Neuropsychology Review

, 19:263 | Cite as

The Neuropsychology of HIV/AIDS in Older Adults

  • David J. HardyEmail author
  • David E. Vance


Highly active antiretroviral therapy is allowing increasing numbers of adults to age with HIV. The neuropsychological effects of aging with HIV are reviewed through three types of studies. First, the separate effects of HIV and aging on cognition are examined in studies that compare younger adults with HIV with neurologically normal older adults. Second, studies examine the impact of aging within samples of adults with HIV only. Third, providing the most critical evidence, are studies that assess cognition in younger and older adults with HIV relative to younger and older adults without HIV. In general research findings are inconclusive. Large individual differences among older adults with HIV as well as co-factors (APOE4 and detectable viral load) may account for inconsistent findings in the literature. A subgroup of older adults with HIV may be at greater risk for cognitive impairment, especially in attention functioning.


HIV AIDS Aging Neuropsychology Cognition Attention 


  1. Arendt, G., Hefter, H., Nelles, H. W., Hilperath, F., & Strohmeyer, G. (1993). Age-dependent decline in cognitive information processing of HIV-positive individuals detected by event-related potential recordings. Journal of the Neurological Sciences, 115, 223–229. doi: 10.1016/0022-510X(93)90229-R.CrossRefPubMedGoogle Scholar
  2. Barclay, T. R., Hinkin, C. H., Castellon, S. A., Mason, K. I., Reinhard, M. J., Marion, S. D., et al. (2007). Age-associated predictors of medication adherence in HIV-positive adults: health beliefs, self-efficacy, and neurocognitive status. Health Psychology, 26, 40–49. doi: 10.1037/0278-6133.26.1.40.CrossRefPubMedGoogle Scholar
  3. Bashore, T. R. (1993). Differential effects of aging on the neurocognitive functions subserving speeded mental processing. In J. Cerella, J. Rybash, W. Hoyer, & M. L. Commons (Eds.), Adult information processing: Limits on loss (pp. 37–76). San Diego: Academic Press.Google Scholar
  4. Becker, J. T., Sanchez, J., Dew, M. A., Lopez, O. L., Dorst, S. K., & Banks, G. (1997). Neuropsychological abnormalities among HIV-infected individuals in a community-based sample. Neuropsychology, 11, 592–601. doi: 10.1037/0894-4105.11.4.592.CrossRefPubMedGoogle Scholar
  5. Becker, J. T., Lopez, O. L., Dew, M. A., & Aizenstein, H. J. (2004). Prevalence of cognitive disorders differs as a function of age in HIV virus infection. AIDS (London, England), 18, 11–18. doi: 10.1097/00002030-200401001-00003.Google Scholar
  6. Beer, J. S., Shimamura, A. P., & Knight, R. T. (2004). Frontal lobe contributions to executive control of cognitive and social behavior. In M. S. Gazzaniga (Ed.), The cognitive neurosciences, 3rd edn (pp. 1091–1104). Cambridge: MIT Press.Google Scholar
  7. Brew, B. J. (2004). Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex. AIDS (London, England), 18, 75–78. doi: 10.1097/00002030-200401001-00011.Google Scholar
  8. Centers for Disease Control and Prevention. (2007). Estimated numbers of persons living with HIV/AIDS, by year and selected characteristics, 2001–2004. Cited at
  9. Cherner, M., Ellis, R. J., Lazzaretto, D., Young, C., Mindt, M. R., Atkinson, J. H., et al. (2004). Effects of HIV-1 infection and aging on neurobehavioral functioning: preliminary findings. AIDS (London, England), 18, 27–34. doi: 10.1097/00002030-200401001-00005.Google Scholar
  10. Comstock, J. R., & Arnegard, R. J. (1992). The multi-attribute task battery for human operator workload and strategic behavior research (Tech. Memorandum No. 104174). Hampton: NASA Langley Research Center.Google Scholar
  11. Concha, M., Graham, N. M. H., Munoz, A., Vlahov, D., Royal, W., Updike, M., et al. (1992). Effect of chronic substance abuse on the neuropsychological performance of intravenous drug users with a high prevalence of HIV-1 seropositivity. American Journal of Epidemiology, 136, 1338–1348.PubMedGoogle Scholar
