Neuropsychology Review

, Volume 17, Issue 3, pp 259–273 | Cite as

The Effects of Tobacco Smoke and Nicotine on Cognition and the Brain

  • Gary E. SwanEmail author
  • Christina N. Lessov-Schlaggar


Tobacco smoke consists of thousands of compounds including nicotine. Many constituents have known toxicity to the brain, cardiovascular, and pulmonary systems. Nicotine, on the other hand, by virtue of its short-term actions on the cholinergic system, has positive effects on certain cognitive domains including working memory and executive function and may be, under certain conditions, neuroprotective. In this paper, we review recent literature, laboratory and epidemiologic, that describes the components of mainstream and sidestream tobacco smoke, including heavy metals and their toxicity, the effect of medicinal nicotine on the brain, and studies of the relationship between smoking and (1) preclinical brain changes including silent brain infarcts; white matter hyperintensities, and atrophy; (2) single measures of cognition; (3) cognitive decline over repeated measures; and (4) dementia. In most studies, exposure to smoke is associated with increased risk for negative preclinical and cognitive outcomes in younger people as well as in older adults. Potential mechanisms for smoke’s harmful effects include oxidative stress, inflammation, and atherosclerotic processes. Recent evidence implicates medicinal nicotine as potentially harmful to both neurodevelopment in children and to catalyzing processes underlying neuropathology in Alzheimer’s Disease. The reviewed evidence suggests caution with the use of medicinal nicotine in pregnant mothers and older adults at risk for certain neurological disease. Directions for future research in this area include the assessment of comorbidities (alcohol consumption, depression) that could confound the association between smoking and neurocognitive outcomes, the use of more specific measures of smoking behavior and cognition, the use of biomarkers to index exposure to smoke, and the assessment of cognition-related genotypes to better understand the role of interactions between smoking/nicotine and variation in genotype in determining susceptibility to the neurotoxic effects of smoking and the putative beneficial effects of medicinal nicotine.


Tobacco smoke Nicotine Brain Cognition Dementia 


  1. Aggarwal, N. T., Bienias, J. L., Bennett, D. A., Wilson, R. S., Morris, M. C., Schneider, J. A., et al. (2006). The relation of cigarette smoking to incident Alzheimer’s disease in a biracial urban community population. Neuroepidemiology, 26, 140–146.PubMedGoogle Scholar
  2. Alberg, A. J. (2002). The influence of cigarette smoking on circulating concentrations of antioxidant micronutrient micronutrients. Toxicology, 180, 121–137.PubMedGoogle Scholar
  3. Aleman, A., Muller, M., de Haan, E. H. F., & van der Schouw, Y. T. (2005). Vascular risk factors and cognitive function in a sample of independently living men. Neurobiology of Aging, 26, 485–490.PubMedGoogle Scholar
  4. Ambrose, J. A., & Barua, R. S. (2004). The pathophysiology of cigarette smoking and cardiovascular disease: An update. Journal of the American College of Cardiology, 43, 1731–1737.PubMedGoogle Scholar
  5. Anbarasi, K., Kathirvel, G., Vani, G., Jayaraman, G., & Shyamala Devi, C. S. (2006). Cigarette smoking induces heat shock protein 70 kDa expression and apoptosis in rat brain: Modulation by bacoside A. Neuroscience, 138, 1127–1135.PubMedGoogle Scholar
  6. Atkinson, H. H., Cesari, M., Kritchevsky, S. B., Penninx, B. W. J. H., Fried, L. P., & Guralnik, J. M., et al. (2005). Predictors of combined cognitive and physical decline. Journal of the American Geriatrics Society, 53, 1197–1202.PubMedGoogle Scholar
  7. Bakhru, A., & Erlinger, T. P. (2005). Smoking cessation and cardiovascular disease risk factors: Results from the third national health and nutrition examination survey. PLoS Medicine, 2, 528–536.Google Scholar
  8. Barnes, D. E., Alexopoulos, G. S., Lopez, O. L., Williamson, J. D., & Yaffe, K. (2006). Depressive symptoms and vascular disease and mild cognitive impairment: Findings from the cardiovascular health study. Archives of General Psychiatry, 63, 273–280.PubMedGoogle Scholar
  9. Barnett, J. H., Heron, J., Ring, S. M., Golding, J., Goldman, D., & Xu, K., et al. (2007). Gender-specific effects of the catecol-O-methyltransferase Val158Met polymorphism on cognitive function in children. American Journal of Psychiatry, 164, 142–149.PubMedGoogle Scholar
  10. Barnoya, J., & Glantz, S. A. (2005). Cardiovascular effects of secondhand smoke: Nearly as large as smoking. Circulation, 111, 2684–2698.PubMedGoogle Scholar
  11. Bernhard, D., Rossmann, A., Wick, G. & Sampson, E. J. (2005). Metals in cigarette smoke. IUBMB Life, 57, 805–809.PubMedGoogle Scholar
