Neuropsychology Review

, Volume 17, Issue 3, pp 337–345 | Cite as

The Role of Cognitive Control in Cocaine Dependence

  • Hugh Garavan
  • Robert Hester


While hedonic and reward-related processes are central to drug use and dependence, this article focuses on the contribution that cognitive processes may make to addiction. In particular, attention is drawn to those processes involved in exercising control over behavior as drug dependence is characterized by risky, impulsive behavior. Functional neuroimaging implicates prefrontal deficits in cocaine dependence with an emerging picture of cocaine users having attentional biases towards drug-related stimuli, poor performance in laboratory tests of inhibitory control, and compromised monitoring and evaluation of their behavior. Combined, these deficits may contribute to the continuation of use in dependent individuals and may qualify as important targets for therapeutic interventions.


Cocaine Addiction Control Cognition Neuroimaging 


  1. American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders (4th ed—text revision). Washington, DC: American Psychiatric Press.Google Scholar
  2. Ardila, A., Rosselli, M., & Strumwasser, S. (1991). Neuropsychological deficits in chronic cocaine abusers. International Journal of Neuroscience, 57(1–2), 73–79.PubMedCrossRefGoogle Scholar
  3. Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115–116.PubMedGoogle Scholar
  4. Beatty, W. W., Katzung, V. M., Moreland, V. J., & Nixon S. J. (1995). Neuropsychological performance of recently abstinent alcoholics and cocaine abusers. Drug and Alcohol Dependence, 37, 247–253.PubMedGoogle Scholar
  5. Bechara, A., Dolan, S., & Hindes, A. (2002). Decision-making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40, 1690–1705.PubMedGoogle Scholar
  6. Berry, J., van Gorp, W. G., Herzberg, D. S., Hinkin, C., Boone, K., Steinman, L. et al. (1993). Neuropsychological deficits in abstinent cocaine abusers: preliminary findings after two weeks of abstinence. Drug and Alcohol Dependence, 32(3), 231–237.PubMedGoogle Scholar
  7. Bjork, J. M., Smith, A. R., Danube, C. L., & Hommer, D. W. (2007). Developmental differences in posterior mesofrontal cortex recruitment by risky rewards. The Journal of Neuroscience, 27(18), 4839–4849.PubMedGoogle Scholar
  8. Bolla, K., Ernst, M., Kiehl, K., Mouratidis, M., Eldreth, D., Contoreggi, C. et al. (2004). Prefrontal cortical dysfunction in abstinent cocaine abusers. Journal of Neuropsychiatry and Clinical Neurosciences, 16(4), 456–464.PubMedGoogle Scholar
  9. Bolla, K. I., Eldreth, D. A., Matochik, J. A., & Cadet, J. L. (2005). Neural substrates of faulty decision-making in abstinent marijuana users. NeuroImage, 26, 480–492.PubMedGoogle Scholar
  10. Botvinick, M. W., Carter, C. S., Braver, T. S., Barch, D. M., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.PubMedGoogle Scholar
  11. Breiter, H. C., Gollub, R. L., Weisskoff, R. M., Kennedy, D. N., Makris, N., Berke, J. D. et al. (1997). Acute effects of cocaine on human brain activity and emotion. Neuron, 19(3), 591–611.PubMedGoogle Scholar
  12. Brown, J. W., & Braver, T. S. (2005) Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307, 1118–1121.PubMedGoogle Scholar
  13. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222.PubMedGoogle Scholar
  14. Chambers, C. D., Bellgrove, M. A., Stokes, M. G., Henderson, T. R., Garavan, H., Robertson, I. H. et al. (2006). Executive ‘brake failure’ following deactivation of human frontal lobe. Journal of Cognitive Neuroscience, 18, 444–455.PubMedGoogle Scholar