  12. Conigliaro, J., Justice, A. C., Gordon, A. J., & Bryant, K. (2006). Role of alcohol in determining human immunodeficiency virus (HIV)-relevant outcomes: a conceptual model to guide the implementation of evidence-based interventions into practice. Medical Care, 44, 1–6. doi: 10.1097/ Scholar
  13. Connor, M. D., Lammie, G. A., Bell, J. E., Warlow, C. P., Simmonds, P., & Brettle, R. D. (2000). Cerebral infarction in adult AIDS patients: observation from the Edinburgh HIV autopsy cohort. Stroke, 31, 2117–2126.PubMedGoogle Scholar
  14. Cook, R. L., Sereika, S. M., Hunt, S. C., Woodward, W. C., Erlen, J. A., & Conigliaro, J. (2001). Problem drinking and medication adherence among persons with HIV infection. Journal of General Internal Medicine, 16, 83–88. doi: 10.1111/j.1525-1497.2001.00122.x.CrossRefPubMedGoogle Scholar
  15. Craik, F. I. M., & Salthouse, T. A. (Eds.), (1992). The handbook of aging and cognition. Hillsdale, NJ: Lawrence Erlbaum and Associates.Google Scholar
  16. Craik, F. I. M., & Salthouse, T. A. (Eds.), (2000). The handbook of aging and cognition (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum and Associates.Google Scholar
  17. Czigler, I., Csibra, G., & Ambro, A. (1997). Age and information processing: event-related potential studies. European Psychologist, 2, 247–257. doi: 10.1027/1016-9040.2.3.247.CrossRefGoogle Scholar
  18. El Yagoubi, R., Lemaire, P., & Besson, M. (2005). Effects of aging on arithmetic problem-solving: an even-related brain potential study. Journal of Cognitive Neuroscience, 17, 37–50. doi: 10.1162/0898929052880084.CrossRefPubMedGoogle Scholar
  19. Ernst, T., & Chang, L. (2004). Effect of aging on brain metabolism in antiretroviral-naïve HIV patients. AIDS (London, England), 18, 61–67. doi: 10.1097/00002030-200401001-00009.Google Scholar
  20. Fama, R., Pfefferbaum, A., & Sullivan, E. V. (2004). Perceptual learning in detoxified alcoholic men: contributions from explicit memory, executive function, and age. Alcoholism, Clinical and Experimental Research, 28, 1657–1665. doi: 10.1097/01.ALC.0000145690.48510.DA.CrossRefPubMedGoogle Scholar
  21. Fama, R., Eisen, J. C., Rosenbloom, M. J., Sassoon, S. A., Kemper, C. A., Deresinski, S., et al. (2007). Upper and lower limb motor impairments in alcoholism, HIV infection, and their comorbidity. Alcoholism, Clinical and Experimental Research, 31, 1038–1044. doi: 10.1111/j.1530-0277.2007.00385.x.CrossRefPubMedGoogle Scholar
  22. Galvan, F. H., Bing, E. G., Fleishman, J. A., London, A. S., Caetano, R., Burnam, M. A., et al. (2002). The prevalence of alcohol consumption and heavy drinking among people with HIV in the United States: results from the HIV Cost and Services Utilization Study. Journal of Studies on Alcohol, 63, 179–186.PubMedGoogle Scholar
  23. Gordon, S. M., Kennedy, B. P., & McPeake, J. D. (1988). Neuropsychologically impaired alcoholics: assessment, treatment considerations, and rehabilitation. Journal of Substance Abuse Treatment, 5, 99–104. doi: 10.1016/0740-5472(88)90019-0.CrossRefPubMedGoogle Scholar
  24. Gottlieb, M. S., Schanker, H. M., Fan, P. T., Saxon, A., Weisman, J. D., & Pozalski, I. (1981). Pneumocystis pneumonia—Los Angeles. Morbidity and Mortality Weekly Report, 30(21), 1–3.Google Scholar
  25. Grant, I., & Martin, A. (1994). Neuropsychology of HIV infection. New York: Oxford University Press.Google Scholar
  26. Grassi, M. P., Clerci, F., Perin, C., Zocchetti, C., Borella, M., Cargnel, A., & Mangoni, A. (1995). HIV infection and drug use: influence on cognitive function. AIDS (London, England), 9, 165–170. doi: 10.1097/00002030-199509020-00008.Google Scholar
  27. Grotemeyer, K. H., Husstedt, I. W., Brundermann, H., Busch, H., Schlake, H. P., & Zidek, W. (1991). Event-related potentials in HIV-infected outpatients. AIDS Research and Human Retroviruses, 7, 629–635.CrossRefPubMedGoogle Scholar