  12. Bhargava, D., Weiner, M. F., Hynan, L. S., Diaz-Arrastia, R., & Lipton, A. M. (2006).Vascular disease risk factors, rate of progression and survival in Alzheimer’s disease. Journal of Geriatric Psychiatry and Neurology, 19, 78–82.PubMedGoogle Scholar
  13. Bowirrat, A., Friedland, R. P., Farrer, L., Baldwin, C., & Korczyn, A. (2002). Genetic and environmental risk factors for Alzheimer’s disease in Israeli Arabs. Journal of Molecular Neuroscience, 19, 39–45.Google Scholar
  14. Brody, A. L. (2006). Functional brain imaging of tobacco use and dependence. Journal of Psychiatric Research, 40, 404–418.PubMedGoogle Scholar
  15. Brody, A. L., Mandelkern, M. A., Jarvik, M. E., Lee, G. S., Smith, E. C., Huang, J. C., et al. (2004). Differences between smokers and non-smokers and regional gray matter volumes and densities. Biological Psychiatry, 55, 77–84.PubMedGoogle Scholar
  16. Buccafusco, J. J., Shuster, L. C., & Terry, A. V., Jr. (2007). Disconnection between activation and desensitization of autonomic nicotinic receptors by nicotine and cotinine. Neuroscience Letters, 13, 68–71.Google Scholar
  17. Buccafusco, J. J., & Terry, A. V., Jr. (2003). The potential role of cotinine in the cognitive and neuroprotective actions of nicotine. Life Sciences, 72, 2931–2942.PubMedGoogle Scholar
  18. Bursi, F., Rocca, W. A., Killian, J. M., Weston, S. A., Knopman, D. S., Jacobsen, S. J., et al. (2005). Heart disease and dementia: A population-based study. American Journal of Epidemiology, 163, 135–141.PubMedGoogle Scholar
  19. Buschke, H., & Fuld, P. A. (1974). Evaluating storage, retention, and retrieval in disordered memory and learning. Neurology, 24, 1019–1025.PubMedGoogle Scholar
  20. Butterfield, D. A., Perluigi, M., & Sultana, R. (2006). Oxidative stress in Alzheimer’s disease brain: New insights from redox proteomics. European Journal of Pharmacology, 545, 39–50.PubMedGoogle Scholar
  21. Casserly, I., & Topol, E. (2004). Convergence of atherosclerosis and Alzheimer’s disease: Inflammation, cholesterol, and misfolded proteins. Lancet, 363, 1139–1146.PubMedGoogle Scholar
  22. Checkoway, H., Powers, K., Smith-Weller, T., Franklin, G. M., Longstreth, W. T., Jr., & Swanson, P. D. (2002). Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. American Journal of Epidemiology, 155, 732–738.PubMedGoogle Scholar
  23. Chong, Z. Z., Li, F., & Maiese, K. (2005). Stress in the brain: Novel cellular mechanisms of injury linked to Alzheimer’s disease. Brain Research Reviews, 49, 1–21.PubMedGoogle Scholar
  24. de Frias, C. M., Annerbrink, K., Westberg, L., Eriksson, E., Adolfsson, R., & Nilsson, L.-G. (2005). Catechol O-methyltransferase Val158Met polymorphism is associated with cognitive performance in nondemented adults. Journal of Cognitive Neuroscience, 17, 1018–1025.PubMedGoogle Scholar
  25. de Leon, J., & Diaz, F. J. (2005). A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophrenia Bulletin, 76, 135–157.Google Scholar
  26. de Quervain, D. J., & Papassotiropoulos, A. (2006). Identification of a genetic cluster influencing memory performance and hippocampal activity in humans. Proceedings of the National Academy of Sciences of the United States of America, 103, 4270–4274.PubMedGoogle Scholar
  27. Dierker, L. C., Avenevoli, S., Stolar, M., & Merikangas, K. R. (2002). Smoking and depression: An examination of mechanisms of comorbidity. American Journal of Psychiatry, 159, 947–953.PubMedGoogle Scholar
  28. Durazzo, T. C., Cardenas, V. A., Studholme, C., Weiner, M. W., & Meyerhoff, D. J. (2007). Non-treatment-seeking heavy drinkers: Effects of chronic cigarette smoking on brain structure. Drug and Alcohol Dependence, 87, 76–82.PubMedGoogle Scholar
  29. Durazzo, T. C., Gazdzinski, S., Banys, P., & Meyerhoff, D. J. (2004). Cigarette smoking exacerbates chronic alcohol-induced brain damage: A preliminary metabolite imaging study. Alcoholism, Clinical and Experimental Research, 28, 1849–1860.PubMedGoogle Scholar
  30. Durazzo, T. C., Gazdzinski, S., & Meyerhoff, D. J. (2007). The neurobiological and neurocognitive consequences of chronic cigarette smoking in alcohol use disorders. Alcohol and Alcoholism, 42, 174–185.PubMedGoogle Scholar
  31. Durazzo, T. C., Rothlind, J. C., Weiner, M. W., & Meyerhoff, D. J. (2005). Effects of chronic cigarette smoking on neuropsychological test performance in heavy social drinkers. In Paper presented at the 28th Annual Meeting of the Research Society on Alcoholism, Santa Barbara, CA.Google Scholar
  32. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.PubMedGoogle Scholar
  33. Ernst, M., Heishman, S. J., Spurgeon, L., & London, E. D. (2001). Smoking history and nicotine effects on cognitive performance. Neuropsychopharmacology, 25, 313–319.PubMedGoogle Scholar
  34. Foulds, J., Stapleton, J., Swettenham, J., Bell, N., McSorley, K., Russell, M. A. (1996). Cognitive performance effects of subcutaneous nicotine in smokers and never-smokers. Psychopharmacology, 127, 31–38.PubMedGoogle Scholar
