Sacktor, N., Simpson, D., Millar, L. L., et al. (2007b). A multicenter trial of selegiline transdermal system for HIV-associated cognitive impairment. Neurology, 69(13), 1314–1321.CrossRefGoogle Scholar
  72. Schmitt, F. A., Bigley, J. W., McKinnis, R., Logue, P. E., Evans, R. W., Drucker, J. L., et al. (1988). Neuropsychological outcome of Zidovudine (AZT) treatment fo patients with AIDS and AIDS related-complex. New England Journal of Medicine, 319, 1573–1578.PubMedCrossRefGoogle Scholar
  73. Schweinsburg, B. C., Taylor, M. J., Alhassoon, O. M., Gonzalez, R., Brown, G. G., Ellis, R. J., et al. (2005). Brain mitochondrial injury in Human Immunodeficiency Virus-seropositive (HIV+) individuals taking nucleoside reverse transcriptase inhibitors. J Neurovirol, 11(4), 356–364.CrossRefPubMedGoogle Scholar
  74. Sidtis, J. J., Gatsonis, C., Price, R. W., Singer, E. J., Collier, A. C., Richman, D. D., et al. (1993). Zidovudine treatment of the AIDS Dementia Complex: results of a placebo-controlled trial. Annals of Neurology, 33, 343–349.CrossRefPubMedGoogle Scholar
  75. Simoni, J. M., Kurth, A. E., Pearson, C. R., Pantalone, D. W., Merrill, J. O., & Frick, P. A. (2006). Self-report measures of antiretroviral therapy adherence: A review with recommendations for HIV research and clinical management. AIDS and Behavior, 10(3), 227–245.CrossRefPubMedGoogle Scholar
  76. Smit, T. K., Brew, B. J., Tourtellotte, W., Morgello, S., Gelman, B. B., & Saksena, N. K. (2004). Independent evolution of human immunodeficiency virus (HIV) drug resistance mutations in diverse areas of the brain in HIV-infected patients, with and without dementia, on antiretroviral treatment. Journal of Virology, 78(18), 10133–10148.CrossRefPubMedGoogle Scholar
  77. Strain, M. C., Letendre, S., Pillai, S. K., Russell, T., Ignacio, C. C., Gunthard, H. F., et al. (2005). Genetic composition of Human Immunodeficiency Virus type-1 in cerebrospinal fluid and blood without treatment and during failing antiretroviral therapy. Journal of Virology, 79(3), 1772–1788.CrossRefPubMedGoogle Scholar
  78. Suarez, S., Baril, L., Stankoff, B., Khellaf, M., Dubois, B., Lubetski, C., et al. (2001). Outcome of patients with HIV-1 related cognitive impairment on highly active antiretroviral therapy. AIDS, 15, 192–200.CrossRefGoogle Scholar
  79. Sullivan, E. V., Adalsteinsson, E., Spielman, D. M., Hurd, R. E., & Pfefferbaum, A. (2001). N-acetylaspartate–a marker of neuronal integrity. Annals of Neurology, 50(6), 823.CrossRefPubMedGoogle Scholar
  80. Tozzi, V., Narciso, P., & Calgani, S. (1993). Effects of Zidovudine in 30 patients with mild to end-stage AIDS Dementia Complex. AIDS, 7, 638–692.CrossRefGoogle Scholar
  81. Tozzi, V., Balestra, P., Galgani, S., Narciso, P., Ferri, F., Sebastiani, G., et al. (1999). Positive and sustained effects of highly active antiretroviral therapy on HIV-1 associated neurocognitive impairment. AIDS, 13, 1889–1897.CrossRefPubMedGoogle Scholar
  82. Tozzi, V., Balestra, P., Bellagamba, R., Corpolongo, A., Salvatori, M. F., Visco-Comandini, U., et al. (2007). Persistence of neuropsychological deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. Journal of Acquired Immune Deficiency Syndrome, 45(2), 174–182.CrossRefGoogle Scholar
  83. U.S. Food and Drug Administration [FDA]. (2008). Drugs Used in the Treatment of HIV Infection. Retrieved November 2008 <http://www.fda.gov/oashi/aids/virals.html >
  84. Valcour, V., & Paul, R. (2006). HIV infection and dementia in older adults. Clinical Infectious Diseases, 42(10), 1449–1454.CrossRefPubMedGoogle Scholar
  85. Valcour, V., Yee, P., Williams, A. E., Shiramizu, B., Watters, M., Selnes, O., et al. (2006a). Lowest ever CD4 lymphocyte count (CD4 nadir) as a predictor of current cognitive and neurological status in human immunodeficiency virus type 1 infection–The Hawaii Aging with HIV Cohort. Journal of Neurovirology, 12(5), 387–391.CrossRefGoogle Scholar
  86. Valcour, V. G., Sacktor, N. C., Paul, R. H., Watters, M. R., Selnes, O. A., Shiramizu, B. T., et al. (2006b). Insulin resistance is associated with cognition among HIV-1-infected patients: the Hawaii Aging with HIV cohort. Journal of Acquired Immune Deficiency Syndrome, 43(4), 405–410.CrossRefGoogle Scholar
  87. Venkataramana, A., Pardo, C. A., McArthur, J. C., Kerr, D. A., Irani, D. N., Griffin, J. W., et al. (2006). Immune reconstitution inflammatory syndrome in the CNS of HIV-infected patients. Neurology, 67(3), 383–388.CrossRefPubMedGoogle Scholar
  88. Venturi, G., Catucci, M., Romano, L., Corsi, P., Leoncini, F., Valensin, P. E., et al. (2000). Antiretroviral resistance mutations in human immunodeficiency virus type 1 reverse transcriptase and protease from paired cerebrospinal fluid and plasma samples. The Journal of Infectious Diseases, 181, 740–745.CrossRefPubMedGoogle Scholar
  89. Verbiest, W., Brown, S., Cohen, C., Conant, M., Henry, K., Hunt, S., et al. (2001). Prevalence of HIV-1 drug resistance in antiretroviral-naive patients: a prospective study. AIDS, 15(5), 647–650.CrossRefPubMedGoogle Scholar
  90. White, D. A., Heaton, R., & Monsch, A. U. (1995). Neuropsychological studies of asymptomatic Human Immunodeficiency Virus-type-1 infected individuals. Journal of the International Neuropsychological Society, 1, 304–315.CrossRefPubMedGoogle Scholar
  91. Woods, S. P., Moran, L. M., Carey, C. L., Dawson, M. S., Iudicello, J. E., Gibson, S., et al. (2008). Prospective memory in HIV infection: is "remembering to remember" a unique predictor of self-reported medication management? Archives of Clinical Neuropsychology, 23(3), 257–270.CrossRefPubMedGoogle Scholar
  92. Wright, E., Brew, B., Arayawichanont, A., Robertson, K., Samintharapanya, K., Kongsaengdao, S., et al. (2008). Neurologic disorders are prevalent in HIV-positive outpatients in the Asia-Pacific region. Neurology, 71(1), 50–56.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Brain SciencesUniversity of New South Wales, and Department of NeurologySydneyAustralia

Personalised recommendations