  28. Hardy, D. J., Hinkin, C. H., Satz, P., Stenquist, P. K., van Gorp, W. G., & Moore, L. H. (1999). Age differences and neurocognitive performance in HIV-infected adults. New Zealand Journal of Psychology, 28, 94–101.Google Scholar
  29. Hardy, D. J., Satz, P., Stefaniak, M., van Gorp, W. G., Hinkin, C. H., & Stenquist, P. K. (1999). Cognition in older adults with AIDS. Poster presented at the 4th Annual UCLA Research Conference on Aging.Google Scholar
  30. Hardy, D. J., Borghi, S., Lodato, J., Zolnikof, B., Miller, E. N., Green, M., et al. (2004). Older HIV-infected adults and multi-task performance. Poster presented at the 24th Annual Conference of the National Academy of Neuropsychology, Seattle, Washington.Google Scholar
  31. Hartley, A. A. (1992). Attention. In F. I. M. Craik, & T. A. Salthouse (Eds.), The handbook of aging and cognition (pp. 3–49). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  32. Heaton, R. K., Grant, I., Butters, N., White, D. A., Kirson, D., Atkinson, J. H., et al. (1995). The HNRC 500—Neuropsychology of HIV infection at different disease stages. Journal of the International Neuropsychological Society, 1, 231–251.CrossRefPubMedGoogle Scholar
  33. Heaton, R. K., Grant, I., & Matthews, C. G. (1986). Differences in neuropsychological test performance associated with age, education and sex. In I. Grant, & K. M. Adams (Eds.), Neuropsychological Assessment of Neuropsychiatric Disorders (pp. 100–120). New York: Oxford University Press.Google Scholar
  34. Hicks, L. H., & Birren, J. E. (1970). Aging, brain damage, and psychomotor slowing. Psychological Bulletin, 74, 377–396. doi: 10.1037/h0033064.CrossRefPubMedGoogle Scholar
  35. Hinkin, C. H., Cummings, J. L., van Gorp, W. G., Satz, P., Mitrushina, M., & Freeman, D. (1990). Frontal/subcortical features of normal aging: an empirical analysis. Canadian Journal on Aging, 9, 104–119.Google Scholar
  36. Hinkin, C. H., Castellon, S. A., van Gorp, W. G., & Satz, P. (1998). Neuropsychological features of HIV disease. In W. G. van Gorp, & S. L. Buckingham (Eds.), Practitioner’s guide to the neuropsychiatry of HIV/AIDS (pp. 1–41). New York: The Guilford Press.Google Scholar
  37. Hinkin, C. H., Castellon, S. A., Atkinson, J. H., & Goodkin, K. (2001). Neuropsychiatric aspects of HIV infection among older adults. Journal of Clinical Epidemiology, 54, 44–52. doi: 10.1016/S0895-4356(01)00446-2.CrossRefGoogle Scholar
  38. Hinkin, C. H., Hardy, D. J., Mason, K. I., Castellon, S. A., Durvasula, R. S., Lam, M. N., & Stefaniak, M. (2003). Medication adherence in HIV-infected adults: effect of patient age, cognitive status, and substance abuse. AIDS (London, England), 17, 1–7. doi: 10.1097/00002030-200301030-00003.Google Scholar
  39. Justice, A. C., McGinnis, K. A., Atkinson, J. H., Heaton, R. K., Young, C., Sadek, J., et al. (2004). Psychiatric and neurocognitive disorders among HIV-positive and negative veterans in care: veterans Aging Cohort Five-Site Study. AIDS (London, England), 18, 49–59. doi: 10.1097/00002030-200401001-00008.Google Scholar
  40. Linnville, S. E., Elliott, F. S., & Larson, G. E. (1996). Event-related potentials as indices of subclinical neurological differences in HIV patients during rapid decision making. The Journal of Neuropsychiatry and Clinical Neurosciences, 8, 293–304.PubMedGoogle Scholar
  41. Mahncke, H. W., Bronstone, A., & Merzenich, M. M. (2006). Brain plasticity and functional losses in the aged: scientific bases for novel intervention. Progress in Brain Research, 157, 81–109. doi: 10.1016/S0079-6123(06)57006-2.CrossRefPubMedGoogle Scholar
  42. Marcotte, T. D., Heaton, R. K., Wolfson, T., Taylor, M. J., Alhassoon, O., Arfaa, K., et al. (1999). The impact of HIV-related neuropsychological dysfunction on driving behavior. Journal of the International Neuropsychological Society, 5, 579–592. doi: 10.1017/S1355617799577011.CrossRefPubMedGoogle Scholar
