Neuropsychology Review

, Volume 17, Issue 3, pp 317–336

The Neuropsychology of Amphetamine and Opiate Dependence: Implications for Treatment



Chronic use of amphetamines and/or opiates has been associated with a wide range of cognitive deficits, involving domains of attention, inhibitory control, planning, decision-making, learning and memory. Although both amphetamine and opiate users show marked impairment in various aspects of cognitive function, the impairment profile is distinctly different according to the substance of abuse. In light of evidence showing that cognitive impairment in drug users has a negative impact on treatment engagement and efficacy, we review substance-specific deficits on executive and memory function, and discuss possibilities to address these during treatment intervention.


Cognition Executive function Substance abuse Amphetamines Opiates Cognitive enhancement 



anterior cingulate cortex


attention deficit hyperactivity disorder


Barratt Impulsiveness Scale, version 11


Cambridge Neuropsychological Test Automated Battery


Cambridge Gamble Task


Continuous Performance Test


Intra-Dimensional/Extra-Dimensional set-shifting test


Iowa Gambling Task


magnetic resonance imaging


Wisconsin Card Sorting Test


  1. Adinoff, B., Devous, M. D., Cooper, D. B., Best, S. E., Chandler, P., Harris, T., et al. (2003). Resting regional cerebral blood flow and gambling task performance in cocaine-dependent subjects and healthy comparison subjects. American Journal of Psychiatry, 160, 1892–1894.PubMedGoogle Scholar
  2. Aharonovich, E., Hasin, D. S., Brooks, A. C., Liu, X., Bisaga, A., & Nunes, E. V. (2006). Cognitive deficits predict low treatment retention in cocaine dependent patients. Drug and Alcohol Dependence, 81, 313–322.PubMedGoogle Scholar
  3. Aharonovich, E., Nunes, E., & Hasin, D. (2003). Cognitive impairment, retention and abstinence among cocaine abusers in cognitive–behavioral treatment. Drug and Alcohol Dependence, 71, 207–211.PubMedGoogle Scholar
  4. American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders (4th ed.) Washington, DC: American Psychiatric Association.Google Scholar
  5. Amir, T., & Bahri, T. (1994). Effect of substance-abuse on visuographic function. Perceptual and Motor Skills, 78, 235–241.PubMedGoogle Scholar
  6. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170–177.PubMedGoogle Scholar
  7. Baddeley, A. (1986). Working memory. Oxford, U.K.: Clarendon.Google Scholar
  8. Baicy, K., & London, E. D. (2007). Corticolimbic dysregulation and chronic methamphetamine abuse. Addiction, 102, 5–15.PubMedGoogle Scholar
  9. Baker, S. C., Rogers, R. D., Owen, A. M., Frith, C. D., Dolan, R. J., Frackowiak, R. S. J., et al. (1996). Neural systems engaged by planning: A PET study of the Tower of London task. Neuropsychologia, 34, 515–526.PubMedGoogle Scholar
  10. Ballon, J. S., & Feifel, D. (2006). A systematic review of modafinil: Potential clinical uses and mechanisms of action. Journal of Clinical Psychiatry, 67, 554–566.PubMedCrossRefGoogle Scholar
  11. Bardo, M. T. (1998). Neuropharmacological mechanisms of drug reward: Beyond dopamine in the nucleus accumbens. Critical Reviews in Neurobiology, 12, 37–67.PubMedGoogle Scholar
  12. Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–1295.PubMedGoogle Scholar
  13. Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S. W., & Nathan, P. E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39, 376–389.PubMedGoogle Scholar
  14. Bechara, A., Dolan, S., & Hindes, A. (2002). Decision-making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40, 1690–1705.PubMedGoogle Scholar
  15. Bechara, A., & Martin, E. M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18, 152–162.PubMedGoogle Scholar
  16. Bell, M. D., Bryson, G. J., Greig, T. C., Fiszdon, J. M., & Wexler, B. E. (2005). Neurocognitive enhancement therapy with work therapy: Productivity outcomes at 6- and 12-month follow-ups. Journal of Rehabilitation Research and Development, 42, 829–838.PubMedGoogle Scholar
  17. Bench, C. J., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S. J., et al. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia, 31, 907–922.PubMedGoogle Scholar
  18. Birrell, J. M., & Brown, V. J. (2000). Medial frontal cortex mediates perceptual attentional set shifting in the rat. Journal of Neuroscience, 20, 4320–4324.PubMedGoogle Scholar
  19. Block, R. I., Bates, M. E., & Hall, J. A. (2003). Relation of premorbid cognitive abilities to substance users’ problems at treatment intake and improvements with substance abuse treatment and case management. American Journal of Drug and Alcohol Abuse, 29, 515–538.PubMedGoogle Scholar
  20. Bolla, K. I., Eldreth, D. A., London, E. D., Kiehl, K. A., Mouratidis, M., Contoreggi, C., et al. (2003). Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage, 19, 1085–1094.PubMedGoogle Scholar
  21. Borgaro, S., Pogge, D. L., Deluca, V. A., Bilginer, L., Stokes, J., & Harvey, P. D. (2003). Convergence of different versions of the continuous performance test: Clinical and scientific implications. Journal of Clinical and Experimental Neuropsychology, 25, 283–292.PubMedCrossRefGoogle Scholar
  22. Boys, A., Strang, J., & Homan, C. (1997). Have drug workers in England received appropriate training?: 1995 baseline data from a national survey. Drugs-Education Prevention and Policy, 4, 297–304.Google Scholar
  23. Brust, J. C. M. (1998). Acute neurologic complications of drug and alcohol abuse. Neurologic Clinics, 16, 503–519.PubMedGoogle Scholar
  24. Burgess, P. W. (1997). Theory and methodology in executive function research. In P. Rabbitt (Ed.), Methodology of frontal and executive function. Hove, East Sussex: Psychology.Google Scholar
  25. Buttner, A., Mall, G., Penning, R., & Weis, S. (2000). The neuropathology of heroin abuse. Forensic Science International, 113, 435–442.PubMedGoogle Scholar
  26. Buxton, N., & McConachie, N. S. (2000). Amphetamine abuse and intracranial haemorrhage. Journal of the Royal Society of Medicine, 93, 472–477.PubMedGoogle Scholar
  27. Bymaster, F. P., Katner, J. S., Nelson, D. L., Hemrick-Luecke, S. K., Threlkeld, P. G., Heiligenstein, J. H., et al. (2002). Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in Attention Deficit/Hyperactivity Disorder. Neuropsychopharmacology, 27, 699–711.PubMedGoogle Scholar
  28. Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749.PubMedGoogle Scholar
  29. Casey, K. L., Svensson, P., Morrow, T. J., Raz, J., Jone, C., & Minoshima, S. (2000). Selective opiate modulation of nociceptive processing in the human brain. Journal of Neurophysiology, 84, 525–533.PubMedGoogle Scholar
  30. Chamberlain, S. R., Muller, U., Cleary, S., Robbins, T. W. & Sahakian, B. J. (2007). Atomoxetine increases salivary cortisol in healthy volunteers. Journal of Psychopharmacology (in press).Google Scholar
  31. Chamberlain, S. R., & Sahakian, B. J. (2007). The neuropsychiatry of impulsivity. Current Opinion in Psychiatry, 20, 255–261.PubMedGoogle Scholar
  32. Chang, L., Cloak, C., Patterson, K., Grob, C., Miller, E. N., & Ernst, T. (2005). Enlarged striatum in abstinent methamphetamine abusers: A possible compensatory response. Biological Psychiatry, 57, 967–974.PubMedGoogle Scholar
  33. Chang, L., Ernst, T., Speck, O., Patel, H., DeSilva, M., Leonido-Yee, M., et al. (2002). Perfusion MRI and computerized cognitive test abnormalities in abstinent methamphetamine users. Psychiatry Research: Neuroimaging, 114, 65–79.PubMedGoogle Scholar
  34. Chikazoe, J., Konishi, S., Asari, T., Jimura, K., & Miyashita, Y. (2007). Activation of right inferior frontal gyrus during response inhibition across response modalities. The Journal of Cognitive Neuroscience, 19, 69–80.Google Scholar
  35. Clark, L., & Robbins, T. W. (2002). Decision-making deficits in drug addiction. Trends in Cognitive Sciences, 6, 361–363.PubMedGoogle Scholar
  36. Clark, L., Robbins, T. W., Ersche, K. D., & Sahakian, B. J. (2006). Reflection impulsivity in chronic and former substance users. Biological Psychiatry, 60, 512–522.Google Scholar
  37. Cools, R. & Robbins, T. W. (2004). Chemistry of the adaptive mind. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 362, 2871–2888.Google Scholar
  38. Curran, H. V., Kleckham, J., Bearn, J., Strang, J., & Wanigaratne, S. (2001). Effects of methadone on cognition, mood and craving in detoxifying opiate addicts: A dose–response study. Psychopharmacology, 154, 153–160.PubMedGoogle Scholar
  39. Czuchry, M., & Dansereau, D. F. (2003a). Cognitive skills training: Impact on drug abuse counseling and readiness for treatment. American Journal of Drug and Alcohol Abuse, 29, 1–18.PubMedGoogle Scholar
  40. Czuchry, M., & Dansereau, D. F. (2003b). A model of the effects of node-link mapping on drug abuse counseling. Addictive Behaviors, 28, 537–549.PubMedGoogle Scholar
  41. Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (2001). The role of the striatum and hippocampus in planning: A PET activation study in Parkinson’s disease. Brain, 124, 1020–1032.PubMedGoogle Scholar
  42. Daglish, M. R. C., & Nutt, D. J. (2003). Brain imaging studies in human addicts. European Neuropsychopharmacology, 13, 453–458.PubMedGoogle Scholar
  43. Danos, P., Kasper, S., Grunwald, F., Klemm, E., Krappel, C., Broich, K., et al. (1998a). Pathological regional blood flow in opiate-dependent patients during withdrawal: A HMPAO-SPECT study. Neuropsychobiology, 37, 194–199.PubMedGoogle Scholar
  44. Danos, P., Van Roos, D., Kasper, S., Bromel, T., Broich, K., Krappel, C. et al. (1998b). Enlarged cerebrospinal fluid spaces in opiate-dependent male patients: A stereological CT study. Neuropsychobiology, 38, 80–83.PubMedGoogle Scholar
  45. Dansereau, D. F., & Dees, S. M. (2002). Mapping training: The transfer of a cognitive technology for improving counseling. Journal of Substance Abuse Treatment, 22, 219–230.PubMedGoogle Scholar
  46. Darke, S., Sims, J., McDonald, S., & Wickes, W. (2000). Cognitive impairment among methadone maintenance patients. Addiction, 95, 687–695.PubMedGoogle Scholar
  47. Davis, P. E., Liddiard, H., & McMillan, T. M. (2002). Neuropsychological deficits and opiate abuse. Drug and Alcohol Dependence, 67, 105–108.PubMedGoogle Scholar
  48. de Lima, M. S., Soares, G. D., Reisser, A. A. P., & Farrell, M. (2002). Pharmacological treatment of cocaine dependence: A systematic review. Addiction, 97, 931–949.PubMedGoogle Scholar
  49. De Vries, T. J., & Shippenberg, T. S. (2002). Neural systems underlying opiate addiction. Journal of Neuroscience, 22, 3321–3325.PubMedGoogle Scholar
  50. Deakin, J. B., Aitken, M. R. F., Robbins, T. W., & Sahakian, B. J. (2004). Risk taking during decision-making in normal volunteers changes with age. Journal of the International Neuroscience Society, 10, 590–598.Google Scholar
  51. DeBattista, C., Lembke, A., Solvason, H. B., Ghebremichael, R., & Poirier, J. (2004). A prospective trial of modafinil as an adjunctive treatment of major depression. Journal of Clinical Psychopharmacology, 24, 87–90.PubMedGoogle Scholar
  52. Derbyshire, S. W. G., Vogt, B. A., & Jones, A. K. P. (1998). Pain and Stroop interference tasks activate separate processing modules in anterior cingulate cortex. Experimental Brain Research, 118, 52–60.Google Scholar
  53. Deroche-Gamonet, V., Darnaudery, M., Bruins-Slot, L., Piat, F., Le Moal, M., & Piazza, P. V. (2002). Study of the addictive potential of modafinil in naive and cocaine-experienced rats. Psychopharmacology, 161, 387–395.PubMedGoogle Scholar
  54. Di Chiara, G., & Imperato, A. (1986). Preferential stimulation of dopamine release in the nucleus accumbens by opiates, alcohol, and barbiturates: Studies with transcerebral dialysis in freely moving rats. Annals of the New York Academy of Sciences, 473, 367–381.PubMedGoogle Scholar
  55. Dias, R., Robbins, T. W., & Roberts, A. C. (1997). Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: Restriction to novel situations and independence from “on-line” processing. Journal of Neuroscience, 17, 9285–9297.PubMedGoogle Scholar
  56. Dickman, S. J. (1990). Functional and dysfunctional impulsivity—personality and cognitive correlates. Journal of Personality and Social Psychology, 58, 95–102.PubMedGoogle Scholar
  57. Dougherty, D. M., Bjork, J. M., Andrew Harper, R., Marsh, D. M., Gerard Moeller, F., Mathias, C. W., et al. (2003). Behavioral impulsivity paradigms: A comparison in hospitalized adolescents with disruptive behavior disorders. Journal of Child Psychology and Psychiatry, 44, 1145–1157.PubMedGoogle Scholar
  58. Downes, J. J., Roberts, A. C., Sahakian, B. J., Evenden, J. L., Morris, R. G., & Robbins, T. W. (1989). Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson’s disease: Evidence for a specific attentional dysfunction. Neuropsychologia, 27, 1329–1343.PubMedGoogle Scholar
  59. Duka, T., Turner, D. C., & Sahakian, B. J. (2005). Experimental psychology and research into brain science, addiction and drugs. [On-line].
  60. Dursteler-MacFarland, K. M., Stormer, R., Seifritz, E., Hug, I., Muller-Spahn, F., Ladewig, D. et al. (2000). Opioid-associated effects on oxygen saturation in humans. Addiction, 95, 285–287.Google Scholar
  61. Elliott, R. (2003). Executive functions and their disorders. British Medical Bulletin, 65, 49–59.PubMedGoogle Scholar
  62. Ernst, M., Grant, S. J., London, E. D., Contoreggi, C. S., Kimes, A. S., & Spurgeon, L. (2003). Decision making in adolescents with behavior disorders and adults with substance abuse. American Journal of Psychiatry, 160, 33–40.PubMedGoogle Scholar
  63. Ernst, M., & Paulus, M. P. (2005). Neurobiology of decision making: A selective review from a neurocognitive and clinical perspective. Biological Psychiatry, 58, 596–604.Google Scholar
  64. Ersche, K. D., Clark, L., London, M., Robbins, T. W., & Sahakian, B. J. (2006a). Profile of executive and memory function associated with amphetamine and opiate dependence. Neuropsychopharmacology, 31, 1036–1047.PubMedGoogle Scholar
  65. Ersche, K. D., Fletcher, P. C., Lewis, S. J. G., Clark, L., Stocks-Gee, G., London, M., et al. (2005a). Abnormal frontal activations related to decision-making in current and former amphetamine and opiate dependent individuals. Psychopharmacology, 180, 612–623.PubMedGoogle Scholar
  66. Ersche, K. D., Fletcher, P. C., Roiser, J. P., Fryer, T. D., London, M., Robbins, T. W., et al. (2006b). Differences in orbitofrontal activation during decision-making between methadone-maintained opiate users, heroin users and healthy volunteers. Psychopharmacology, 188, 364–373.PubMedGoogle Scholar
  67. Ersche, K. D., Roiser, J. P., Clark, L., London, M., Robbins, T. W., & Sahakian, B. J. (2005b). Punishment induces risky decision-making in methadone-maintained opiate users but not in heroin users or healthy volunteers. Neuropsychopharmacology, 30, 2115–2124.PubMedGoogle Scholar
  68. Eslinger, P. J., & Grattan, L. M. (1993). Frontal lobe and frontal–striatal substrates for different forms of human cognitive flexibility. Neuropsychologia, 31, 17–28.PubMedGoogle Scholar
  69. Evenden, J. L. (1999). Varieties of impulsivity. Psychopharmacology, 146, 348–361.PubMedGoogle Scholar
  70. FalsStewart, W. (1997). Ability of counselors to detect cognitive impairment among substance-abusing patients: An examination of diagnostic efficiency. Experimental and Clinical Psychopharmacology, 5, 39–50.Google Scholar
  71. FalsStewart, W., & Lucente, S. (1994a). Effect of neurocognitive status and personality functioning on length of stay in residential substance-abuse treatment—an integrative study. Psychology of Addictive Behaviors, 8, 179–190.Google Scholar
  72. FalsStewart, W., & Lucente, S. (1994b). The effect of cognitive rehabilitation on the neuropsychological status of patients in drug-abuse treatment who display neurocognitive impairment. Rehabilitation Psychology, 39, 75–94.CrossRefGoogle Scholar
  73. FalsStewart, W., & Schafer, J. (1992). The relationship between length of stay in drug-free therapeutic communities and neurocognitive functioning. Journal of Clinical Psychology, 48, 539–543.Google Scholar
  74. Ferraro, L., Antonelli, T., Tanganelli, S., O’Connor, W. T., de la Mora, M. P., Mendez-Franco, J., et al. (1999). The vigilance promoting drug modafinil increases extracellular glutamate levels in the medial preoptic area and the posterior hypothalamus of the conscious rat: Prevention by local GABA(A) receptor blockade. Neuropsychopharmacology, 20, 346–356.PubMedGoogle Scholar
  75. Fillmore, M. T., & Rush, C. R. (2002). Impaired inhibitory control of behavior in chronic cocaine users. Drug and Alcohol Dependence, 66, 265–273.PubMedGoogle Scholar
  76. Fishbain, D. A., Cutler, R. B., Rosomoff, H. L., & Rosomoff, R. S. (2003). Are opioid-dependent/tolerant patients impaired in driving-related skills? A structured evidence-based review. Journal of Pain and Symptom Management, 25, 559–577.PubMedGoogle Scholar
  77. Fishbein, D., Hyde, C., Eldreth, D., London, E. D., Matochik, J., Ernst, M., et al. (2005). Cognitive performance and autonomic reactivity in abstinent drug abusers and nonusers. Experimental and Clinical Psychopharmacology, 13, 25–40.PubMedGoogle Scholar
  78. Fishbein, D. H., Krupitsky, E., Flannery, B. A., Langevin, D. J., Bobashev, G., Verbitskaya, E., et al. (2007). Neurocognitive characterizations of Russian heroin addicts without a significant history of other drug use. Drug and Alcohol Dependence, 90, 25–38.Google Scholar
  79. Forman, S. D., Dougherty, G. G., Casey, B. J., Siegle, G. J., Braver, T. S., Barch, D. M., et al. (2004). Opiate addicts lack error-dependent activation of rostral anterior cingulate. Biological Psychiatry, 55, 531–537.PubMedGoogle Scholar
  80. Gabilondo, A. M., Meana, J. J., Barturen, F., Sastre, M., & Garciasevilla, J. A. (1994). Mu-opioid receptor and alpha(2)-adrenoceptor agonist binding-sites in the postmortem brain of heroin-addicts. Psychopharmacology, 115, 135–140.PubMedGoogle Scholar
  81. Galynker, I. I., Watras-Ganz, S., Miner, C., Rosenthal, R. N., Jarlais, D. C. D., Richman, B. L., et al. (2000). Cerebral metabolism in opiate-dependent subjects: Effects of methadone maintenance. Mount Sinai Journal of Medicine, 67, 381–387.PubMedGoogle Scholar
  82. Gastfriend, D. R., & McLellan, A. T. (1997). Treatment matching—Theoretic basis and practical implications. Medical Clinics of North America, 81, 945–966.PubMedGoogle Scholar
  83. Gehring, W. J., & Knight, R. T. (2000). Prefrontal–cingulate interactions in action monitoring. Nature Neuroscience, 3, 516–520.PubMedGoogle Scholar
  84. Gerra, G., Calbiani, B., Zaimovic, A., Sartori, R., Ugolotti, G., Ippolito, L., et al. (1998). Regional cerebral blood flow and comorbid diagnosis in abstinent opioid addicts. Psychiatry Research-Neuroimaging, 83, 117–126.Google Scholar
  85. Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159, 1642–1652.PubMedGoogle Scholar
  86. Gonzalez, R., Rippeth, J. D., Carey, C. L., Heaton, R. K., Moore, D. J., Schweinsburg, B. C., et al. (2004). Neurocognitive performance of methamphetamine users discordant for history of marijuana exposure. Drug and Alcohol Dependence, 76, 181–190.PubMedGoogle Scholar
  87. Grant, D. A., & Berg, E. A. (1948). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. Journal of Experimental Psychology, 38, 404–411.PubMedGoogle Scholar
  88. Grant, S., Contoreggi, C., & London, E. D. (2000). Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia, 38, 1180–1187.PubMedGoogle Scholar
  89. Gruber, S. A., Silveri, M. M., Renshaw, P. F., Tzilos, G. K., Pollack, M., Kaufman, M. J., et al. (2006). Methadone maintenance improves cognitive performance after two months of treatment. Experimental and Clinical Psychopharmacology, 14, 157–164.PubMedGoogle Scholar
  90. Guerra, D., Sole, A., Cami, J., & Tobena, A. (1987). Neuropsychological performance in opiate addicts after rapid detoxification. Drug and Alcohol Dependence, 20, 261–270.PubMedGoogle Scholar
  91. Haselhorst, R., Dursteler-MacFarland, K. M., Scheffler, K., Ladewig, D., Muller-Spahn, F., Stohler, R., et al. (2002). Frontocortical N-acetylaspartate reduction associated with long-term IV heroin use. Neurology, 58, 305–307.PubMedGoogle Scholar
  92. Hastie, R. (2001). Problems for judgment and decision making. Annual Review of Psychology, 52, 653–683.PubMedGoogle Scholar
  93. Hester, R., & Garavan, H. (2004). Executive dysfunction in cocaine addiction: Evidence for discordant frontal, cingulate, and cerebellar activity. Journal of Neuroscience, 24, 11017–11022.PubMedGoogle Scholar
  94. Hester, R., Simoes-Franklin, C., & Garavan, H. (2007). Post-error behavior in active cocaine users: Poor awareness of errors in the presence of intact performance adjustments. Neuropsychopharmacology (in press).Google Scholar
  95. Hoffman, W. F., Moore, M., Templin, R., McFarland, B., Hitzemann, R. J., & Mitchell, S. H. (2006). Neuropsychological function and delay discounting in methamphetamine-dependent individuals. Psychopharmacology, 188, 162–170.PubMedGoogle Scholar
  96. Hogarty, G. E., Flesher, S., Ulrich, R., Carter, M., Greenwald, D., Pogue-Geile, M., et al. (2004). Cognitive enhancement therapy for schizophrenia: Effects of a 2-year randomized trial on cognition and behavior. Archives of General Psychiatry, 61, 866–876.PubMedGoogle Scholar
  97. Horn, N. R., Dolan, M., Elliott, R., Deakin, J. F. W., & Woodruff, P. W. R. (2003). Response inhibition and impulsivity: An fMRI study. Neuropsychologia, 41, 1959–1966.PubMedGoogle Scholar
  98. Hwang, J., Lyoo, I. K., Kim, S. J., Sung, Y. H., Bae, S., Cho, S. N., et al. (2006). Decreased cerebral blood flow of the right anterior cingulate cortex in long-term and short-term abstinent methamphetamine users. Drug and Alcohol Dependence, 82, 177–181.PubMedGoogle Scholar
  99. Jaffe, A. J., Rounsaville, B., Chang, G., Schottenfeld, R. S., Meyer, R. E., & OMalley, S. S. (1996). Naltrexone, relapse prevention, and supportive therapy with alcoholics: An analysis of patient treatment matching. Journal of Consulting and Clinical Psychology, 64, 1044–1053.PubMedGoogle Scholar
  100. Jentsch, J. D., & Taylor, J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli. Psychopharmacology, 146, 373–390.PubMedGoogle Scholar
  101. Jernigan, T. L., Gamst, A. C., Archibald, S. L., Fennema-Notestine, C., Mindt, M. R., Marcotte, T. L., et al. (2005). Effects of methamphetamine dependence and HIV infection on cerebral morphology. American Journal of Psychiatry, 162, 1461–1472.PubMedGoogle Scholar
  102. Johanson, C. E., Frey, K. A., Lundahl, L. H., Keenan, P., Lockhart, N., Roll, J., et al. (2006). Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology, 185, 327–338.PubMedGoogle Scholar
  103. Jollant, F., Bellivier, F., Leboyer, M., Astruc, B., Torres, S., Verdier, R., et al. (2005). Impaired decision making in suicide attempters. American Journal of Psychiatry, 162, 304–310.PubMedGoogle Scholar
  104. Jollant, F., Guillaume, S., Jaussent, I., Castelnau, D., Malafosse, A., & Courtet, P. (2007). Impaired decision-making in suicide attempters may increase the risk of problems in affective relationships. Journal of Affective Disorders, 99, 59–62.PubMedGoogle Scholar
  105. Kalechstein, A. D., Newton, T. F., & Green, M. (2003). Methamphetamine dependence is associated with neurocognitive impairment in the initial phases of abstinence. Journal of Neuropsychiatry, 15, 215–220.Google Scholar
  106. Katz, E. C., King, S. D., Schwartz, R. P., Weintraub, E., Barksdale, W., Robinson, R., et al. (2005). Cognitive ability as a factor in engagement in drug abuse treatment. American Journal of Drug and Alcohol Abuse, 31, 359–369.PubMedGoogle Scholar
  107. Kaufman, J. N., Ross, T. J., Stein, E. A., & Garavan, H. (2003). Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. Journal of Neuroscience, 23, 7839–7843.PubMedGoogle Scholar
  108. Kerwin, M. E., Walker-Smith, K., & Kirby, K. C. (2006). Comparative analysis of state requirements for the training of substance abuse and mental health counselors. Journal of Substance Abuse Treatment, 30, 173–181.PubMedGoogle Scholar
  109. Kim, S. J., Lyoo, I. K., Hwang, J., Chung, A., Sung, Y. H., Kim, J., et al. (2006). Prefrontal grey-matter changes in short-term and long-term abstinent methamphetamine abusers. International Journal of Neuropsychopharmacology, 9, 221–228.PubMedGoogle Scholar
  110. Kim, S. J., Lyoo, I. K., Hwang, J., Sung, Y. H., Lee, H. Y., Lee, D. S., et al. (2005a). Frontal glucose hypometabolism in abstinent methamphetamine users. Neuropsychopharmacology, 30, 1383–1391.PubMedGoogle Scholar
  111. Kim, S. J., Lyoo, I. K., Hwang, J., Sung, Y. H., Lee, H. Y., Lee, D. S. et al. (2005b). Frontal glucose hypometabolism in abstinent methamphetamine users. Neuropsychopharmacology, 30, 1383–1391.PubMedGoogle Scholar
  112. Kish, S. J., Kalasinsky, K. S., Derkach, P., Schmunk, G. A., Guttman, M., Ang, L., et al. (2001). Striatal dopaminergic and serotonergic markers in human heroin users. Neuropsychopharmacology, 24, 561–567.PubMedGoogle Scholar
  113. Kling, M. A., Carson, R. E., Borg, L., Zametkin, A., Matochik, J. A., Schluger, J., et al. (2000). Opioid receptor imaging with positron emission tomography and [F-18]cyclofoxy in long-term, methadone-treated former heroin addicts. Journal of Pharmacology and Experimental Therapeutics, 295, 1070–1076.PubMedGoogle Scholar
  114. Konishi, S., Nakajima, K., Uchida, I., Kameyama, M., Nakahara, K., Sekihara, K., et al. (1998a). Transient activation of inferior prefrontal cortex during cognitive set shifting. Nature Neuroscience, 1, 80–84.PubMedGoogle Scholar
  115. Konishi, S., Nakajima, K., Uchida, I., Kameyama, M., Nakahara, K., Sekihara, K., et al. (1998b). Transient activation of inferior prefrontal cortex during cognitive set shifting. Nature Neuroscience, 1, 80–84.PubMedGoogle Scholar
  116. Kosten, T. R., Scanley, B. E., Tucker, K. A., Oliveto, A., Prince, C., Sinha, R., et al. (2006). Cue-induced brain activity changes and relapse in cocaine-dependent patients. Neuropsychopharmacology, 31, 644–650.PubMedGoogle Scholar
  117. Kumar, N. (2007). Nutritional neuropathies. Neurologic Clinics, 25, 209–255.PubMedGoogle Scholar
  118. Lee, T. M. C., Zhou, W. h., Luo, X. j., Yuen, K. S. L., Ruan, X. z., & Weng, X. c. (2005). Neural activity associated with cognitive regulation in heroin users: A fMRI study. Neuroscience Letters, 382, 211–216.PubMedGoogle Scholar
  119. Leland, D. S., & Paulus, M. P. (2005). Increased risk-taking decision-making but not altered response to punishment in stimulant-using young adults. Drug and Alcohol Dependence, 78, 83–90.PubMedGoogle Scholar
  120. Leung, H. C., Skudlarski, P., Gatenby, J. C., Peterson, B. S., & Gore, J. C. (2000). An event-related functional MRI study of the Stroop color word interference task. Cerebral Cortex, 10, 552–560.PubMedGoogle Scholar
  121. Levine, A. J., Hardy, D. J., Miller, E., Castellon, S. A., Longshore, D., & Hinkin, C. H. (2006). The effect of recent stimulant use on sustained attention in HIV-Infected adults. Journal of Clinical and Experimental Neuropsychology, 28, 29–42.PubMedGoogle Scholar
  122. London, E. D., Berman, S. M., Voytek, B., Simon, S. L., Mandelkern, M. A., Monterosso, J., et al. (2005). Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers. Biological Psychiatry, 58, 770–778.PubMedGoogle Scholar
  123. London, E. D., Ernst, M., Grant, S., Bonson, K., & Weinstein, A. (2000). Orbitofrontal cortex and human drug abuse: Functional imaging. Cerebral Cortex, 10, 334–342.PubMedGoogle Scholar
  124. London, E. D., Simon, S. L., Berman, S. M., Mandelkern, M. A., Lichtman, A. M., Bramen, J., et al. (2004). Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers. Archives of General Psychiatry, 61, 73–84.PubMedGoogle Scholar
  125. Lyoo, I. K., Pollack, M. H., Silveri, M. M., Ahn, K. H., Diaz, C. I., Hwang, J., et al. (2006). Prefrontal and temporal gray matter density decreases in opiate dependence. Psychopharmacology, 184, 139–144.PubMedGoogle Scholar
  126. Lyvers, M. & Yakimoff, M. (2003). Neuropsychological correlates of opioid dependence and withdrawal. Addictive Behaviors, 28, 605–611.PubMedGoogle Scholar
  127. Mackin, R. S., Horner, M. D., Harvey, R. T., & Stevens, L. A. (2005). The relationship between neuropsychological measures and employment problems in outpatients with substance abuse. Rehabilitation Psychology, 50, 158–163.Google Scholar
  128. Malcolm, R., Book, S. W., Moak, D., DeVane, L., & Czepowicz, V. (2002). Clinical applications of modafinil in stimulant abusers: Low abuse potential. American Journal on Addictions, 11, 247–249.PubMedGoogle Scholar
  129. Maldonado, R. (1997). Participation of noradrenergic pathways in the expression of opiate withdrawal: Biochemical and pharmacological evidence. Neuroscience & Biobehavioral Reviews, 21, 91–104.Google Scholar
  130. Manes, F., Sahakian, B. J., Clark, L., Rogers, R. D., Antoun, N., Aitken, M., et al. (2002). Decision-making processes following damage to the prefrontal cortex. Brain, 125, 624–639.PubMedGoogle Scholar
  131. Mathew, R. J., & Wilson, W. H. (1991). Substance-Abuse and Cerebral Blood-Flow. American Journal of Psychiatry, 148, 292–305.PubMedGoogle Scholar
  132. McCann, U. D., Wong, D. F., Yokoi, F., Villemagne, V., Dannals, R. F., & Ricaurte, G. A. (1998). Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: Evidence from positron emission tomography studies with [C-11]WIN-35,428. Journal of Neuroscience, 18, 8417–8422.PubMedGoogle Scholar
  133. McKetin, R., & Mattick, R. P. (1998). Attention and memory in illicit amphetamine users: Comparison with non-drug-using controls. Drug and Alcohol Dependence, 50, 181–184.PubMedGoogle Scholar
  134. McLellan, A. T., Grissom, G. R., Zanis, D., Randall, M., Brill, P., & O’Brien, C. P. (1997). Problem-service ‘matching’ in addiction treatment. A prospective study in 4 programs. Archives of General Psychiatry, 54, 730–735.PubMedGoogle Scholar
  135. Mehta, M. A., Manes, F. F., Magnolfi, G., Sahakian, B. J., & Robbins, T. W. (2004). Impaired set-shifting and dissociable effects on tests of spatial working memory following the dopamine D-2 receptor antagonist sulpiride in human volunteers. Psychopharmacology, 176, 331–342.PubMedGoogle Scholar
  136. Mehta, M. A., Sahakian, B. J., McKenna, P. J., & Robbins, T. W. (1999). Systemic sulpiride in young adult volunteers simulates the profile of cognitive deficits in Parkinson’s disease. Psychopharmacology, 146, 162–174.PubMedGoogle Scholar
  137. Melichar, J. K., Hume, S. P., Williams, T. M., Daglish, M. R. C., Taylor, L. G., Ahmad, R., et al. (2005). Using [C-11]diprenorphine to image opioid receptor occupancy by methadone in opioid addiction: Clinical and preclinical studies. Journal of Pharmacology and Experimental Therapeutics, 312, 309–315.PubMedGoogle Scholar
  138. Mellers, B. A., Schwartz, A., & Cooke, A. D. J. (1998). Judgment and decision making. Annual Review of Psychology, 49, 447–477.PubMedGoogle Scholar
  139. Michelson, D., Faries, D., Wernicke, J., Kelsey, D., Kendrick, K., Sallee, F. R., et al. (2001). Atomoxetine in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: A randomized, placebo-controlled, dose–response study. Pediatrics, 108, e83.PubMedGoogle Scholar
  140. Mintzer, M. Z., Copersino, M. L., & Stitzer, M. L. (2005). Opioid abuse and cognitive performance. Drug and Alcohol Dependence, 78, 225–230.PubMedGoogle Scholar
  141. Mintzer, M. Z., & Stitzer, M. L. (2002). Cognitive impairment in methadone maintenance patients. Drug and Alcohol Dependence, 67, 41–51.PubMedGoogle Scholar
  142. Mitchell, D. G. V., Colledge, E., Leonard, A., & Blair, R. J. R. (2002). Risky decisions and response reversal: Is there evidence of orbitofrontal cortex dysfunction in psychopathic individuals? Neuropsychologia, 40, 2013–2022.PubMedGoogle Scholar
  143. Monterosso, J. R., Aron, A. R., Cordova, X., Xu, J., & London, E. D. (2005). Deficits in response inhibition associated with chronic methamphetamine abuse. Drug and Alcohol Dependence, 79, 273–277.PubMedGoogle Scholar
  144. Monterosso, J., Ehrman, R., Napier, K. L., O’Brien, C. P., & Childress, A. R. (2001). Three decision-making tasks in cocaine-dependent patients: Do they measure the same construct? Addiction, 96, 1825–1837.PubMedGoogle Scholar
  145. Moon, M., Do, K. S., Park, J., & Kim, D. (2007). Memory impairment in methamphetamine dependent patients. International Journal of Neuroscience, 117, 1–9.PubMedGoogle Scholar
  146. Morgenstern, J., & Bates, M. E. (1999). Effects of executive function impairment on change processes and substance use outcomes in 12-step treatment. Journal of Studies on Alcohol, 60, 846–855.PubMedGoogle Scholar
  147. Nagahama, Y., Okada, T., Katsumi, Y., Hayashi, T., Yamauchi, H., Oyanagi, C., et al. (2001). Dissociable mechanisms of attentional control within the human prefrontal cortex. Cerebral Cortex, 11, 85–92.PubMedGoogle Scholar
  148. Neaigus, A., Gyarmathy, V. A., Zhao, M. F., Miller, M., Friedman, S. R., & Des Jarlais, D. C. (2007). Sexual and other noninjection risks for HBV and HCV seroconversions among noninjecting heroin users. Journal of Infectious Diseases, 195, 1052–1061.PubMedGoogle Scholar
  149. Neiman, J., Haapaniemi, H. M., & Hillbom, M. (2000). Neurological complications of drug abuse: Pathophysiological mechanisms. European Journal of Neurology, 7, 595–606.PubMedGoogle Scholar
  150. Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67, 53–83.PubMedGoogle Scholar
  151. Nordahl, T. E., Salo, R., Natsuaki, Y., Galloway, G. P., Waters, C., Moore, C. D., et al. (2005). Methamphetamine users in sustained abstinence: A proton magnetic resonance spectroscopy study. Archives of General Psychiatry, 62, 444–452.PubMedGoogle Scholar
  152. Nordahl, T. E., Salo, R., Possin, K., Gibson, D. R., Flynn, N., Leamon, M., et al. (2002). Low N-acetyl-aspartate and high choline in the anterior cingulum of recently abstinent methamphetamine-dependent subjects: A preliminary proton MRS study. Psychiatry Research: Neuroimaging, 116, 43–52.PubMedGoogle Scholar
  153. O’Brien, C. P., Dackis, C. A., & Kampman, K. (2006). Does modafinil produce euphoria? American Journal of Psychiatry, 163, 1109.PubMedGoogle Scholar
  154. Oh, J. S., Lyoo, I. K., Sung, Y. H., Hwang, J., Kim, J., Chung, A., et al. (2005). Shape changes of the corpus callosum in abstinent methamphetamine users. Neuroscience Letters, 384, 76–81.PubMedGoogle Scholar
  155. Ornstein, T. J., Iddon, J. L., Baldacchino, A. M., Sahakian, B. J., London, M., Everitt, B. J., et al. (2000). Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology, 23, 113–126.PubMedGoogle Scholar
  156. Owen, A. M. (1997). Cognitive planning in humans: Neuropsychological, neuroanatomical and neuropharmacological perspectives. Progress in Neurobiology, 53, 431–450.PubMedGoogle Scholar
  157. Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E., & Robbins, T. W. (1990). Planning and spatial working memory following frontal-lobe lesions in man. Neuropsychologia, 28, 1021–1034.PubMedGoogle Scholar
  158. Owen, A. M., Sahakian, B. J., Semple, J., Polkey, C. E., & Robbins, T. W. (1995). Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia, 33, 1–24.PubMedGoogle Scholar
  159. Papageorgiou, C. C., Liappas, I. A., Ventouras, E. M., Nikolaou, C. C., Kitsonas, E. N., Uzunoglu, N. K., et al. (2004). Long-term abstinence syndrome in heroin addicts: Indices of P300 alterations associated with a short memory task. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 28, 1109–1115.PubMedGoogle Scholar
  160. Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences, 87, 256–259.Google Scholar
  161. Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51, 768–774.PubMedGoogle Scholar
  162. Pau, C. W. H., Lee, T. M. C., & Chan, S. F. F. (2002). The impact of heroin on frontal executive functions. Archives of Clinical Neuropsychology, 17, 663–670.PubMedGoogle Scholar
  163. Paulus, M. P., Hozack, N., Frank, L., Brown, G. G., & Schuckit, M. A. (2003). Decision making by methamphetamine-dependent subjects is associated with error-rate-independent decrease in prefrontal and parietal activation. Biological Psychiatry, 53, 65–74.PubMedGoogle Scholar
  164. Paulus, M. P., Hozack, N. E., Zauscher, B. E., Frank, L., Brown, G. G., Braff, D. L., et al. (2002). Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology, 26, 53–63.PubMedGoogle Scholar
  165. Paulus, M. P., Tapert, S. F., & Schuckit, M. A. (2005). Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Archives of General Psychiatry, 62, 761–768.PubMedGoogle Scholar
  166. Petrovic, P., Kalso, E., Petersson, K. M., & Ingvar, M. (2002). Placebo and opioid analgesia—imaging a shared neuronal network. Science, 295, 1737–1740.PubMedGoogle Scholar
  167. Pezawas, L. M., Fischer, G., Diamant, K., Schneider, C., Schindler, S. D., Thurnher, M., et al. (1998). Cerebral CT findings in male opioid-dependent patients: Stereological, planimetric and linear measurements. Psychiatry Research-Neuroimaging, 83, 139–147.Google Scholar
  168. Pirastu, R., Fais, R., Messina, M., Bini, V., Spiga, S., Falconieri, D., et al. (2006). Impaired decision-making in opiate-dependent subjects: Effect of pharmacological therapies. Drug and Alcohol Dependence, 83, 163–168.PubMedGoogle Scholar
  169. Pitre, U., Dansereau, D. F., & Joe, G. W. (1996). Client education levels and the effectiveness of node-link maps. Journal of Addictive Diseases, 15, 27–44.PubMedGoogle Scholar
  170. Poulsen, E. J., Mannis, M. J., & Chang, S. D. (1996). Keratitis in methamphetamine abusers. Cornea, 15, 477-482.PubMedGoogle Scholar
  171. Prosser, J., Cohen, L. J., Steinfeld, M., Eisenberg, D., London, E. D., & Galynker, I. I. (2006). Neuropsychological functioning in opiate-dependent subjects receiving and following methadone maintenance treatment. Drug and Alcohol Dependence, 84, 240–247.PubMedGoogle Scholar
  172. Rapeli, P., Kivisaari, R., Autti, T., Kahkonen, S., Puuskari, V., Jokela, O., et al. (2006). Cognitive function during early abstinence from opioid dependence: A comparison to age, gender, and verbal intelligence matched controls. BMC Psychiatry, 6, 9.PubMedGoogle Scholar
  173. Rippeth, J. D., Heaton, R. K., Carey, C. L., Marcotte, T. D., Moore, D. J., Gonzalez, R., et al. (2004). Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. Journal of the International Neuropsychological Society, 10, 1–14.PubMedGoogle Scholar
  174. Robbins, T. W. (1996). Dissociating executive functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 351, 1463–1470.Google Scholar
  175. Robbins, T. W. (2005). Chemistry of the mind: Neurochemical modulation of prefrontal cortical function. Journal of Comparative Neurology, 493, 140–146.PubMedGoogle Scholar
  176. Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., Lawrence, A. D., Mcinnes, L., et al. (1998). A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Journal of the International Neuropsychological Society, 4, 474–490.PubMedGoogle Scholar
  177. Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., Mcinnes, L., & Rabbitt, P. (1994). Cambridge neuropsychological test automated battery (Cantab)—a factor-analytic study of a large-sample of normal elderly volunteers. Dementia, 5, 266–281.PubMedGoogle Scholar
  178. Rogers, R. D., Andrews, T. C., Grasby, P. M., Brooks, D. J., & Robbins, T. W. (2000a). Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. Journal of Cognitive Neuroscience, 12, 142–162.PubMedGoogle Scholar
  179. Rogers, R. D., Andrews, T. C., Grasby, P. M., Brooks, D. J., & Robbins, T. W. (2000b). Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. Journal of Cognitive Neuroscience, 12, 142–162.PubMedGoogle Scholar
  180. Rogers, R. D., Everitt, B. J., Baldacchino, A., Blackshaw, A. J., Swainson, R., Wynne, K., et al. (1999a). Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: Evidence for monoaminergic mechanisms. Neuropsychopharmacology, 20, 322–339.PubMedGoogle Scholar
  181. Rogers, R. D., Owen, A. M., Middleton, H. C., Williams, E. J., Pickard, J. D., Sahakian, B. J., et al. (1999b). Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. Journal of Neuroscience, 19, 9029–9038.PubMedGoogle Scholar
  182. Rogers, R. D. & Robbins, T. W. (2001). Investigating the neurocognitive deficits associated with chronic drug misuse. Current Opinion in Neurobiology, 11, 250–257.PubMedGoogle Scholar
  183. Rogers, R. D., & Robbins, T. W. (2003). The neuropsychology of chronic drug abuse. In M. A. Ron & T. W. Robbins (Eds.), Disorders of brain and mind. Cambridge: Cambridge University Press.Google Scholar
  184. Rose, J. S., Branchey, M., BuydensBranchey, L., Stapleton, J. M., Chasten, K., Werrell, A., et al. (1996). Cerebral perfusion in early and late opiate withdrawal: A technetium-99m-HMPAO SPECT study. Psychiatry Research-Neuroimaging, 67, 39–47.Google Scholar
  185. Rotheram-Fuller, E., Shoptaw, S., Berman, S. M., & London, E. D. (2004). Impaired performance in a test of decision-making by opiate-dependent tobacco smokers. Drug and Alcohol Dependence, 73, 79–86.PubMedGoogle Scholar
  186. Rounsaville, B. J., Jones, C., Novelly, R. A., & Kleber, H. (1982). Neuropsychological functioning in opiate addicts. Journal of Nervous and Mental Disease, 170, 209–216.PubMedCrossRefGoogle Scholar
  187. Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage, 20, 351–358.PubMedGoogle Scholar
  188. Russo, K. E., Hall, W., Chi, O. Z., Sinha, A. K., & Weiss, H. R. (1991). Effect of amphetamine on cerebral blood flow and capillary perfusion. Brain Research, 542, 43-48.PubMedGoogle Scholar
  189. Rychtarik, R. G., Connors, G. J., Whitney, R. B., McGillicuddy, N. B., Fitterling, J. M., & Wirtz, P. W. (2000). Treatment settings for persons with alcoholism: Evidence for matching clients to inpatient versus outpatient care. Journal of Consulting and Clinical Psychology, 68, 277–289.PubMedGoogle Scholar
  190. Sacerdote, P. (2006). Opioids and the immune system. Palliative Medicine, 20, S9–S15.PubMedGoogle Scholar
  191. Salo, R., Nordahl, T. E., Moore, C., Waters, C., Natsuaki, Y., Galloway, G. P., et al. (2005). A dissociation in attentional control: Evidence from methamphetamine dependence. Biological Psychiatry, 57, 310–313.PubMedGoogle Scholar
  192. Salo, R., Nordahl, T. E., Natsuaki, Y., Leamon, M. H., Galloway, G. P., Waters, C., et al. (2007). Attentional control and brain metabolite levels in methamphetamine abusers. Biological Psychiatry, 61, 1272–1280.PubMedGoogle Scholar
  193. Salo, R., Nordahl, T. E., Possin, K., Leamon, M., Gibson, D. R., Galloway, G. P., et al. (2002). Preliminary evidence of reduced cognitive inhibition in methamphetamine-dependent individuals. Psychiatry Research, 111, 65–74.PubMedGoogle Scholar
  194. Sarajuuri, J. M., Kaipio, M. L., Koskinen, S. K., Niemela, M. R., Servo, A. R., & Vilkki, J. S. (2005). Outcome of a comprehensive neurorehabilitation program for patients with traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 86, 2296–2302.PubMedGoogle Scholar
  195. Sarter, M., Givens, B., & Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: Where top–down meets bottom–up. Brain Research Reviews, 35, 146–160.PubMedGoogle Scholar
  196. Seiden, L. S., Sabol, K. E., & Ricaurte, G. A. (1993). Amphetamine: Effects on catecholamine systems and behavior. Annual Review of Pharmacology and Toxicology, 33, 639–676.PubMedGoogle Scholar
  197. Sekine, Y., Iyo, M., Ouchi, Y., Matsunaga, T., Tsukada, H., Okada, H. et al. (2001). Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. American Journal of Psychiatry, 158, 1206–1214.PubMedGoogle Scholar
  198. Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 298, 199–209.Google Scholar
  199. Shearer, J. (2007). Psychosocial approaches to psychostimulant dependence: A systematic review. Journal of Substance Abuse Treatment, 32, 41–52.PubMedGoogle Scholar
  200. Simon, S. L., Domier, C., Carnell, J., Brethen, P., Rawson, R., & Ling, W. (2000). Cognitive impairment in individuals currently using methamphetamine. American Journal on Addictions, 9, 222–231.PubMedGoogle Scholar
  201. Simon, S. L., Domier, C. P., Sim, T., Richardson, K., Rawson, R. A., & Ling, W. (2002). Cognitive performance of current methamphetamine and cocaine abusers. Journal of Addictive Diseases, 21, 61–74.PubMedGoogle Scholar
  202. Spence, S. A., Green, R. D., Wilkinson, I. D., & Hunter, M. D. (2005). Modafinil modulates anterior cingulate function in chronic schizophrenia. British Journal of Psychiatry, 187, 55–61.PubMedGoogle Scholar
  203. Stern, R. A., Singer, E. A., Duke, L. M., Singer, N. G., Morey, C. E., Daughtrey, E. W., et al. (1994). The Boston qualitative scoring system for the Rey-Osterrieth complex figure-description and interrater reliability. Clinical Neuropsychologist, 8, 309–322.Google Scholar
  204. Stout, J. C., Rock, S. L., Campbell, M. C., Busemeyer, J. R., & Finn, P. R. (2005). Psychological processes underlying risky decisions in drug abusers. Addictive Behaviors, 19, 148–157.Google Scholar
  205. Stout, P. R., & Farrell, L. J. (2003). Opioids—effects on human performance and behavior. Forensic Science Review, 15, 30–59.Google Scholar
  206. Stroop, J. R. (1992). Studies of Interference in Serial Verbal Reactions (Reprinted from Journal Experimental-Psychology, Vol 18, Pg 643–662, 1935). Journal of Experimental Psychology-General, 121, 15–23.Google Scholar
  207. Sung, Y. H., Cho, S. C., Hwang, J., Kim, S. J., Kim, H., Bae, S. et al. (2007). Relationship between N-acetyl-aspartate in gray and white matter of abstinent methamphetamine abusers and their history of drug abuse: A proton magnetic resonance spectroscopy study. Drug and Alcohol Dependence, 88, 28–35.PubMedGoogle Scholar
  208. Taneja, I., Haman, K., Shelton, R. C., & Robertson, D. (2007). A randomized, double-blind, crossover trial of modafinil on mood. Journal of Clinical Psychopharmacology, 27, 76–79.PubMedGoogle Scholar
  209. Tapert, S. F., Brown, S. A., Myers, M. G., & Granholm, E. (1999). The role of neurocognitive abilities in coping with adolescent relapse to alcohol and drug use. Journal of Studies on Alcohol, 60, 500–508.PubMedGoogle Scholar
  210. Tapert, S. F., Ozyurt, S. S., Myers, M. G., & Brown, S. A. (2004). Neurocognitive ability in adults coping with alcohol and drug relapse temptations. American Journal of Drug and Alcohol Abuse, 30, 445–460.PubMedGoogle Scholar
  211. Taylor, M. J., Letendre, S. L., Schweinsburg, B. C., Alhassoon, O. M., Brown, G. G., Gongvatana, A., et al. (2004). Hepatitis C virus infection is associated with reduced white matter N-acetylaspartate in abstinent methamphetamine users. Journal of the International Neuropsychological Society, 10, 110–113.PubMedGoogle Scholar
  212. Teichner, G., Horner, M. D., Roitzsch, J. C., Herron, J., & Thevos, A. (2002). Substance abuse treatment outcomes for cognitively impaired and intact outpatients. Addictive Behaviors, 27, 751–763.PubMedGoogle Scholar
  213. Thompson, P. M., Hayashi, K. M., Simon, S. L., Geaga, J. A., Hong, M. S., Sui, Y. H., et al. (2004). Structural abnormalities in the brains of human subjects who use methamphetamine. Journal of Neuroscience, 24, 6028–6036.PubMedGoogle Scholar
  214. Toomey, R., Lyons, M. J., Eisen, S. A., Xian, H., Chantarujikapong, S., Seidman, L. J., et al. (2003). A twin study of the neuropsychological consequences of stimulant abuse. Archives of General Psychiatry, 60, 303–310.PubMedGoogle Scholar
  215. Tsai, G., & Coyle, J. T. (1995). N-Acetylaspartate in neuropsychiatric disorders. Progress in Neurobiology, 46, 531–540.PubMedGoogle Scholar
  216. Turner, D. C., Clark, L., Dowson, J., Robbins, T. W., & Sahakian, B. J. (2004a). Modafinil improves cognition and response inhibition in adult attention-deficit/hyperactivity disorder. Biological Psychiatry, 55, 1031–1040.PubMedGoogle Scholar
  217. Turner, D. C., Clark, L., Pomarol-Clotet, E., McKenna, P., Robbins, T. W., & Sahakian, B. J. (2004b). Modafinil improves cognition and attentional set shifting in patients with chronic schizophrenia. Neuropsychopharmacology, 29, 1363–1373.PubMedGoogle Scholar
  218. U.K. Department of Health (1999). Drug misuse and dependence—guidelines on clinical management. Norwich, U.K.: The Stationery Office Ltd.Google Scholar
  219. United Nations Office on Drugs and Crime (2003a). Global illicit drug trends 2003. New York, NY: United Nations Office on Drugs and Crime (UNODC).Google Scholar
  220. United Nations Office on Drugs and Crime (2003b). World Drug Report 2004. (vols. 1: Analysis). Vienna, AU: United Nations Office on Drugs and Crime (UNODC).Google Scholar
  221. Urbina, A. & Jones, K. (2004). Crystal methamphetamine, its analogues, and HIV infection: Medical and psychiatric aspects of a new epidemic. Clinical Infectious Diseases, 38, 890–894.PubMedGoogle Scholar
  222. van Honk, J., Hermans, E. J., Putman, P., Montague, B., & Schutter, D. J. L. G. (2002). Defective somatic markers in sub-clinical psychopathy. Neuroreport, 13, 1025–1027.PubMedGoogle Scholar
  223. van Honk, J., Schutter, D. J. L. G., Hermans, E. J., & Putman, P. (2003). Low cortisol levels and the balance between punishment sensitivity and reward dependency. Neuroreport, 14, 1993–1996.PubMedGoogle Scholar
  224. Varner, K. J., Ogden, B. A., Delcarpio, J., & Meleg-Smith, S. (2002). Cardiovascular Responses Elicited by the "Binge" Administration of Methamphetamine. Journal of Pharmacology and Experimental Therapeutics, 301, 152-159.PubMedGoogle Scholar
  225. Vassileva, J., Petkova, P., Georgiev, S., Martin, E. M., Tersiyski, R., Raycheva, M., et al. (2007). Impaired decision-making in psychopathic heroin addicts. Drug and Alcohol Dependence, 86, 287–289.PubMedGoogle Scholar
  226. Verdejo-Garcia, A., Lopez-Torrecillas, F., Gimenez, C. O., & Perez-Garcia, M. (2004). Clinical implications and methodological challenges in the study of the neuropsychological correlates of cannabis, stimulant, and opioid abuse. Neuropsychology Review, 14, 1–41.PubMedGoogle Scholar
  227. Verdejo-Garcia, A. J., Perales, J. C., & Perez-Garcia, M. (2007). Cognitive impulsivity in cocaine and heroin polysubstance abusers. Addictive Behaviors, 32, 950–966.PubMedGoogle Scholar
  228. Verdejo-Garcia, A., & Perez-Garcia, M. (2006). Profile of executive deficits in cocaine and heroin polysubstance users: common and differential effects on separate executive components. Psychopharmacology, Epub ahead of print, 30 November 2006.Google Scholar
  229. Verdejo-Garcia, A., & Perez-Garcia, M. (2007). Ecological assessment of executive functions in substance dependent individuals. Drug and Alcohol Dependence, Epub ahead of print (21 March 2007).Google Scholar
  230. Verdejo-Garcia, A., Toribio, I., Orozco, C., Puente, K. L., & Perez-Garcia, M. (2005). Neuropsychological functioning in methadone maintenance patients versus abstinent heroin abusers. Drug and Alcohol Dependence, 78, 238–288.Google Scholar
  231. Virmani, A., Binienda, Z., Ali, S., & Gaetani, F. (2006). Links between nutrition, drug abuse, and the metabolic syndrome.Google Scholar
  232. Vocci, F. J., Acri, J., & Elkashef, A. (2005). Medication development for addictive disorders: The state of the science. American Journal of Psychiatry, 162, 1432–1440.PubMedGoogle Scholar
  233. Vogt, B. A., Wiley, R. G., & Jensen, E. L. (1995). Localization of Mu-Opioid and Delta-Opioid Receptors to Anterior Cingulate Afferents and Projection Neurons and Input–Output Model of Mu Regulation. Experimental Neurology, 135, 83–92.PubMedGoogle Scholar
  234. Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Ding, Y. S., Sedler, M., et al. (2001a). Low level of brain dopamine D-2 receptors in methamphetamine abusers: Association with metabolism in the orbitofrontal cortex. American Journal of Psychiatry, 158, 2015–2021.PubMedGoogle Scholar
  235. Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Franceschi, D., Sedler, M., et al. (2001b). Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. Journal of Neuroscience, 21, 9414–9418.PubMedGoogle Scholar
  236. Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Franceschi, D., Sedler, M. J., et al. (2001c). Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. American Journal of Psychiatry, 158, 383–389.PubMedGoogle Scholar
  237. Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Leonido-Yee, M., Franceschi, D., et al. (2001d). Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. American Journal of Psychiatry, 158, 377–382.PubMedGoogle Scholar
  238. Volkow, N. D., Fowler, J. S., & Wang, G. J. (2003). The addicted human brain: Insights from imaging studies. Journal of Clinical Investigation, 111, 1444–1451.PubMedGoogle Scholar
  239. Volkow, N. D., Fowler, J. S., & Wang, G. J. (2004a). The addicted human brain viewed in the light of imaging studies: Brain circuits and treatment strategies. Neuropharmacology, 47, 3–13.PubMedGoogle Scholar
  240. Volkow, N. D., Fowler, J. S., Wang, G. J., & Swanson, J. M. (2004b). Dopamine in drug abuse and addiction: Results from imaging studies and treatment implications. Molecular Psychiatry, 9, 557–569.PubMedGoogle Scholar
  241. Volkow, N. D., Gur, R. C., Wang, G. J., Fowler, J. S., Moberg, P. J., Ding, Y. S., et al. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of Psychiatry, 155, 344–349.PubMedGoogle Scholar
  242. Wagner, G. C., Tekirian, T. L., & Cheo, C. T. (1993). Sexual differences in sensitivity to methamphetamine toxicity. Journal of Neural Transmission-General Section, 93, 67–70.PubMedGoogle Scholar
  243. Wang, G. J., Volkow, N. D., Chang, L., Miller, E., Sedler, M., Hitzemann, R., et al. (2004). Partial recovery of brain metabolism in methamphetamine abusers after protracted abstinence. American Journal of Psychiatry, 161, 242–248.PubMedGoogle Scholar
  244. Wang, G. J., Volkow, N. D., Fowler, J. S., Logan, J., Abumrad, N. N., Hitzemann, R. J., et al. (1997). Dopamine D-2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropsychopharmacology, 16, 174–182.PubMedGoogle Scholar
  245. Warner, R. M. & Srinivasan, J. (2004). Protean manifestations of intravenous drug use. Surgeon-Journal of the Royal Colleges of Surgeons of Edinburgh and Ireland, 2, 137-140.Google Scholar
  246. Weinstein, C. S. & Shaffer, H. J. (1993). Neurocognitive aspects of substance-abuse treatment—a psychotherapists primer. Psychotherapy, 30, 317–333.Google Scholar
  247. WHO (2004). Neuroscience of psychoactive substance use and dependence. Geneva, CH: WHO Publications.Google Scholar
  248. Woods, S. P., Rippeth, J. D., Conover, E., Gongvatana, A., Gonzalez, R., Carey, C. L., et al. (2005). Deficient strategic control of verbal encoding and retrieval in individuals with methamphetamine dependence. Neuropsychology, 19, 35–43.PubMedGoogle Scholar
  249. Wykes, T., Reeder, C., Williams, C., Corner, J., Rice, C., & Everitt, B. (2003). Are the effects of cognitive remediation therapy (CRT) durable? Results from an exploratory trial in schizophrenia. Schizophrenia Research, 61, 163–174.PubMedGoogle Scholar
  250. Yu, Q., Larson, D. F., & Watson, R. R. (2003). Heart disease, methamphetamine and AIDS. Life Sciences, 73, 129-140.PubMedGoogle Scholar
  251. Yucel, M., Lubman, D. I., Harrison, B. J., Fornito, A., Allen, N. B., Wellard, R. M., et al. (2007). A combined spectroscopic and functional MRI investigation of the dorsal anterior cingulate region in opiate addiction. Molecular Psychiatry.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Clinical Medicine, Department of PsychiatryUniversity of CambridgeCambridgeUK
  2. 2.Behavioural and Clinical Neurosciences InstituteUniversity of CambridgeCambridgeUK

Personalised recommendations