  15. Conrod, P. J., Pihl, R. O., Stewart, S. H., & Dongier, M. (2000). Validation of a system of classifying female substance abusers on the basis of personality and motivational risk factors for substance abuse. Psychology of Addictive Behaviors, 14(3), 243–256.PubMedGoogle Scholar
  16. Cowan, N. (2001). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory (p. 62–101). Cambridge University Press: Cambridge.Google Scholar
  17. Courchesne, E., & Allen, G. (1997). Prediction and preparation, fundamental functions of the cerebellum. Learning Memory, 4, 1–35.PubMedGoogle Scholar
  18. Cox, W. M., Hogan, L. M., Kristian, M. R., and Race, J. H. (2002). Alcohol attentional bias as a predictor of alcohol abusers’ treatment outcome. Drug and Alcohol Dependence, 68, 237–243.PubMedGoogle Scholar
  19. Dackis, C. A., & O'Brien, C. P. (2001). Cocaine dependence: A disease of the brain’s reward centers. Journal of Substance Abuse Treatment, 21(3), 111–117.PubMedGoogle Scholar
  20. Dagenbach, D. & Carr, T. (1994). Inhibitory processes in attention, memory, and language. New York: Academic.Google Scholar
  21. Dalley, J. W., Fryer, T. D., Brichard, L, Robinson, E. S. J., Theobald, D. E. H., Lääne, K. et al. (2007). Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 315, 1267–1270.PubMedGoogle Scholar
  22. DeBettignies, B. H., Mahurin, R. K., & Pirozzolo, F. Z. (1990). Insight for impairment in independent living skills in Alzheimer’s disease and multi-infarct dementia. Journal of Clinical and Experimental Neuropsychology, 12(2), 355–363.PubMedGoogle Scholar
  23. Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5, 303–305.Google Scholar
  24. Desmond, J. E., Chen, S. H., DeRosa, E., Pryor, M. R., Pfefferbaum, A., & Sullivan, E. V. (2003). Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. NeuroImage, 19(4), 1510–1520.PubMedGoogle Scholar
  25. Duka, T., & Townshend, J. M. (2004). The priming effect of alcohol pre-load on attentional bias to alcohol-related stimuli. Psychopharmacology (Berl), 176(3–4), 353–361.Google Scholar
  26. Eldreth, D. A., Matochik, J. A., Cadet, J. L., & Bolla, K. I. (2004). Abnormal brain activity in prefrontal brain regions in abstinent marijuana users. NeuroImage, 23(3), 914–920.PubMedGoogle Scholar
  27. Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience, 8(11), 1481–1489 [erratum in Nat Neurosci. 2006 Jul;9(7):979].PubMedGoogle Scholar
  28. Feldstein, S. W., & Miller, W. R. (2006). Substance use and risk-taking among adolescents. Journal of Mental Health, 15(6), 633–643.Google Scholar
  29. Fillmore, M. T., & Rush, C. R. (2002). Impaired inhibitory control of behavior in chronic cocaine users. Drug and Alcohol Dependence, 66(3), 265–273.PubMedGoogle Scholar
  30. Fillmore, M. T., Rush, C. R., & Hays, L. (2006). Acute effects of cocaine in two models of inhibitory control: Implications of non-linear dose effects. Addiction, 101(9), 1323–1332.PubMedGoogle Scholar
  31. Fishbein, D. H., Eldreth, D. L., Hyde, C., Matochik, J. A., London, E. D., Contoreggi, C. et al. (2005). Risky decision making and the anterior cingulate cortex in abstinent drug abusers and nonusers. Cognitive Brain Research, 23, 119–136.PubMedGoogle Scholar
  32. Forman, S. D., Dougherty, G. G., Casey, B. J., Siegle, G. J., Braver, T. S., Barch, D. M. et al. (2004). Opiate addicts lack error-dependent activation of rostral anterior cingulate. Biological Psychiatry, 55(5), 531–537.PubMedGoogle Scholar
  33. Franken, I. H., Kroon, L. Y., Wiers, R. W., & Jansen, A. (2000). Selective cognitive processing of drug cues in heroin dependence. Journal of Psychopharmacology (Oxf), 14, 395–400.Google Scholar
  34. Franklin, T. R., Acton, P. D., Maldjian, J. A., Gray, J. D., Croft, J. R., Dackis, C. A. et al. (2002). Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biological Psychiatry, 51, 134–142.PubMedGoogle Scholar
  35. Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26(2), 263–276.Google Scholar
  36. Garavan, H. & Stout, J. C. (2005). Neurocognitive insights into substance abuse. Trends in Cognitive Sciences, 9, 195–201.PubMedGoogle Scholar
  37. Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: An event-related fMRI study. Proceedings of the National Academy of Sciences, USA, 96(14), 8301–8306.Google Scholar
  38. Garavan, H., Pankiewicz, J., Bloom, A., Cho, J.-K., Sperry, L., Ross, T. J., et al. (2000). Cue-induced cocaine craving: Neuroanatomical specificity for drug users and drug stimuli. American Journal of Psychiatry, 157, 1789–1798.PubMedGoogle Scholar
  39. Garavan, H., Hester, R., Murphy, K., Fassbender, C., & Kelly, C. (2006). Individual differences in the neuroanatomy of inhibitory control. Brain Research, 1105, 130–142.PubMedGoogle Scholar
  40. Gibbs, S. E., & D’Esposito, M. (2005). Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation. Cognitive, Affective & Behavioral Neuroscience, 5(2), 212–221.CrossRefGoogle Scholar
  41. Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159, 1642–1652.PubMedGoogle Scholar
  42. Goldstein, R. Z., Tomasi, D., Alia-Klein, N., Cottone, L. A., Zhang, L., Telang, F., et al. (2007a). Subjective sensitivity to monetary gradients is associated with frontolimbic activation to reward in cocaine abusers. Drug and Alcohol Dependence, 87(2–3), 233–240.Google Scholar
  43. Goldstein, R. Z., Tomasi, D., Rajaram, S., Cottone, L. A., Zhang, L., Maloney, T., et al. (2007b). Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction. Neuroscience, 144, 1153–1159.Google Scholar
  44. Grant, S., London, E. D., Newlin, D. B., Villemagne, V. L., Liu, X., Contoreggi, C., et al. (1996). Activation of memory circuits during cue-elicited cocaine craving. Proceedings of the National Academy of Sciences of the United States of America, 93, 12040–12045.PubMedGoogle Scholar
  45. Grant, S., Contoreggi, C., & London, E. D. (2000). Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia, 38, 1180–1187.PubMedGoogle Scholar
  46. Guzy, L. T., & Axelrod, S. (1972). Interaural attention shifting as response. Journal of Experimental Psychology, 95, 290–294.PubMedGoogle Scholar
  47. Hammer, R. P., Jr., Pires, W. S., Markou, A., & Koob, G. F. (1993). Withdrawal following cocaine self-administration decreases regional cerebral metabolic rate in critical brain reward regions. Synapse, 14(1), 73–80.PubMedGoogle Scholar
  48. Hester, R., & Garavan, H. (2004). Executive dysfunction in cocaine addiction: Evidence for discordant frontal, cingulate and cerebellar activity. The Journal of Neuroscience, 24, 11017–11022.PubMedGoogle Scholar
  49. Hester, R., Fassbender, C. & Garavan, H. (2004a). Individual differences in error processing: A review and meta-analysis of three event-related fMRI studies using the go/no-go task. Cerebral Cortex, 14(9), 966–973.Google Scholar
  50. Hester, R., Murphy, K., & Garavan, H. (2004b). Beyond common resources: the cortical basis for resolving task interference. NeuroImage, 23(1), 202–212.Google Scholar
  51. Hester, R., Dixon, V., & Garavan, H. (2006). The relationship between attentional bias for cocaine-related material and drug-seeking behavior in active cocaine users. Drug & Alcohol Dependence, 81, 251–257.Google Scholar
  52. Hester, R, Simões-Franklin, C., & Garavan, H. (2007). Post-error behavior in active cocaine users: poor awareness of errors in the presence of intact performance adjustments. Neuropsychopharmacology (in press) DOI  10.1038/sj.npp.1301326.
  53. Hoff, A. L., Riordan, H., Morris, L., Cestaro, V., Wieneke, M., Alpert, R. et al. (1996). Effects of crack cocaine on neurocognitive function. Psychiatry Research, 60(2–3), 167–176.PubMedGoogle Scholar
  54. Holman, B. L., Carvalho, P. A,. Mendelson, J., Teoh, S. K., Nardin, R., Hallgring, E. et al. (1991). Brain perfusion is abnormal in cocaine-dependent polydrug users: a study using technetium-99m-HMPAO and ASPECT. Journal of Nuclear Medicine, 32(6), 1206–1210.PubMedGoogle Scholar
  55. Holroyd, C. B., & Coles, M. G. H. (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709.PubMedGoogle Scholar
  56. Hoshi, R., Bisla, J., & Curran, H. V. (2004). The acute and sub-acute effects of ‘ecstasy’ (MDMA) on processing of facial expressions: preliminary findings. Drug and Alcohol Dependence, 76, 297–304.PubMedGoogle Scholar
  57. Hyman, S. E. (2005). Addiction: A disease of learning and memory. American Journal of Psychiatry, 162, 1414–1422.PubMedGoogle Scholar
  58. Johanson, C. E. & Fischman, M. W. (1989). The pharmacology of cocaine related to its abuse. Pharmacology Review, 41(1), 3–52.Google Scholar
  59. Kaufman, J., Ross, T. J., Stein, E. A., & Garavan, H. (2003). Cingulate hypoactivity in cocaine users during a go/no-go task as revealed by event-related fMRI. The Journal of Neuroscience, 23(21), 7839–7843.PubMedGoogle Scholar
  60. Kelly, P. H., & Iversen, S. D. (1976). Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. European Journal of Pharmacology, 40(1), 45–56.PubMedGoogle Scholar
  61. Konishi, S., Nakajima, K., Uchida, I., Kikyo, H., Kameyama, M., & Miyashita, Y. (1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain, 122, 981–991.PubMedGoogle Scholar
  62. Kübler, A., Murphy, K., Kaufman, J., Stein, E. A., & Garavan, H. (2003). Co-ordination within and between verbal and visuospatial working memory: Network modulation and anterior frontal recruitment. NeuroImage, 20, 1298–1308.PubMedGoogle Scholar
  63. Kübler, A., Murphy, K., & Garavan, H. (2005). Cocaine dependence and attention switching within and between verbal and visuospatial working memory. European Journal of Neuroscience, 21, 1984–1992.PubMedGoogle Scholar
  64. Lawrence, N. S., Ross, T. J., & Stein, E. A. (2002). Cognitive mechanisms of nicotine on visual attention. Neuron, 36, 539–548.PubMedGoogle Scholar
  65. Lee, T. M. C., Zhou, W., Luo, X., Yuen, K. S. L., Ruane, X., & Weng, X. (2005). Neural activity associated with cognitive regulation in heroin users: A fMRI study. Neuroscience Letters, 382, 211–216.PubMedGoogle Scholar
  66. Li, C. s. R., Milivojevic, V., Kemp, K., Hong, K., & Sinha, R. (2006). Performance monitoring and stop signal inhibition in abstinent patients with cocaine dependence. Drug and Alcohol Dependence, 85(3), 205–212.PubMedGoogle Scholar
  67. Liddle, P. F., Friston, K. J., Frith, C. D., Hirsch, S. R., Jones, T., & Frackowiak, R. S. (1992). Patterns of cerebral blood flow in schizophrenia. British Journal of Psychiatry, 160, 179–186.PubMedGoogle Scholar
  68. Liddle, P. F., Kiehl, K. A., & Smith, A. M. (2001). Event-related fMRI study of response inhibition. Human Brain Mapping, 12(2), 100–109.PubMedGoogle Scholar
  69. Logan G. D., & Cowan W. B. (1984). On the ability to inhibit thought and action: a theory of an act of control. Psychological Review, 91, 295–327.Google Scholar
  70. Lusher, J., Chandler, C., & Ball, D. (2004). Alcohol dependence and the alcohol Stroop paradigm: Evidence and issues. Drug Alcohol Depend, 75, 225–231.PubMedGoogle Scholar
  71. MacDonald, A. W. III, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835–1838.PubMedGoogle Scholar
  72. Magno, E., Foxe, J. J., Molholm, S., Robertson, I., & Garavan, H. (2006). The anterior cingulate and error avoidance. The Journal of Neuroscience, 26(18), 4769–4773.PubMedGoogle Scholar
  73. Matochik, J. A., London, E. D., Eldreth, D. A., Cadet, J. L. & Bolla, K.I. (2003). Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. Neuroimage, 19, 1095–1102.PubMedGoogle Scholar
  74. Menon, V., Adleman, N. E., White, C. D., Glover, G. H., & Reiss, A. L. (2001). Error-related brain activation during a go/no-go response inhibition task. Human Brain Mapping, 12(3), 131–143.PubMedGoogle Scholar
  75. Mogenson, G. J., Jones, D. L., & Yim, C. Y. (1980). From motivation to action: functional interface between the limbic system and the motor system. Progress in Neurobiology, 14(2–3), 69–97.PubMedGoogle Scholar
  76. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–141.PubMedGoogle Scholar
  77. Mostofsky, S. H., Schafer J. G., Abrams, M. T., Goldberg, M. C., Flower, A. A., Boyce, A., Courtney, S. M., Calhoun, V. D., Kraut, M. A., Denckla, M. B., & Pekar, J. J. (2003). fMRI evidence that the neural basis of response inhibition is task-independent. Cognitive Brain Research, 17, 419–430.PubMedGoogle Scholar
  78. O'Malley, S. S., & Gawin, F. H. (1990). Abstinence symptomatology and neuropsychological impairment in chronic cocaine abusers. NIDA Research Monographs, 101, 179–190.Google Scholar
  79. Ott, B.R., Lafleche, G., Whelihan, W. M., Buongiorno, G. W., Albert, M. S., & Fogel, B. S. (1996). Impaired awareness of deficits in Alzheimer disease. Alzheimer Disease and Associated Disorders, 10(2), 68–76.PubMedGoogle Scholar
  80. Pascual-Leone, A., Dhuna, A., & Anderson, D. C. (1991). Cerebral atrophy in habitual cocaine abusers: A planimetric CT study. Neurology, 41(1), 34–38.PubMedGoogle Scholar
  81. Paulus, M. P., & Lawrence, R. (2006). Anterior cingulate activity modulates nonlinear decision weight function of uncertain prospects. NeuroImage, 30, 668–677.PubMedGoogle Scholar
  82. Paulus, M. P., Tapert, S. F., & Schuckit, M. A. (2005). Neural activation patterns of methamphetamine-dependent subjects during discussion making predict relapse. Archives of General Psychiatry, 62(7), 761–768.PubMedGoogle Scholar
  83. Peralta, V., & Cuesta, M. J., (1998). Lack of insight in mood disorders. Journal of Affective Disorders, 49(1), 55–58.PubMedGoogle Scholar
  84. Pope, H. G, Jr, Gruber, A. J., Hudson, J. I., Huestis, M. A., & Yurgelun-Todd, D. (2001) Neuropsychological performance in long-term cannabis users. Archives of General Psychiatry, 58, 195–909.Google Scholar
  85. Porrino, L. J., Domer, F. R., Crane, A. M., & Sokoloff, L. (1998). Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats. Neuropsychopharmacology, 1(2), 109–118.Google Scholar
  86. Rezvani, A. H., & Levin, E. D. (2001). Cognitive effects of nicotine. Biological Psychiatry, 49, 258–267.PubMedGoogle Scholar
  87. Ridderinkhof, K. R., de Vlugt, Y., Bramlage, A., Spaan, M., Elton, M., Snel, J. et al. (2002). Alcohol consumption impairs detection of performance errors in mediofrontal cortex. Science, 298(5601), 2209–2211.PubMedGoogle Scholar
  88. Ritz, M. C., Cone, E. J., & Kuhar, M. J. (1990). Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: A structure-activity study. Life Sciences, 46(9), 635–645.PubMedGoogle Scholar
  89. Robinson, T. E., & Berridge, K. C. (2003). Addiction. Annual Review of Psychology, 54, 25–53.PubMedGoogle Scholar
  90. Rosselli, M. & Ardila, A. (1996). Cognitive effects of cocaine and polydrug abuse. Journal of Clinical and Experimental Neuropsychology, 18(1), 122–135.PubMedGoogle Scholar
  91. Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage, 20(1), 351–358.PubMedGoogle Scholar
  92. Ryan, F. (2006). Appetite lost and found: Cognitive psychology in the addiction clinic. In M. Munafo & I. Albery (Eds.), Cognition and addiction. Oxford University Press: Oxford.Google Scholar
  93. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.PubMedGoogle Scholar
  94. Solowij, N., Stephens, R., Roffman, R. A., & Babor, T. (2002). Does marijuana use cause long-term cognitive deficits? JAMA, 287(20), 2653–2654.PubMedGoogle Scholar
  95. Stout, J. C., Rock, S. L., Campbell, M. C., Busemeyer, J. R., & Finn, P. R. (2005). Psychological processes underlying risky decisions in drug abusers. Psychology of Addictive Behaviors, 19(2), 148–157.PubMedGoogle Scholar
  96. Strickland, T. L., Mena, I., Villanueva-Meyer, J., Miller, B. L., Cummings, J., Mehringer, C. M. et al. (1993). Cerebral perfusion and neuropsychological consequences of chronic cocaine use. Journal of Neuropsychiatry and Clinical Neurosciences, 5(4), 419–427.PubMedGoogle Scholar
  97. Tarter, R. E., Kirisci, L., Mezzich, A., Cornelius, J. R., Pajer, K., Vanyukov, M. et al. (2003). Neurobehavioral disinhibition in childhood predicts early age at onset of substance use disorder. American Journal of Psychiatry, 160, 1078–1085.PubMedGoogle Scholar
  98. Teasdale, J. D., Moore, R. G., Hayhurst, H., Pope, M., Williams, S., & Segal, Z. V. (2002). Metacognitive awareness and prevention of relapse in depression: empirical evidence. Journal of Consulting and Clinical Psychology, 70(2), 275–287.PubMedGoogle Scholar
  99. Volkow, N. D., Fowler, J. S, Wolf, A. P, Hitzemann, R., Dewey, S., Bendriem, B. et al. (1991). Changes in brain glucose metabolism in cocaine dependence and withdrawal. American Journal of Psychiatry, 148(5), 621–626.PubMedGoogle Scholar
  100. Volkow, N. D., Hitzemann, R., Wang, G. J., Fowler, J. S., Wolf, A. P., Dewey, S. L. et al. (1992). Long-term frontal brain metabolic changes in cocaine abusers. Synapse, 11(3), 184–190.PubMedGoogle Scholar
  101. Volkow, N. D., Fowler, J. S., Wang, G.-J., Hitzemann, R., Logan, J., Schlyer, D. et al. (1993). Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse, 14, 169–177.PubMedGoogle Scholar
  102. Volkow, N. D., Wang, G.-J., Fowler, J. S., Logan, J., Gatley, S. J., Gifford, A. et al. (1999). Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. American Journal of Psychiatry, 156, 1440–1443.PubMedGoogle Scholar
  103. Waters, A. J., Shiffman, S., Sayette, M. A., Paty, J. A., Gwaltney, C. J., & Balabanis, M. H. (2003). Attentional bias predicts outcome in smoking cessation. Health Psychol, 22, 378–387.PubMedGoogle Scholar
  104. Wertz, J. M., & Sayette, M. A. (2001). Effects of smoking opportunity on attentional bias in smokers. Psychology of Addictive Behaviors, 15, 268–271.PubMedGoogle Scholar
  105. Wrase, J. Schlagenhauf, F., Kienast, T., Wustenberg, T., Bermpohl, F., Kahnt, T. et al. (2007). Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. NeuroImage, 35(2), 787–794.PubMedGoogle Scholar
  106. Yucel, M., & Lubman, D. I. (2007). Neurocognitive and neuroimaging evidence of behavioral dysregulation in human drug addiction: implications for diagnosis, treatment and prevention. Drug and Alcohol Review, 26, 33–39.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Psychology and Trinity College Institute of NeuroscienceTrinity College DublinDublin 2Ireland
  2. 2.Trinity College Institute of NeuroscienceDublin 2Ireland
  3. 3.Queensland Brain Institute and School of PsychologyUniversity of QueenslandSt LuciaAustralia

Personalised recommendations