  43. Marcotte, T. D., Wolfson, T., Rosenthal, T. J., Heaton, R. K., Gonzalez, R., Ellis, R. J., et al. (2004). A multimodal assessment of driving performance in HIV infection. Neurology, 63, 1417–1422.PubMedGoogle Scholar
  44. Marcotte, T. D., Lazzaretto, D., Scott, J. C., Roberts, E., Woods, S. P., Letendre, S., et al. (2006). Visual attention deficits are associated with driving accidents in cognitively-impaired HIV-infected individuals. Journal of Clinical and Experimental Neuropsychology, 28, 13–28. doi: 10.1080/13803390490918048.CrossRefPubMedGoogle Scholar
  45. McArthur, J. C., & Grant, I. (1998). HIV neurocognitive disorders. In H. E. Gendelman, S. A. Lipton, L. Epstein, & S. Swindells (Eds.), The neurology of AIDS (pp. 499–523). New York: Chapman & Hall.Google Scholar
  46. Nelson, E. A., & Dannefer, D. (1992). Aged heterogeneity: fact or fiction? The fate of diversity in gerontological research. The Gerontologist, 32, 17–23. doi: 10.1159/000116781.PubMedGoogle Scholar
  47. Parasuraman, R., & Haxby, J. V. (1993). Attention and brain function in Alzheimer’s Disease. Neuropsychology, 7, 242–272. doi: 10.1037/0894-4105.7.3.242.CrossRefGoogle Scholar
  48. Parasuraman, R., Greenwood, P. M., & Sunderland, T. (2002). The apolipoprotein E gene, attention, and brain function. Neuropsychology, 16, 254–274. doi: 10.1037/0894-4105.16.2.254.CrossRefPubMedGoogle Scholar
  49. Pfefferbaum, A., Ford, J. M., Wenegrat, B. G., Roth, W. T., & Kopell, B. S. (1984). Clinical application of the p3 component of event-related potentials. I. Normal aging. Electroencephalography and Clinical Neurophysiology, 59, 85–103. doi: 10.1016/0168-5597(84)90026-1.CrossRefPubMedGoogle Scholar
  50. Pfefferbaum, A., Adalsteinsson, E., & Sullivan, E. V. (2005). Cortical NAA deficits in HIV infection without dementia: influence of alcoholism comorbidity. Neuropsychopharmacology, 30, 1392–1399. doi: 10.1038/sj.npp.1300623.CrossRefPubMedGoogle Scholar
  51. Picton, T. W., Stuss, D. T., Champagne, S. C., & Nelson, R. F. (1984). The effects of age on human event-related potentials. Psychophysiology, 21, 312–325. doi: 10.1111/j.1469-8986.1984.tb02941.x.CrossRefPubMedGoogle Scholar
  52. Polich, J., Ilan, A., Poceta, J. S., Mitler, M. M., & Darko, D. F. (2000). Neuroelectric assessment of HIV: EEG, ERP, and viral load. International Journal of Psychophysiology, 38, 97–108. doi: 10.1016/S0167-8760(00)00133-1.CrossRefPubMedGoogle Scholar
  53. Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 30, 730–748. doi: 10.1016/j.neubiorev.2006.07.001.CrossRefPubMedGoogle Scholar
  54. Rugg, M. D., & Coles, M. G. H. (Eds.), (1995). Electrophysiology of mind. Oxford: Oxford University Press.Google Scholar
  55. Salthouse, T. A. (1994). How many causes are there of aging-related decrements in cognitive functioning? Developmental Review, 14, 413–437. doi: 10.1006/drev.1994.1016.CrossRefGoogle Scholar
  56. Sassoon, S. A., Fama, R., Rosenbloom, M. J., O’Reilly, A., Pfefferbaum, A., & Sullivan, E. V. (2007). Component cognitive and motor processes of the Digit Symbol Test: differential deficits in alcoholism, HIV infection, and their comorbidity. Alcoholism, Clinical and Experimental Research, 31, 1315–1324. doi: 10.1111/j.1530-0277.2007.00426.x.CrossRefPubMedGoogle Scholar
  57. Schaie, K. W. (1996). Intellectual development in adulthood. In J. E. Birren, & K. W. Schaie (Eds.), Handbook of the psychology of aging, 4th edn (pp. 266–286). San Diego: Academic Press.Google Scholar
  58. Stern, Y. (1994). Neuropsychological assessment of seropositive intravenous drug users. In I. Grant, & A. Martin (Eds.), Neuropsychology of HIV infection (pp. 220–233). New York: Oxford University Press.Google Scholar
  59. Stoff, D. M. (2004). Mental health research in HIV/AIDS and aging: problems and prospects. AIDS (London, England), 18, 3–10. doi: 10.1097/00002030-200401001-00002.Google Scholar