  35. Fowles, J., & Dybing, E. (2003). Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tobacco Control, 12, 424–430.PubMedGoogle Scholar
  36. French, K. L., Granholm, A. C., Moore, A. B., Nelson, M. E., & Bimonte-Nelson, H. A. (2006). Chronic nicotine improves working and reference memory performance and reduces hippocampal NGF in aged female rats. Behavior and Brain Research, 169, 256–262.Google Scholar
  37. Fried, P. A., Watkinson, B., & Gray, R. (2003). Differential effects on cognitive functioning in 13- to 16-year olds prenatally exposed to cigarettes and marihuana. Neurotoxicology and Teratology, 25, 427–436.PubMedGoogle Scholar
  38. Fried, P. A., Watkinson, B., & Siegel, L. S. (1997). Reading and language in 9- to 12-year olds prenatally exposed to cigarettes and marijuana. Neurotoxicology and Teratology, 19, 171–183.PubMedGoogle Scholar
  39. Galanis, D. J., Petrovich, H., Launer, L., Harris, T. B., Foley, D. J., & White, L. R. (1997). Smoking history in middle-aged and subsequent cognitive performance in elderly Japanese-American men. The Honolulu–Asia Aging Study. American Journal of Epidemiology, 145, 507–515.PubMedGoogle Scholar
  40. Gallinat, J., Lang, U. E., Jacobsen, L. K., Bajbouj, M., Kalus, P., & von Haebler, D., et al. (2007). Abnormal hippocampal neurochemistry in smokers: Evidence from proton magnetic resonance spectroscopy at 3T. Journal of Clinical Psychopharmacology, 27, 80–84.PubMedGoogle Scholar
  41. Gazdzinski, S., Durazzo, T., Jahng, G. H., Ezekiel, F., Banys, P., & Meyerhoff, D. (2006). Effects of chronic alcohol dependence and chronic cigarette smoking on cerebral perfusion: A preliminary magnetic resonance study. Alcoholism, Clinical and Experimental Research, 30, 947–958.PubMedGoogle Scholar
  42. Gazdzinski, S., Durazzo, T. C., Studholme, C., Song, E., Banys, P., & Meyerhoff, D. J. (2005). Quantitative brain MRI in alcohol dependence: Preliminary evidence for effects of concurrent chronic cigarette smoking on regional brain volumes. Alcoholism, Clinical and Experimental Research, 29, 1484–1495.PubMedGoogle Scholar
  43. Gentry-Nielsen, M. J., vander Top, E., Snitily, M. U., Casey, C. A., & Preheim, L. C. (2004). A rat model to determine the biomedical consequences of concurrent ethanol ingestion and cigarette smoke exposure. Alcoholism, Clinical and Experimental Research, 28, 1120–1128.PubMedGoogle Scholar
  44. Ginzel, K. H., Maritz, G. S., Marks, D. F., Neuberger, M., Pauly, J. R., Polito, J. R., et al. (2007). Critical review: Nicotine for the fetus, the infant and the adolescent? Journal of Health Psychology, 12, 215–224.PubMedGoogle Scholar
  45. Gold, G., Giannakopoulos, P., Montes-Paixao, C., Herrmann, F. R., Mulligan, R., Michel, J. P., et al. (1997). Sensitivity and specificity of newly proposed clinical criteria for possible vascular dementia. Neurology, 49, 690–694.PubMedGoogle Scholar
  46. Gorelick, P. B. (2004). Risk factors for vascular dementia and Alzheimer’s disease. Stroke, 35, 2620–2622.PubMedGoogle Scholar
  47. Harris, S. E., Wright, A. F., Hayward, C., Starr, J. M., Whalley, L. J., & Deary, I. J. (2005). The functional COMT polymorphism, Val158Met, is associated with logical memory and the personality trait intellect/imagination in a cohort of healthy 79 year olds. Neuroscience Letters, 385, 1–6.PubMedGoogle Scholar
  48. Hasenfrantz, M., Pfiffner, D., Pellaud, K., & Battig, K. (1989). Postlunch smoking for pleasure seeking or arousal maintenance? Pharmacology Biochemistry and Behavior, 34, 631–639.Google Scholar
  49. Heishman, S. J., & Henningfield, J. E. (2000). Tolerance to repeated nicotine administration on performance, subjective, and physiological responses in nonsmokers. Psychopharmacology (Berlin), 152, 321–333.Google Scholar
  50. Heishman, S. J., Snyder, F. R., & Henningfield, J. E. (1993). Performance, subject, and physiological effects of nicotine in nonsmokers. Drug and Alcohol Dependence, 34, 11–18.PubMedGoogle Scholar
  51. Hellström-Lindahl, E., Court, J., Keverne, J., Svedberg, M., Lee, M., Marutle, A., et al. (2004). Nicotine reduces A beta in the brain and cerebral vessels of APPsw mice. European Journal of Neuroscience, 19, 2703–2710.PubMedGoogle Scholar
  52. Hindmarch, I., Kerr, J. S., & Sherwood, N. (1990). Effects of nicotine gum on psychomotor performance in smokers and nonsmokers. Psychopharmacology, 100, 535–541.PubMedGoogle Scholar
  53. Hirvonen, M., Laakso, A., Nagren, K., Rinne, J. O., Pohjalainen, T., & Hietala, J. (2004). C957T polymorphism of the dopamine D2 receptor (DRD2) gene affects striatal DRD2 availability in vivo. Molecular Psychiatry, 9, 1060–1066, 10:889 (Erratum).Google Scholar
  54. Howard, G., Wagenknecht, L. E., Cai, J., Cooper, L., Kraut, M. A., & Toole, J. F. (1998). Cigarette smoking and other risk factors for silent cerebral infarction in the general population. Stroke, 29, 913–917.PubMedGoogle Scholar
  55. Hulse, G. K., Lautenschlager, N. T., Tait, R. J., & Almeida, O. P. (2005). Dementia associated with alcohol and other drug use. International Psychogeriatrics, 17(Supplement), S109–S127.PubMedGoogle Scholar
  56. Huentelman, M. J., Papassotiropoulos, A., Craig, D. W., Hoerndli, F. J., Pearson, J. V., Huynh, K. D., et al. (2007). Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance. Human Molecular Genetics, 16, 1469–1477.PubMedGoogle Scholar
  57. Hughes, J. R., Hatsukami, D. K., Mitchell, J. E., & Dahlgren, L. A. (1986). Prevalence of smoking among psychiatric outpatients. American Journal of Psychiatry, 143, 993–997.PubMedGoogle Scholar
  58. Hurt, R. D., Eberman, K. M., Croghan, I. T., Offord, K. P., Davis, L. J., Jr, Morse, R. M., et al. (1994). Nicotine dependence treatment during inpatient treatment for other addictions: A prospective intervention trial. Alcoholism, Clinical and Experimental Research, 18, 867–872.PubMedGoogle Scholar
  59. Ilan, A. B., & Polich, J. (2001). Tobacco smoking and event-related brain potentials in a Stroop task. International Journal of Psychophysiology, 40, 109–118.PubMedGoogle Scholar
  60. Jacobsen, L. K., Krystal, J. H., Menci, W. E., Westerveld, M., Frost, S. J., & Pugh, K. R. (2005). Effects of smoking and smoking abstinence on cognition in adolescent tobacco smokers. Biological Psychiatry, 57, 56–66.PubMedGoogle Scholar
  61. Jacobsen, L. K., Pugh, K. R., Mencl, W. E., & Gelernter, J. (2006). C957T polymorphism of the dopamine D2 receptor gene modulates the effect of nicotine on working memory performance and cortical processing efficiency. Psychopharmacology (Berlin), 188, 530–540.Google Scholar
  62. Jacobsen, L. K., Slotkin, T. A., Menci, W. E., Frost, S. J., & Pugh, K. R. (2007). Gender-specific effects of prenatal and adolescent exposure to tobacco smoke on auditory and visual attention. Neuropsychopharmacology, 21, 1–12, March.Google Scholar
  63. Jacobsen, L. K., Slotkin, T. A., Westerveld, M., Menci, W. E., Pugh, K. R. (2006). Visuospatial memory deficits emerging during nicotine withdrawal in adolescents with prenatal exposure to active maternal smoking. Neuropsychopharmacology, 31, 1550–1561.PubMedGoogle Scholar
  64. Juan, D., Zhou, D. H., Li, J., Wang, J. Y., Gao, C., & Chen, M. (2004). A 2-year follow-up study of cigarette smoking and risk of dementia. European Journal of Neurology, 11, 277–282.PubMedGoogle Scholar
  65. Kalmijn, S., Foley, D., White, L., Burchfiel, C. M., Curb, J. D., Petrovitch, H., et al. (2000). Metabolic cardiovascular syndrome and risk of dementia in Japanese American elderly man: The Honolulu Asia Aging study. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 2255–2260.PubMedGoogle Scholar
  66. Kang, J. H., Logroscino, G., De Vivo, I., Hynter, D., & Grodstein, F. (2005). Apolipoprotein E, and cardiovascular disease and cognitive function in aging women. Neurobiology of Aging, 26, 475–484.PubMedGoogle Scholar
  67. Keenan, R. M., Hatsukami, D. K., & Anton, D. J. (1989). The effects of short-term smokeless tobacco deprivation on performance. Psychopharmacology, 98, 126–130.PubMedGoogle Scholar
  68. Kessler, R. C., Nelson, C. B., McGonagle, K. A., Edlund, M. J., Frank, R. G., & Leaf, P. J. (1996). The epidemiology of co-occurring addictive and mental disorders: Implications for prevention and service utilization. American Journal of Orthopsychiatry, 66, 17–31.PubMedGoogle Scholar
  69. Kin, T., Yamano, S., Sakurai, R., Kajitani, M., Okahashi, Y., Nishiura, N., et al. (2007). Carotid atherosclerosis is associated with brain atrophy in Japanese elders. Gerontology, 53, 1–6.PubMedGoogle Scholar
  70. Knopman, D., Boland, L. L., Mosley, T., Howard, G., Liao, D., Szklo, M., et al. (2001). Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology, 56, 42–48.PubMedGoogle Scholar
  71. Kode, A., Yang, S.-R., & Rahman, I. (2006). Differential effects of cigarette smoke on oxidative stress and pro-inflammatory cytokine release in primary human airway epithelial cells and in a variety of transformed alveolar epithelial cells. Respiratory Research, 7, 1–20.Google Scholar
  72. Koschack, J., & Irle, E. (2005). Small hippocampal size and cognitively normal subjects with coronary artery disease. Neurobiology of Aging, 26, 865–871.PubMedGoogle Scholar
  73. Kubota, K., Matsuzawa, T., Fujiwara, T., Yamaguchi, T., Ito, K., Watanabe, H., et al. (1987). Age related brain atrophy enhanced by smoking: A quantitative study with computed tomography. Tohoku Journal of Experimental Medicine, 153, 303–311.PubMedGoogle Scholar
  74. Kumari, V., Gray, J. A., Ffytche, D. H., Mitterschiffthaler, M. T., Das, M., Zacariah, E., et al. (2003). Cognitive effects of nicotine in humans: An fMRI study. NeuroImage, 19, 1002–1013.PubMedGoogle Scholar
  75. Landers, D. M., Crews, D. J., Boutcher, S. H., Skinner, J. S., & Gustafsen, S. (1992). The effects of smokeless tobacco on performance and psychophysiological response. Medical Science and Sports Exercise, 24, 895–903.Google Scholar
  76. Le Houezec, J., Halliday, R., Benowitz, N. L., Callaway, E., Naylor, H., & Herzig, K. (1994). A low dose of subcutaneous nicotine improved information processing in non-smokers. Psychopharmacology, 114, 628–634.PubMedGoogle Scholar
  77. Lee, P. N. (1994). Smoking and Alzheimer’s disease: A review of the epidemiologic literature. Neuroepidemiology, 13, 131–144.PubMedGoogle Scholar
  78. Leonard, S., & Adams, C. E. (2006). Smoking cessation and schizophrenia. American Journal of Psychiatry, 163, 1877.PubMedGoogle Scholar
  79. Liu, G., Huang, W., Moir, R. D., Vanderburg, C. R., Lai, B., Peng, Z., et al. (2006). Metal exposure and Alzheimer’s pathogenesis. Journal of Structural Biology, 155, 45–51.PubMedGoogle Scholar
  80. Loeb, C., & Meyer, J. S. (1996). Vascular dementia: Still a debatable entity? Journal of Neurological Science, 143, 31–40.Google Scholar
  81. Longstreth, W. T., Jr., Arnold, A. M., Beauchamp, N. J., Manolio, T. A., Lefkowitz, D., Jungreis, C., et al. (2005). Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: The Cardiovascular Health Study. Stroke, 36, 56–61.PubMedGoogle Scholar
  82. Longstreth, W. T., Jr., Diehr, P., Manolio, T. A., Beauchamp, N. J., Jungreis, C. A., Lefkowitz, D., et al. (2001). Cluster analysis and patterns of findings on cranial magnetic resonance imaging of the elderly: The Cardiovascular Health Study. Archives of Neurology, 58, 635–640.PubMedGoogle Scholar
  83. Lopez, E., Arce, C., Oset-Gasque, M. J., Canadas, S., & Gonzalez, M. P. (2006). Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radicals in Biology and Medicine, 40, 940–951.Google Scholar
  84. Luchsinger, J., Reitz, C., Honig, L. S., Tang, M.-X., Shea, S., & Mayeux, R. (2005). Aggregation of vascular risk factors and risk of incident Alzheimer’s disease. Neurology, 65, 545–551.PubMedGoogle Scholar
  85. Lupien, S. J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N. P., et al. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neuroscience, 1, 69–73.PubMedGoogle Scholar
  86. Manna, S. K., Rangasamy, T., Wise, K., Sarkar, S., Shishodia, S., Biswal, S., et al. (2006). Long term environmental tobacco smoke activates nuclear transcription factor-kappa B, activator protein-1, and stress responsive kinases in mouse brain. Biochemistry and Pharmacology, 71, 1602–1609.Google Scholar
  87. Mariani, E., Polidori, M. C., Cherubini, A., & Mecocci, P. (2005). Oxidative stress in brain aging, and degenerative and vascular diseases: An overview. Journal of Chromatography B, 27, 65–75.Google Scholar
  88. Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3, 2011–2030.Google Scholar
  89. Mazza, M., Pomponi, M., Janiri, L., Bria, P., & Mazza, S. (2007). Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: An overview. Progress in Neuropsychopharmacology and Biological Psychiatry, 31, 12–26.Google Scholar
  90. McCartney, J. S., Fried, P. A., & Watkinson, B. (1994). Central auditory processing in school-age children prenatally exposed to cigarette smoke. Neurotoxicology and Teratology, 16, 269–276.PubMedGoogle Scholar
  91. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, & E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS–ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology, 34, 939–944.PubMedGoogle Scholar
  92. Meyer, J. S., Rauch, G. M., Crawford, K., Rauch, R. A., Konno, S., Akiyama, H., et al. (1999). Risk factors accelerating cerebral degenerative changes, cognitive decline and dementia. International Journal of Geriatric Psychiatry, 14, 1050–1061.PubMedGoogle Scholar
  93. Meyer, J. S., Rauch, G., Rauch, R. A., & Haque, A. (2000). Risk factors for cerebral hypoperfusion, mild cognitive impairment, and dementia. Neurobiology of Aging, 21, 161–169.PubMedGoogle Scholar
  94. Muller, M., Grobbee, D. E., Aleman, A., Bots, M., & van der Schouw, Y. T. (2007). Cardiovascular disease and cognitive performance in middle-aged and elderly men. Atherosclerosis, 190, 143–149.PubMedGoogle Scholar
  95. Murray, A. D., Staff, R. T., Shenkin, S. D., Deary, I. J., Starr, J. M., & Whalley, L. J. (2005). Brain white matter hyper intensities: Relative importance of vascular risk factors and non-demented elderly people. Radiology, 237, 251–257.PubMedGoogle Scholar
  96. Newman, A. B., Fitzpatrick, A. L., Lopez, O., Jackson, S., Lyketsos, C., Jagust, W., et al. (2005). Dementia and Alzheimer’s disease incidence in relationship to cardiovascular disease in the Cardiovascular Health Study cohort. Journal of the American Geriatrics Society, 53, 1257–1258.Google Scholar
  97. Nordberg, A., Hellström-Lindahl, E., Lee, M., Johnson, M., Mousavi, M., Hall, R., et al. (2002). Chronic nicotine treatment reduces beta-amyloidosis in the brain of a mouse model of Alzheimer’s disease (APPsw). Journal of Neurochemistry, 81, 655–658.PubMedGoogle Scholar
  98. Oddo, S., Caccamo, A., Green, K. M., Liang, K., Tran, L., Chen, Y., et al. (2005). Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 102, 3046–3051.PubMedGoogle Scholar
  99. O’Hara, R., Miller, E., Liao, C.-P., Way, N., Lin, X., & Hallmayer, J. (2006). COMT genotype, gender and cognition in community-dwelling older adults. Neuroscience Letters, 409, 205–209.PubMedGoogle Scholar
  100. Ott, A., Andersen, K., Dewey, M. E., Letenneur, L., Brayne, C., Copeland, J. R. M., et al. (2004). Effect of smoking on global cognitive function in non-demented elderly. Neurology, 62, 920–924.PubMedGoogle Scholar
  101. Papassotiropoulos, A., Henke, K., Aerni, A., Coluccia, D., Garcia, E., Wollmer, M. A., et al. (2005). Age-dependent effects of the 5-hydroxytryptamine-2a-receptor polymorphism (His452Tyr) on human memory. NeuroReport, 16, 839–842.PubMedGoogle Scholar
  102. Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., Hoerndli, F. J., Craig, D. W., Pearson, J. V., et al. (2006). Common Kibra alleles are associated with human memory performance. Science, 314, 475–478.PubMedGoogle Scholar
  103. Papassotiropoulos, A., Wollmer, M. A., Aguzzi, A., Hock, C., Nitsch, R. M., & de Quervain, D. J. (2005). The prion gene is associated with human long-term memory. Human Molecular Genetics, 14, 2241–2246.PubMedGoogle Scholar
  104. Perkins, K. A., Grobe, J. E., Fonte, C., Goettler, J., Caggiula, A. R., Reynolds, W. A., et al. (1994). Chronic and acute tolerance to subjective, behavioral and cardiovascular effects of nicotine in humans. Journal of Pharmacology and Experimental Therapeutics, 270, 628–638.PubMedGoogle Scholar
  105. Petrie, R. X., Dreary, U. (1989). Smoking and information processing. Psychopharmacology, 99, 393–396.PubMedGoogle Scholar
  106. Pezzini, A., Grassi, M., Del Zotto, E., Archetti, S., Spezi, R., Vergani, V., et al. (2005). Cumulative effect of predisposing genotypes and their interaction with modifiable factors on the risk of ischemic stroke in young adults. Stroke, 36, 533–539.PubMedGoogle Scholar
  107. Pezzini, A., Grassi, M., Del Zotto, E., Bazzoli, E., Archetti, S., Assanelli, D., et al. (2004). Synergistic effect of Apolipoprotein E polymorphisms and cigarette smoking on risk of ischemic stroke in young adults. Stroke, 35, 438–442.PubMedGoogle Scholar
  108. Phillips, S., & Fox, P. (1998). An investigation into the effects of nicotine gum on short-term memory. Psychopharmacology, 140, 429–433.PubMedGoogle Scholar
  109. Pittilo, R. M. (2000). Cigarette smoking, endothelial injury and cardiovascular disease. International Journal of Experimental Pathology, 81, 219–230.Google Scholar
  110. Pomerleau, C. S., Aubin, H. J., & Pomerleau, O. F. (1997). Self-reported alcohol use patterns in a sample of male and female heavy smokers. Journal of Addictive Disorders, 16, 19–24.Google Scholar
  111. Pritchard, W. S., Robinson, J. H., & Guy, T. D. (1992). Enhancement of continuous performance task reaction time by smoking in non-deprived smokers. Psychopharmacology, 108, 437–442.PubMedGoogle Scholar
  112. Proteggente, A. R., Rota, C., Majewicz, J., Rimbach, G., Minihane, A. M., Kraemer, K., et al. (2006). Cigarette smokers differ in their handling of natural (RRR) and synthetic (all rac) alpha-tocopherol: A biokinetic study in apoE4 male subjects. Free Radicals in Biology and Medicine, 40, 2080–2091.Google Scholar
  113. Qiao, D., Seidler, F. J., & Slotkin, T. A. (2005). Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos. Toxicology and Applied Pharmacology, 206, 17–26.PubMedGoogle Scholar
  114. Ravaglia, G., Forti, P., Maioli, F., Martelli, M., Servadei, L., Brunetti, N., et al. (2006). Conversion of mild cognitive impairment to dementia: Predictive role of mild cognitive impairment subtypes and vascular risk factors. Dementia and Geriatric Cognitive Disorders, 21, 51–58.PubMedGoogle Scholar
  115. Reitz, C., Luchsinger, J., Tang, M.-X., & Mayeux, R. (2005). The effect of smoking and time on cognitive function in the elderly without dementia. Neurology, 65, 870–875.PubMedGoogle Scholar
  116. Rey, A. (1964). L’examen clinique en psychologie. Paris: Presses Universitaires de France.Google Scholar
  117. Rezvani, A. H., & Levin, E. D. (2001). Cognitive effects of nicotine. Biological Psychiatry, 49, 258–267.PubMedGoogle Scholar
  118. Richards, M., Jarvis, M. J., Thompson, N., & Wadsworth, M. E. J. (2003). Cigarette smoking and cognitive decline in midlife: Evidence from a prospective birth cohort study. American Journal of Public Health, 93, 994–998.PubMedCrossRefGoogle Scholar
  119. Richards, M., Strachan, D., Hardy, R., Kuh, D., & Wadsworth, M. (2005). Lung function and cognitive ability in a longitudinal birth cohort study. Psychosomatic Medicine, 67, 602–608.PubMedGoogle Scholar
  120. Rogaeva, E., Meng, Y., Lee, J. H., Gu, Y., Kawarai, T., Zou, F., et al. (2007). The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genetics, 39, 168–177.PubMedGoogle Scholar
  121. Roman, G. C. (2005). Vascular dementia prevention: A risk factor analysis. Cerebrovascular Disease, 20(Suppl), 91–100.Google Scholar
  122. Roman, G. C., Tatemichi, T. K., Erkinjuntti, T., Cummings, J. L., Masdeu, J. C., Garcia, J. H., et al. (1993). Vascular dementia: Diagnostic criteria for research studies. Report of the NINDS–AIREN International Workshop. Neurology, 43, 250–260.PubMedGoogle Scholar
  123. Romberger, D. J., Grant, K. (2004). Alcohol consumption and smoking status: The role of smoking cessation. Biomedical Pharmacotherapy, 58, 77–83.Google Scholar
  124. Room, R. (2004). Smoking and drinking as complementary behaviours. Biomedical Pharmacotherapy, 58, 111–115.Google Scholar
  125. Rowland, A. S., & McKinstry, R. C. (2006). Lead toxicity, white matter lesions, and aging. Neurology, 66, 1464–1465.PubMedGoogle Scholar
  126. Rusted, J. M., & Trawley, S. (2006). Comparable effects of nicotine in smokers and nonsmokers on a prospective memory task. Neuropsychopharmacology, 31, 1545–1549.PubMedGoogle Scholar
  127. Rytila, P., Rehn, T., Ilumets, H., Rouhos, A., Sovijarvi, A., Myllarniemi, M., et al. (2006). Increased oxidative stress in asymptomatic current chronic smokers and GOLD stage 0 COPD. Respiratory Research, 7, 1–10.Google Scholar
  128. Sabbagh, M. N., Lukas, R. J., Sparks, D. L., & Reid, R. T. (2002). The nicotinic acetylcholine receptor, smoking, and Alzheimer’s disease. Journal of Alzheimer’s Disease, 4, 317–325.PubMedGoogle Scholar
  129. Sachdev, P. S., Anstey, K. J., Parslow, R. A., Wen, W., Maller, J., Kumar, R., et al. (2006). Pulmonary function, cognitive impairment and brain atrophy in a middle-aged community sample. Dementia and Geriatric Cognitive Disorders, 21, 300–308.PubMedGoogle Scholar
  130. Sakuri, Y., & Kanazawa, I. (2002). Acute effects of cigarettes in non-deprived smokers on memory, calculation and executive functions. Human Psychopharmacology Clinical and Experimental, 17, 369–373.Google Scholar
  131. Scherer, G. (2005). Biomonitoring of inhaled complex mixtures—ambient air, diesel exhaust and cigarette smoke. Experimental and Toxicological Pathology, 57, 75–110.Google Scholar
  132. Schick, S., & Glantz, S. (2005). Phillip Morris and toxicological experiments with fresh sidestream smoke: More toxic than mainstream smoke. Tobacco Control, 14, 396–404.PubMedGoogle Scholar
  133. Shih, R. A., Glass, T. A., Bandeen-Roche, K., Carlson, M. C., Bolla, K. I., Todd, A. C., et al. (2006). Environmental lead exposure and cognitive function in community dwelling older adults. Neurology, 67, 1556–1562.PubMedGoogle Scholar
  134. Shintani, S., Shiigai, T., & Arinami, T. (1998). Silent lacunar infarction on magnetic resonance imaging MRI: Risk factors. Journal of the Neurological Sciences, 160, 82–86.PubMedGoogle Scholar
  135. Slotkin, T. A., MacKillop, E. A., Rudder, C. L., Ryde, I. T., Tate, C. A., & Seidler, F. J. (2007). Permanent, sex-selective effects of prenantal or adolescent nicotine exposure, separately or sequentially, in rat brain regions: Indices of cholinergic and serotonergic synaptic function, cell signaling, and neural cell number and size at 6 months of age. Neuropsychopharmacology, 32, 1082–1097.PubMedGoogle Scholar
  136. Smith, R. C., Singh, A., Infante, M., Khandat, A., & Kloos, A. (2002). Effects of cigarette smoking and nicotine nasal spray on psychiatric symptoms and cognition in schizophrenia. Neuropsychopharmacology, 27, 479–497.PubMedGoogle Scholar
  137. Smith, R. C., Warner-Cohen, J., Matute, M., Butler, E., Kelly, E., Vaidhyanathaswamy, S., et al. (2006). Effects of nicotine nasal spray on cognitive function in schizophrenia. Neuropsychopharmacology, 31, 637–643.PubMedGoogle Scholar
  138. Soderlund, H., Nilsson, L.-G., Berger, K., Breteler, M. M., Dufouil, C., Fuhrer, R., et al. (2006). Cerebral changes on MRI and cognitive function: The CASCADE study. Neurobiology of Aging, 27, 16–23.PubMedGoogle Scholar
  139. Spilich, G. J., June, L., & Renner, J. (1992). Cigarette smoking and cognitive performance. British Journal of Addiction, 87, 1313–1326.PubMedGoogle Scholar
  140. Starr, J. M., Deary, I. J., Fox, H. C., & Whalley, L. J. (2007). Smoking in cognitive change from age 11 to 66 years: A confirmatory investigation. Addictive Behaviors, 32, 63–68.PubMedGoogle Scholar
  141. Stella, F., Banzato, C. E. M., Se, E. V. G., Scudeler, J. L., Pacheco, J. L., & Kajita, R. T. (2007). Risk factors for vascular dementia in elderly psychiatric outpatients with preserved cognitive functions. Journal of the Neurological Sciences, (in press).Google Scholar
  142. Stewart, W. F., Schwartz, B. S., Davatzikos, C., Shen, D., Liu, D., Wu, X., et al. (2006). Past adult lead exposure is linked to neurodegeneration measured by brain MRI. Neurology, 66, 1476–1484.PubMedGoogle Scholar
  143. Swan, G. E., Benowitz, N. L., Lessov, C. N., Jacob, P., III, Tyndale, R. F., Wilhelmsen, K. (2005). Nicotine metabolism: The impact of CYP2A6 on estimates of additive genetic influence. Pharmacogenetics and Genomics, 15, 115–125.PubMedCrossRefGoogle Scholar
  144. Swan, G. E., DeCarli, C., Miller, B. L., Reed, T., Wolf, P. A., & Carmelli, D. (2000). Biobehavioral characteristics of non-demented older adults with subclinical brain atrophy. Neurology, 54, 2108–2114.PubMedGoogle Scholar
  145. Teng, E. L., Hasegawa, K., Homma, A., Imai, Y., Larson, E., Graves, A., et al. (1994). The Cognitive Abilities Screening Instrument (CASI): A practical test for cross-cultural epidemiologic studies of dementia. International Psychogeriatrics, 6, 45–58.PubMedGoogle Scholar
  146. Tyas, S. L., White, L. R., Petrovitch, H., Ross, G. W., Foley, D. J., Heimovitz, H. K., et al. (2003). Midlife smoking and late life dementia: The Honolulu Asia Aging Study. Neurobiology of Aging, 24, 589–596.PubMedGoogle Scholar
  147. U.S. Department of Health and Human Services (1989). Reducing the health cunsequences of smoking: 25 years of progress. A report of the surgeon general. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. DHHS Publication No. (CDC) 89-8411.Google Scholar
  148. Van Duijn, C. M., Clayton, D. G., Chandra, V., Fratiglioni, L., Graves, A. B., Heyman, A., et al. (1994). Interaction between genetic and environmental risk factors for Alzheimer’s disease: A reanalysis of case-control studies. Genetic Epidemiology, 11, 539–551.PubMedGoogle Scholar
  149. Vermeer, S. E., den Heijer, T., Koudstaal, P. J., Oudkerk, M., Hofman, A., & Breteler, M. M. B. (2003). Incidence and risk factors of silent brain infarcts in the population-based Rotterdam scan study. Stroke, 34, 392–396.PubMedGoogle Scholar
  150. Vermeer, S. E., Koudstaal, P. J., Oudkerk, M., Hofman, A., & Breteler, M. M. B. (2002). Prevalence and risk factors of silent brain infarcts in the population-based Rotterdam scan study. Stroke, 33, 21–25.PubMedGoogle Scholar
  151. Wang, L., van Belle, G., Kukull, W. B., & Larson, E. B. (2002). Predictors of functional change: A longitudinal study of non-demented people age 65 and older. Journal of the American Geriatrics Society, 50, 1525–1534.PubMedGoogle Scholar
  152. Weisskopf, M. G., Wright, R. O., Schwartz, J., Spiro, A., III, Sparrow, D., Aro, A., et al. (2004). Cumulative lead exposure and prospective changing in cognition among elderly men: The VA Normative Aging Study. American Journal of Epidemiology, 160, 1184–1193.PubMedGoogle Scholar
  153. Whalley, L. J., Deary, I. J., Appleton, C. L., & Starr, J. M. (2004). Cognitive reserve and the neurobiology of cognitive aging. Aging Research Reviews, 3, 369–382.PubMedGoogle Scholar
  154. Whincup, P., Papacosta, O., Lennon, L., & Haines, A. (2006). Carboxyhaemoglobin levels and their determinants in older British men. BMC Public Health, 6, 189.PubMedGoogle Scholar
  155. Willems, E. W., Rambali, B., Vleeming, W., Opperhuizen, A., van Amsterdam, J. G. C. (2006). Significance of ammonium compounds on nicotine exposure to cigarette smokers. Food and Chemical Toxicology, 44, 678–688.PubMedGoogle Scholar
  156. Williams, J. M., & Foulds, J. (2007). Successful tobacco dependence treatment in schizophrenia. American Journal of Psychiatry, 164, 222–227.PubMedGoogle Scholar
  157. Willigendael, E. M., Teijink, J. A., Bartelink, M. L., Kuiken, B. W., Boiten, J., Moll, F. L., et al. (2004). Influence of smoking on incidence and prevalence of peripheral arterial disease. Journal of Vascular Surgery, 40, 1158–1165.PubMedGoogle Scholar
  158. Wright, C. B., Sacco, R. L., Rundek, T. R., Delman, J. B., Rabbani, L. E., & Elkind, M. S. V. (2006). Interleukin-6 is associated with cognitive function: The Northern Manhattan Study. Journal of Stroke and Cerebrovascular Diseases, 15, 34–38.PubMedGoogle Scholar
  159. Xu, J., Mendrek, A., Cohen, M. S., Monterosso, J., Simon, S., Jarvik, M., et al. (2007). Effect of cigarette smoking on prefrontal cortical function in nondeprived smokers performing the Stroop Task. Neuropsychopharmacology, 32, 1421–1428.PubMedGoogle Scholar
  160. Yolton, K., Dietrich, K., Auinger, P., Lanphear, B. P., & Hornung, R. (2005). Exposure to environmental tobacco smoke and cognitive abilities among U.S. children and adolescents. Environmental Health Perspectives, 113, 98–103.PubMedCrossRefGoogle Scholar
  161. Zdravkovic, T., Genbacev, O., McMaster, M. T., & Fisher, S. J. (2005). The adverse effects of maternal smoking on the human placenta: A review. Placenta, 26 (Supplement A), S81–S86.PubMedGoogle Scholar
  162. Zhang, X. Y., Tan, Y. L., Zhou, D. F., Haile, C. N., Wu, G. Y., Cao, L. Y., et al. (2007). Nicotine dependence, symptoms and oxidative stress in male patients with schizophrenia. Neuropsychopharmacology, 2007, 1–5.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Center for Health SciencesSRI InternationalMenlo ParkUSA

Personalised recommendations