  60. Stoff, D. M., Khalsa, J. H., Monjan, A., & Portegies, P. (2004). Introduction: HIV/AIDS and aging. AIDS (London, England), 18, 1–2. doi: 10.1097/00002030-200401001-00001.Google Scholar
  61. Takakuwa, K. M., Callaway, E., Naylor, H., Herzig, K. E., & Yano, L. M. (1993). The effects of the Human Immunodeficiency Virus on visual information processing. Biological Psychiatry, 34, 194–197. doi: 10.1016/0006-3223(93)90392-Q.CrossRefPubMedGoogle Scholar
  62. Tartar, J. L., Sheehan, C. M., Nash, A. J., Starratt, C., Puga, A., & Widmayer, S. (2004). ERPs differ from neurometric tests in assessing HIV-associated cognitive deficit. Neuroreport, 15, 1675–1678. doi: 10.1097/01.wnr.0000134992.74181.4b.CrossRefPubMedGoogle Scholar
  63. Valcour, V., Shikuma, C., Shiramizu, M., Watters, M., Poff, P., Selnes, O. A., et al. (2004). Age, apolipoprotein E4, and the risk of HIV dementia: the Hawaii Aging with HIV Cohort. Journal of Neuroimmunology, 157, 197–202. doi: 10.1016/j.jneuroim.2004.08.029.CrossRefPubMedGoogle Scholar
  64. Valcour, V. G., Shikuma, C. M., Watters, M. R., & Sactor, N. C. (2004). Cognitive impairment in older HIV-1-seropositive individuals: prevalence and potential mechanisms. AIDS (London, England), 18, 79–86. doi: 10.1097/00002030-200401001-00012.Google Scholar
  65. Valcour, V., Shikuma, C., Shiramizu, B., Watters, M., Poff, P., Selnes, O., et al. (2006). Higher frequency of dementia in older HIV-1 individuals. The Hawaii Aging with HIV-1 Cohort. Neurology, 63, 822–827.Google Scholar
  66. van Gorp, W. G., & Mahler, M. (1990). Subcortical features of normal aging. In J. L. Cummings (Ed.), Subcortical dementia (pp. 231–250). New York: Oxford University Press.Google Scholar
  67. van Gorp, W. G., Mitrushina, M., Cummings, J. L., Satz, P., & Modesitt, J. (1989). Normal aging and the subcortical encephalopathy of AIDS. A neuropsychological comparison. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 2, 5–20.Google Scholar
  68. van Gorp, W. G., Miller, E. N., Marcotte, T. D., Dixon, W., Paz, D., Selnes, O., et al. (1994). The relationship between age and cognitive impairment in HIV-1 infection: findings from the Multicenter AIDS Cohort Study and a clinical cohort. Neurology, 44, 929–935.PubMedGoogle Scholar
  69. Vance, D. E. (2004). Cortical and subcortical dynamics of aging with HIV infection. Perceptual and Motor Skills, 98, 647–655. doi: 10.2466/PMS.98.2.647-655.CrossRefPubMedGoogle Scholar
  70. Vance, D. E., & Robinson, F. P. (2004). Reconciling successful aging with HIV: a biopsychosocial overview. Journal of HIV/AIDS & Social Services, 3, 59–78. doi: 10.1300/J187v03n01_06.CrossRefGoogle Scholar
  71. Vance, D. E., & Burrage Jr., J. W. (2006). Promoting successful cognitive aging in adults with HIV: strategies for intervention. Journal of Gerontological Nursing, 32(11), 34–41.PubMedGoogle Scholar
  72. Vance, D. E., Woodley, R. A., & Burrage Jr., J. A. (2007). Predictors of cognitive ability in adults aging with HIV: a pilot study. Clinical Gerontologist, 30(3), 83–101. doi: 10.1300/J018v30n03_07.CrossRefGoogle Scholar
  73. West, R., & Schwarb, H. (2006). The influence of aging and frontal function on the neural correlates of regulative and evaluative aspects of cognitive control. Neuropsychology, 20, 468–481. doi: 10.1037/0894-4105.20.4.468.CrossRefPubMedGoogle Scholar
  74. Wilkie, F. L., Goodkin, K., Khamis, I., van Zuilen, M. H., Lee, D., Lecusy, R., et al. (2003). Cognitive functioning in younger and older HIV-1-infected adults. Journal of Acquired Immune Deficiency Syndromes, 33, 93–105.Google Scholar
  75. Woodruff-Pak, D. S. (1997). The neuropsychology of aging. Malden: Blackwell Publishers Inc.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PsychologyLoyola Marymount UniversityLos AngelesUSA
  2. 2.Department of Psychiatry and Biobehavioral Sciences, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  3. 3.School of NursingUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations