Neuropsychology Review

, Volume 17, Issue 3, pp 275–297 | Cite as

Neurocognitive Effects of Methamphetamine: A Critical Review and Meta-analysis

  • J. Cobb Scott
  • Steven Paul Woods
  • Georg E. Matt
  • Rachel A. Meyer
  • Robert K. Heaton
  • J. Hampton Atkinson
  • Igor Grant
Article

Abstract

This review provides a critical analysis of the central nervous system effects of acute and chronic methamphetamine (MA) use, which is linked to numerous adverse psychosocial, neuropsychiatric, and medical problems. A meta-analysis of the neuropsychological effects of MA abuse/dependence revealed broadly medium effect sizes, showing deficits in episodic memory, executive functions, information processing speed, motor skills, language, and visuoconstructional abilities. The neuropsychological deficits associated with MA abuse/dependence are interpreted with regard to their possible neural mechanisms, most notably MA-associated frontostriatal neurotoxicity. In addition, potential explanatory factors are considered, including demographics (e.g., gender), MA use characteristics (e.g., duration of abstinence), and the influence of common psychiatric (e.g., other substance-related disorders) and neuromedical (e.g., HIV infection) comorbidities. Finally, these findings are discussed with respect to their potential contribution to the clinical management of persons with MA abuse/dependence.

Keywords

Central nervous system Methamphetamine Abuse Dependence Neuropsychological assessment Cognition 

References

  1. ADA Division of Communications (2005). For the dental patient. methamphetamine use and oral health. Journal of the American Dental Association, 136(10), 1491.Google Scholar
  2. Aharonovich, E., Nunes, E., & Hasin, D. (2003). Cognitive impairment, retention and abstinence among cocaine abusers in cognitive-behavioral treatment. Drug and Alcohol Dependence, 71(2), 207–211.PubMedGoogle Scholar
  3. Alexander, G. E., Delong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedGoogle Scholar
  4. American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental DisordersFourth Edition: DSM-IV. Washington, D.C.: American Psychiatric Association.Google Scholar
  5. Anglin, M. D., Burke, C., Perrochet, B., Stamper, E., & Dawud-Noursi, S. (2000). History of the methamphetamine problem. Journal of Psychoactive Drugs, 32(2), 137–141.PubMedGoogle Scholar
  6. Arends, L. R., Voko, Z., & Stijnen, T. (2003). Combining multiple outcome measures in a meta-analysis: An application. Statistics in Medicine, 22(8), 1335–1353.PubMedGoogle Scholar
  7. Axt, K. J., & Molliver, M. E. (1991). Immunocytochemical evidence for methamphetamine-induced serotonergic axon loss in the rat brain. Synapse, 9(4), 302–313.PubMedGoogle Scholar
  8. Baberg, H. T., Nelesen, R. A., & Dimsdale, J. E. (1996). Amphetamine use: Return of an old scourge in a consultation psychiatry setting. American Journal of Psychiatry, 153(6), 789–793.PubMedGoogle Scholar
  9. Bae, S. C., Lyoo, I. K., Sung, Y. H., Yoo, J., Chung, A., Yoon, S. J., et al. (2006). Increased white matter hyperintensities in male methamphetamine abusers. Drug and Alcohol Dependence, 81(1), 83–88.PubMedGoogle Scholar
  10. Bakhit, C., Morgan, M. E., Peat, M. A., & Gibb, J. W. (1981). Long-term effects of methamphetamine on the synthesis and metabolism of 5-hydroxytryptamine in various regions of the rat brain. Neuropharmacology, 20(12A), 1135–1140.PubMedGoogle Scholar
  11. Barr, A. M., Markou, A., & Phillips, A. G. (2002). A ‘crash’ course on psychostimulant withdrawal as a model of depression. Trends in Pharmacological Science, 23(10), 475–482.Google Scholar
  12. Barr, A. M., Panenka, W. J., MacEwan, G. W., Thornton, A. E., Lang, D. J., Honer, W. G., et al. (2006). The need for speed: An update on methamphetamine addiction. Journal of Psychiatry and Neuroscience, 31(5), 301–313.PubMedGoogle Scholar
  13. Bechara, A., & Damasio, H. (2002). Decision-making and addiction (part I): Impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia, 40(10), 1675–1689.PubMedGoogle Scholar
  14. Bechara, A., & Martin, E. M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18(1), 152–162.PubMedGoogle Scholar
  15. Biederman, J. (2005). Attention-deficit/hyperactivity disorder: A selective overview. Biological Psychiatry, 57(11), 1215–1220.PubMedGoogle Scholar
  16. Block, R. I., Erwin, W. J., & Ghoneim, M. M. (2002). Chronic drug use and cognitive impairments. Pharmacology Biochemistry and Behavior, 73, 491–504.Google Scholar
  17. Bluthenthal, R. N., Kral, A. H., Gee, L., Lorvick, J., Moore, L., Seal, K., et al. (2001). Trends in HIV seroprevalence and risk among gay and bisexual men who inject drugs in San Francisco, 1988 to 2000. Journal of Acquired Immune Deficiency Syndromes, 28(3), 264–269.PubMedGoogle Scholar
  18. Bray, G. A. (1993). Use and abuse of appetite-suppressant drugs in the treatment of obesity. Annals of Internal Medicine, 119(7 Pt 2), 707–713.PubMedGoogle Scholar
  19. Brecht, M. L., O’Brien, A., von Mayrhauser, C., & Anglin, M. D. (2004). Methamphetamine use behaviors and gender differences. Addictive Behaviors, 29(1), 89–106.PubMedGoogle Scholar
  20. Brown, J. M., Quinton, M. S., & Yamamoto, B. K. (2005). Methamphetamine-induced inhibition of mitochondrial complex II: Roles of glutamate and peroxynitrite. Journal of Neurochemistry, 95, 429–436.PubMedGoogle Scholar
  21. Buffenstein, A., Heaster, J., & Ko, P. (1999). Chronic psychotic illness from methamphetamine. American Journal of Psychiatry, 156(4), 662.PubMedGoogle Scholar
  22. Burrows, K. B., & Meshul, C. K. (1999). High-dose methamphetamine treatment alters presynaptic GABA and glutamate immunoreactivity. Neuroscience, 90(3), 833–850.PubMedGoogle Scholar
  23. Busto, U., Bendayan, R., & Sellers, E. M. (1989). Clinical pharmacokinetics of non-opiate abused drugs. Clinical Pharmacokinetics, 16(1), 1–26.PubMedGoogle Scholar
  24. Cadet, J. L., Jayanthi, S., & Deng, X. (2005). Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Neurotoxicity Research, 8(3–4), 199–206.PubMedCrossRefGoogle Scholar
  25. Caligiuri, M. P., & Buitenhuys, C. (2005). Do preclinical findings of methamphetamine-induced motor abnormalities translate to an observable clinical phenotype? Neuropsychopharmacology, 30(12), 2125–2134.PubMedGoogle Scholar
  26. Carey, C. L., Woods, S. P., Rippeth, J. D., Gonzalez, R., Heaton, R. K., & Grant, I. (2006). Additive deleterious effects of methamphetamine dependence and immunosuppression on neuropsychological functioning in HIV infection. AIDS and Behavior, 10(2), 185–190.PubMedGoogle Scholar
  27. Cartier, J., Farabee, D., & Prendergast, M. L. (2006). Methamphetamine use, self-reported violent crime, and recidivism among offenders in California who abuse substances. Journal of Interpersonal Violence, 21(4), 435–445.PubMedGoogle Scholar
  28. Cass, W. A. (1997). Decreases in evoked overflow of dopamine in rat striatum after neurotoxic doses of methamphetamine. Journal of Pharmacology and Experimental Therapeutics, 280(1), 105–113.PubMedGoogle Scholar
  29. Cass, W. A., & Manning, M. W. (1999). Recovery of presynaptic dopaminergic functioning in rats treated with neurotoxic doses of methamphetamine. Journal of Neuroscience, 19(17), 7653–7660.PubMedGoogle Scholar
  30. Chan, P., Di Monte, D. A., Luo, J. J., DeLanney, L. E., Irwin, I., & Langston, J. W. (1994). Rapid ATP loss caused by methamphetamine in the mouse striatum: Relationship between energy impairment and dopaminergic neurotoxicity. Journal of Neurochemistry, 62(6), 2484–2487.PubMedCrossRefGoogle Scholar
  31. Chang, L., Cloak, C., Patterson, K., Grob, C., Miller, E. N., & Ernst, T. (2005a). Enlarged striatum in abstinent methamphetamine abusers: A possible compensatory response. Biological Psychiatry, 57(9), 967–974.PubMedGoogle Scholar
  32. Chang, L., Ernst, T., Speck, O., & Grob, C. S. (2005b). Additive effects of HIV and chronic methamphetamine use on brain metabolite abnormalities. American Journal of Psychiatry, 162(2), 361–369.PubMedGoogle Scholar
  33. Chang, L., Ernst, T., Speck, O., Patel, H., DeSilva, M., Leonido-Yee, M., et al. (2002). Perfusion MRI and computerized cognitive test abnormalities in abstinent methamphetamine users. Psychiatry Research, 114(2), 65–79.PubMedGoogle Scholar
  34. Chen, C. K., Lin, S. K., Sham, P. C., Ball, D., el Loh, W., & Murray, R. M. (2005). Morbid risk for psychiatric disorder among the relatives of methamphetamine users with and without psychosis. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 136(1), 87–91.Google Scholar
  35. Chen, C. K., Lin, S. K., Sham, P. C., Ball, D., Loh, E. W., Hsiao, C. C., et al. (2003). Pre-morbid characteristics and co-morbidity of methamphetamine users with and without psychosis. Psychological Medicine, 33(8), 1407–1414.PubMedGoogle Scholar
  36. Cherner, M., Letendre, S., Heaton, R. K., Durelle, J., Marquie-Beck, J., Gragg, B., et al. (2005). Hepatitis C augments cognitive deficits associated with HIV infection and methamphetamine. Neurology, 64(8), 1343–1347.PubMedGoogle Scholar
  37. Chin, K. M., Channick, R. N., & Rubin, L. J. (2006). Is methamphetamine use associated with idiopathic pulmonary arterial hypertension? Chest, 130(6), 1657–1663.PubMedGoogle Scholar
  38. Chou, Y. H., Huang, W. S., Su, T. P., Lu, R. B., Wan, F. J., & Fu, Y. K. (2007). Dopamine transporters and cognitive function in methamphetamine abuser after a short abstinence: A SPECT study. European Neuropsychopharmacology, 17(1), 46–52.PubMedGoogle Scholar
  39. Chung, A., Lyoo, I. K., Kim, S. J., Hwang, J., Bae, S. C., Sung, Y. H., et al. (2006). Decreased frontal white-matter integrity in abstinent methamphetamine abusers. International Journal of Neuropsychopharmacology, 1–11.Google Scholar
  40. Coffey, S. F., Gudleski, G. D., Saladin, M. E., & Brady, K. T. (2003). Impulsivity and rapid discounting of delayed hypothetical rewards in cocaine-dependent individuals. Experimental and Clinical Psychopharmacology, 11(1), 18–25.PubMedGoogle Scholar
  41. Cohen, J. (1988). Statistical power analyses for the behavioral sciences (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  42. Comer, S. D., Hart, C. L., Ward, A. S., Haney, M., Foltin, R. W., & Fischman, M. W. (2001). Effects of repeated oral methamphetamine administration in humans. Psychopharmacology, 155(4), 397–404.PubMedGoogle Scholar
  43. Community Epidemiology Work Group (2006). Epidemiologic trends in drug abuseadvance report. Bethesda, MD: U.S. Department of Health and Human Services, National Institutes of Health.Google Scholar
  44. Craik, F. I., & Bialystok, E. (2006). Cognition through the lifespan: Mechanisms of change. Trends in Cognitive Science, 10(3), 131–138.Google Scholar
  45. Cretzmeyer, M., Sarrazin, M. V., Huber, D. L., Block, R. I., & Hall, J. A. (2003). Treatment of methamphetamine abuse: Research findings and clinical directions. Journal of Substance Abuse Treatment, 24(3), 267–277.PubMedGoogle Scholar
  46. Davidson, C., Gow, A. J., Lee, T. H., & Ellinwood, E. H. (2001). Methamphetamine neurotoxicity: Necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Research. Brain Research Reviews, 36(1), 1–22.PubMedGoogle Scholar
  47. Davis, G. G., & Swalwell, C. I. (1994). Acute aortic dissections and ruptured berry aneurysms associated with methamphetamine abuse. Journal of Forensic Sciences, 39(6), 1481–1485.PubMedGoogle Scholar
  48. Delaney, P., & Estes, M. (1980). Intracranial hemorrhage with amphetamine abuse. Neurology, 30(10), 1125–1128.PubMedGoogle Scholar
  49. di Michele, F., Prichep, L., John, E. R., & Chabot, R. J. (2005). The neurophysiology of attention-deficit/hyperactivity disorder. International Journal of Psychophysiology, 58(1), 81–93.PubMedGoogle Scholar
  50. Dluzen, D. E., & McDermott, J. L. (2006). Estrogen, testosterone, and methamphetamine toxicity. Annals of the New York Academy of Sciences, 1074, 282–294.PubMedGoogle Scholar
  51. Domier, C. P., Simon, S. L., Rawson, R. A., Huber, A., & Ling, W. (2000). A comparison of injecting and noninjecting methamphetamine users. Journal of Psychoactive Drugs, 32(2), 229–232.PubMedGoogle Scholar
  52. Duval, S., & Tweedie, R. L. (2000). Trim and fill: A simple funnel plot based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463.PubMedGoogle Scholar
  53. Ernst, T., Chang, L., Leonido-Yee, M., & Speck, O. (2000). Evidence for long-term neurotoxicity associated with methamphetamine abuse: A 1H MRS study. Neurology, 54(6), 1344–1349.PubMedGoogle Scholar
  54. Fals-Stewart, W. (1993). Neurocognitive defects and their impact on substance abuse treatment. Journal of Addictions and Offender Counseling, 13, 46–57.Google Scholar
  55. Faraone, S. V., Biederman, J., Spencer, T., Wilens, T., Seidman, L. J., Mick, E., et al. (2000). Attention-deficit/hyperactivity disorder in adults: An overview. Biological Psychiatry, 48(1), 9–20.PubMedGoogle Scholar
  56. Forton, D. M., Taylor-Robinson, S. D., & Thomas, H. C. (2003). Cerebral dysfunction in chronic hepatitis C infection. Journal of Viral Hepatitis, 10(2), 81–86.PubMedGoogle Scholar
  57. Friedman, S. D., Castaneda, E., & Hodge, G. K. (1998). Long-term monoamine depletion, differential recovery, and subtle behavioral impairment following methamphetamine-induced neurotoxicity. Pharmacology, Biochemistry and Behavior, 61(1), 35–44.Google Scholar
  58. Giros, B., Jaber, M., Jones, S. R., Wightman, R. M., & Caron, M. G. (1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature, 379(6566), 606–612.PubMedGoogle Scholar
  59. Goldberg, T. E., & Weinberger, D. R. (2004). Genes and the parsing of cognitive processes. Trends in Cognitive Sciences, 8(7), 325–335.PubMedGoogle Scholar
  60. Gonzales, R., Marinelli-Casey, P., Shoptaw, S., Ang, A., & Rawson, R. A. (2006). Hepatitis C virus infection among methamphetamine-dependent individuals in outpatient treatment. Journal of Substance Abuse Treatment, 31(2), 195–202.PubMedGoogle Scholar
  61. Gonzalez, R., Bechara, A., & Martin, E. M. (2007). Executive functions among individuals with methamphetamine or alcohol as drugs of choice: Preliminary observations. Journal of Clinical and Experimental Neuropsychology, 29(2), 155–159.PubMedGoogle Scholar
  62. Gonzalez, R., Rippeth, J. D., Carey, C. L., Heaton, R. K., Moore, D. J., Schweinsburg, B. C., et al. (2004). Neurocognitive performance of methamphetamine users discordant for history of marijuana exposure. Drug and Alcohol Dependence, 76(2), 181–190.PubMedGoogle Scholar
  63. Gonzalez Castro, F., Barrington, E. H., Walton, M. A., & Rawson, R. A. (2000). Cocaine and methamphetamine: Differential addiction rates. Psychology of Addictive Behaviors, 14(4), 390–396.PubMedGoogle Scholar
  64. Grant, I. (1987). Alcohol and the brain: Neuropsychological correlates. Journal of Consulting and Clinical Psychology, 55, 310–324.PubMedGoogle Scholar
  65. Grant, I., Gonzalez, R., Carey, C. L., Natarajan, L., Wolfson, T. (2003). Non-acute (residual) neurocognitive effects of cannabis use: A meta-analytic study. Journal of the International Neuropsychological Society, 9, 679–689.PubMedGoogle Scholar
  66. Grilli, L., & Rampichini, C. (2006). A review of tandom effects modelling using gllamm in Stata. In Software reviews of multilevel analysis packages. University of Bristol, UK: Centre for Multilevel Modelling.Google Scholar
  67. Halkitis, P. N., Parsons, J. T., & Stirratt, M. J. (2001). A double epidemic: Crystal methamphetamine drug use in relation to HIV transmission among gay men. Journal of Homosexuality, 41(2), 17–35.PubMedGoogle Scholar
  68. Halkitis, P. N., & Shrem, M. T. (2006). Psychological differences between binge and chronic methamphetamine using gay and bisexual men. Addictive Behaviors, 31(3), 549–552.PubMedGoogle Scholar
  69. Hall, C. D., Blanton, D. E., Scatliff, J. H., & Morris, C. E. (1973). Speed kills: Fatality from the self-administration of methamphetamine intravenously. Southern Medical Journal, 66(6), 650–652.PubMedGoogle Scholar
  70. Hall, W., Hando, J., Darke, S., & Ross, J. (1996). Psychological morbidity and route of administration among amphetamine users in Sydney, Australia. Addiction, 91(1), 81–87.Google Scholar
  71. Harris, D., & Batki, S. L. (2000). Stimulant psychosis: Symptom profile and acute clinical course. American Journal on Addictions, 9(1), 28–37.PubMedGoogle Scholar
  72. Hart, C. L., Haney, M., Nasser, J., & Foltin, R. W. (2005). Combined effects of methamphetamine and zolpidem on performance and mood during simulated night shift work. Pharmacology, Biochemistry and Behavior, 81(3), 559–568.Google Scholar
  73. Hart, C. L., Ward, A. S., Haney, M., Foltin, R. W., & Fischman, M. W. (2001). Methamphetamine self-administration by humans. Psychopharmacology, 157(1), 75–81.PubMedGoogle Scholar
  74. Harvey, D. C., Lacan, G., Tanious, S. P., & Melega, W. P. (2000). Recovery from methamphetamine induced long-term nigrostriatal dopaminergic deficits without substantia nigra cell loss. Brain Research, 871(2), 259–270.PubMedGoogle Scholar
  75. Heaton, R. K., Marcotte, T. D., Mindt, M. R., Sadek, J., Moore, D. J., Bentley, H., et al. (2004). The impact of HIV-associated neuropsychological impairment on everyday functioning. Journal of the International Neuropsychological Society, 10(3), 317–331.PubMedGoogle Scholar
  76. Hedges, L. V., & Olkin, L. I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.Google Scholar
  77. Hervey, A. S., Epstein, J. N., & Curry, J. F. (2004). Neuropsychology of adults with attention-deficit/hyperactivity disorder: A meta-analytic review. Neuropsychology, 18(3), 485–503.PubMedGoogle Scholar
  78. Hilsabeck, R. C., Hassanein, T. I., Carlson, M. D., Ziegler, E. A., & Perry, W. (2003). Cognitive functioning and psychiatric symptomatology in patients with chronic hepatitis C. Journal of the International Neuropsychological Society, 9(6), 847–854.PubMedGoogle Scholar
  79. Hiranita, T., Nawata, Y., Sakimura, K., Anggadiredja, K., & Yamamoto, T. (2006). Suppression of methamphetamine-seeking behavior by nicotinic agonists. Proceedings of the National Academy of Sciences of the United States of America, 103(22), 8523–8527.Google Scholar
  80. Hoffman, W. F., Moore, M., Templin, R., McFarland, B., Hitzemann, R. J., & Mitchell, S. H. (2006). Neuropsychological function and delay discounting in methamphetamine-dependent individuals. Psychopharmacology, 188(2), 162–170.PubMedGoogle Scholar
  81. Hong, R., Matsuyama, E., & Nur, K. (1991). Cardiomyopathy associated with the smoking of crystal methamphetamine. JAMA, 265(9), 1152–1154.PubMedGoogle Scholar
  82. Hotchkiss, A. J., & Gibb, J. W. (1980). Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. Journal of Pharmacology and Experimental Therapeutics, 214(2), 257–262.PubMedGoogle Scholar
  83. Hunt, D. (1995). Pulse check: National trends in drug abuse. Washington, DC: Office of National Drug Control Policy.Google Scholar
  84. Hwang, J., Lyoo, I. K., Kim, S. J., Sung, Y. H., Bae, S., Cho, S. N., et al. (2006). Decreased cerebral blood flow of the right anterior cingulate cortex in long-term and short-term abstinent methamphetamine users. Drug and Alcohol Dependence, 82(2), 177–181.PubMedGoogle Scholar
  85. Iwanami, A., Sugiyama, A., Kuroki, N., Toda, S., Kato, N., Nakatani, Y., et al. (1994). Patients with methamphetamine psychosis admitted to a psychiatric hospital in Japan. A preliminary report. Acta Psychiatrica Scandinavica, 89(6), 428–432.PubMedGoogle Scholar
  86. Iyo, M., Namba, H., Yanagisawa, M., Hirai, S., Yui, N., & Fukui, S. (1997). Abnormal cerebral perfusion in chronic methamphetamine abusers: A study using 99MTc-HMPAO and SPECT. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21(5), 789–796.PubMedGoogle Scholar
  87. Iyo, M., Sekine, Y., & Mori, N. (2004). Neuromechanism of developing methamphetamine psychosis: A neuroimaging study. Annals of the New York Academy of Sciences, 1025, 288–295.PubMedGoogle Scholar
  88. Jaffe, C., Bush, K. R., Straits-Tröster, K., Meredith, C., Romwall, L., Rosenbaum, G., et al. (2005). A comparison of methamphetamine-dependent inpatients childhood attention deficit hyperactivity disorder symptomatology. Journal on Addictive Disorders, 24(3), 133–152.Google Scholar
  89. Jernigan, T. L., Gamst, A. C., Archibald, S. L., Fennema-Notestine, C., Mindt, M. R., Marcotte, T. D., et al. (2005). Effects of methamphetamine dependence and HIV infection on cerebral morphology. American Journal of Psychiatry, 162(8), 1461–1472.PubMedGoogle Scholar
  90. Johanson, C. E., Frey, K. A., Lundahl, L. H., Keenan, P., Lockhart, N., Roll, J., et al. (2006). Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology, 185(3), 327–338.PubMedGoogle Scholar
  91. Johnson, B. A., Ait-Daoud, N., & Wells, L. T. (2000). Effects of isradipine, a dihydropyridine-class calcium channel antagonist, on D-methamphetamine-induced cognitive and physiological changes in humans. Neuropsychopharmacology, 22(5), 504–512.PubMedGoogle Scholar
  92. Johnson, B. A., Roache, J. D., Ait-Daoud, N., Wallace, C., Wells, L. T., & Wang, Y. (2005). Effects of isradipine on methamphetamine-induced changes in attentional and perceptual-motor skills of cognition. Psychopharmacology, 178(2–3), 296–302.PubMedGoogle Scholar
  93. Jovanovski, D., Erb, S., & Zakzanis, K. K. (2005). Neurocognitive deficits in cocaine users: A quantitative review of the evidence. Journal of Clinical and Experimental Neuropsychology, 27(2), 189–204.PubMedGoogle Scholar
  94. Kalaian, H. A., & Raudenbush, S. W. (1996). A multivariate mixed linear model for meta-analysis. Psychological Methods, 1(3), 227.Google Scholar
  95. Kalechstein, A. D., Newton, T. F., & Green, M. (2003). Methamphetamine dependence is associated with neurocognitive impairment in the initial phases of abstinence. Journal of Neuropsychiatry and Clinical Neurosciences, 15(2), 215–220.PubMedGoogle Scholar
  96. Kalechstein, A. D., Newton, T. F., Longshore, D., Anglin, M. D., van Gorp, W. G., & Gawin, F. H. (2000). Psychiatric comorbidity of methamphetamine dependence in a forensic sample. Journal of Neuropsychiatry and Clinical Neurosciences, 12(4), 480–484.PubMedGoogle Scholar
  97. Khoshbouei, H., Wang, H., Lechleiter, J. D., Javitch, J. A., & Galli, A. (2003). Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. Journal of Biological Chemistry, 278(14), 12070–12077.PubMedGoogle Scholar
  98. Kim, S. J., Lyoo, I. K., Hwang, J., Chung, A., Hoon Sung, Y., Kim, J., et al. (2006). Prefrontal grey-matter changes in short-term and long-term abstinent methamphetamine abusers. International Journal of Neuropsychopharmacology, 9(2), 221–228.PubMedGoogle Scholar
  99. Kim, S. J., Lyoo, I. K., Hwang, J., Sung, Y. H., Lee, H. Y., Lee, D. S., et al. (2005). Frontal glucose hypometabolism in abstinent methamphetamine users. Neuropsychopharmacology, 30(7), 1383–1391.PubMedGoogle Scholar
  100. Kokoshka, J. M., Metzger, R. R., Wilkins, D. G., Gibb, J. W., Hanson, G. R., & Fleckenstein, A. E. (1998). Methamphetamine treatment rapidly inhibits serotonin, but not glutamate, transporters in rat brain. Brain Research, 799(1), 78–83.PubMedGoogle Scholar
  101. Lawrence, A. D., Watkins, L. H., Sahakian, B. J., Hodges, J. R., & Robbins, T. W. (2000). Visual object and visuospatial cognition in Huntington’s disease: Implications for information processing in corticostriatal circuits. Brain, 123(Pt 7), 1349–1364.PubMedGoogle Scholar
  102. Letendre, S. L., Cherner, M., Ellis, R. J., Marquie-Beck, J., Gragg, B., Marcotte, T., et al. (2005). The effects of hepatitis C, HIV, and methamphetamine dependence on neuropsychological performance: Biological correlates of disease. AIDS, 19(Suppl 3), S72–S78.Google Scholar
  103. Logan, B. K. (1996). Methamphetamine and driving impairment. Journal of Forensic Sciences, 41(3), 457–464.PubMedGoogle Scholar
  104. Logan, B. K., Fligner, C. L., & Haddix, T. (1998). Cause and manner of death in fatalities involving methamphetamine. Journal of Forensic Sciences, 43(1), 28–34.PubMedGoogle Scholar
  105. London, E. D., Berman, S. M., Voytek, B., Simon, S. L., Mandelkern, M. A., Monterosso, J., et al. (2005). Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers. Biological Psychiatry, 58(10), 770–778.PubMedGoogle Scholar
  106. London, E. D., Simon, S. L., Berman, S. M., Mandelkern, M. A., Lichtman, A. M., Bramen, J., et al. (2004). Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers. Archives of General Psychiatry, 61(1), 73–84.PubMedGoogle Scholar
  107. Maggio, R., Riva, M., Vaglini, F., Fornai, F., Molteni, R., Armogida, M., et al. (1998). Nicotine prevents experimental parkinsonism in rodents and induces striatal increase of neurotrophic factors. Journal of Neurochemistry, 71(6), 2439–2446.PubMedCrossRefGoogle Scholar
  108. Mason, G. F., & Rothman, D. L. (2004). Basic principles of metabolic modeling of NMR (13)C isotopic turnover to determine rates of brain metabolism in vivo. Metabolic Engineering, 6(1), 75–84.PubMedGoogle Scholar
  109. Matsumoto, T., Kamijo, A., Yamaguchi, A., Iseki, E., & Hirayasu, Y. (2005). Childhood histories of attention-deficit hyperactivity disorders in Japanese methamphetamine and inhalant abusers: Preliminary report. Journal of Neuropsychiatry and Clinical Neurosciences, 59(1), 102–105.Google Scholar
  110. McCann, U. D., Wong, D. F., Yokoi, F., Villemagne, V., Dannals, R. F., & Ricaurte, G. A. (1998). Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: Evidence from positron emission tomography studies with [11C]WIN-35,428. Journal of Neuroscience, 18(20), 8417–8422.PubMedGoogle Scholar
  111. McGregor, C., Srisurapanont, M., Jittiwutikarn, J., Laobhripatr, S., Wongtan, T., & White, J. M. (2005). The nature, time course and severity of methamphetamine withdrawal. Addiction, 100(9), 1320–1329.PubMedGoogle Scholar
  112. McKetin, R., McLaren, J., Lubman, D. I., & Hides, L. (2006). The prevalence of psychotic symptoms among methamphetamine users. Addiction, 101(10), 1473–1478.PubMedGoogle Scholar
  113. Meredith, C. W., Jaffe, C., Ang-Lee, K., & Saxon, A. J. (2005). Implications of chronic methamphetamine use: A literature review. Harvard Review of Psychiatry, 13(3), 141–154.PubMedGoogle Scholar
  114. Mewaldt, S. P., & Ghoneim, M. M. (1979). The effects and interactions of scopolamine, physostigmine and methamphetamine on human memory. Pharmacology, Biochemistry and Behavior, 10(2), 205–210.Google Scholar
  115. Mielke, R., Kessler, J., Szelies, B., Herholz, K., Wienhard, K., & Heiss, W. D. (1998). Normal and pathological aging-findings of positron-emission-tomography. Journal of Neural Transmission, 105(8–9), 821–837.PubMedGoogle Scholar
  116. Miller, D. B., & O’Callaghan, J. P. (2003). Elevated environmental temperature and methamphetamine neurotoxicity. Environmental Research, 92(1), 48–53.PubMedGoogle Scholar
  117. Mitler, M. M., Hajdukovic, R., & Erman, M. K. (1993). Treatment of narcolepsy with methamphetamine. Sleep, 16(4), 306–317.PubMedGoogle Scholar
  118. Mohs, R. C., Tinklenberg, J. R., Roth, W. T., & Kopell, B. S. (1978). Methamphetamine and diphenhydramine effects on the rate of cognitive processing. Psychopharmacology, 59(1), 13–19.PubMedGoogle Scholar
  119. Mohs, R. C., Tinklenberg, J. R., Roth, W. T., & Kopell, B. S. (1980). Sensitivity of some human cognitive functions to effects of methamphetamine and secobarbital. Drug and Alcohol Dependence, 5(2), 145–150.PubMedGoogle Scholar
  120. Monterosso, J. R., Ainslie, G., Xu, J., Cordova, X., Domier, C. P., & London, E. D. (2006). Frontoparietal cortical activity of methamphetamine-dependent and comparison subjects performing a delay discounting task. Human Brain Mapping, 28(5), 383–393.Google Scholar
  121. Monterosso, J. R., Aron, A. R., Cordova, X., Xu, J., & London, E. D. (2005). Deficits in response inhibition associated with chronic methamphetamine abuse. Drug and Alcohol Dependence, 79(2), 273–277.PubMedGoogle Scholar
  122. Morgan, M. E., & Gibb, J. W. (1980). Short-term and long-term effects of methamphetamine on biogenic amine metabolism in extra-striatal dopaminergic nuclei. Neuropharmacology, 19(10), 989–995.PubMedGoogle Scholar
  123. Moszczynska, A., Fitzmaurice, P., Ang, L., Kalasinsky, K. S., Schmunk, G. A., Peretti, F. J., et al. (2004). Why is parkinsonism not a feature of human methamphetamine users? Brain, 127(Pt 2), 363–370.PubMedGoogle Scholar
  124. National Drug Intelligence Center (2006). 2006 National drug threat assessment. McLean, VA: National Drug Intelligence Center.Google Scholar
  125. National Institute on Drug Abuse (2006). NIDA research reportmethamphetamine abuse and addiction (NIH publication no. 06-4210). Rockville, MD: National Institutes of Health.Google Scholar
  126. Newton, T. F., Kalechstein, A. D., Duran, S., Vansluis, N., & Ling, W. (2004). Methamphetamine abstinence syndrome: Preliminary findings. American Journal on Addictions, 13(3), 248–255.PubMedGoogle Scholar
  127. Newton, T. F., Kalechstein, A. D., Hardy, D. J., Cook, I. A., Nestor, L., Ling, W., et al. (2004). Association between quantitative EEG and neurocognition in methamphetamine-dependent volunteers. Clinical Neurophysiology, 115, 194–198.PubMedGoogle Scholar
  128. Nordahl, T. E., Salo, R., & Leamon, M. (2003). Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: A review. Journal of Neuropsychiatry and Clinical Neurosciences, 15(3), 317–325.PubMedGoogle Scholar
  129. Nordahl, T. E., Salo, R., Possin, K., Gibson, D. R., Flynn, N., Leamon, M., et al. (2002). Low N-acetyl-aspartate and high choline in the anterior cingulum of recently abstinent methamphetamine-dependent subjects: A preliminary proton MRS study. Magnetic resonance spectroscopy. Psychiatry Research, 116(1–2), 43–52.PubMedGoogle Scholar
  130. Oh, J. S., Lyoo, I. K., Sung, Y. H., Hwang, J., Kim, J., Chung, A., et al. (2005). Shape changes of the corpus callosum in abstinent methamphetamine users. Neuroscience Letters, 384(1–2), 76–81.PubMedGoogle Scholar
  131. Olsen, E. R. (1977). Intracranial hemorrhage and amphetamine usage. Review of the effects of amphetamines on the central nervous system. Angiology, 28(7), 464–471.PubMedGoogle Scholar
  132. Paulus, M. P., Hozack, N., Frank, L., Brown, G. G., & Schuckit, M. A. (2003). Decision making by methamphetamine-dependent subjects is associated with error-rate-independent decrease in prefrontal and parietal activation. Biological Psychiatry, 53(1), 65–74.PubMedGoogle Scholar
  133. Paulus, M. P., Hozack, N. E., Zauscher, B. E., Frank, L., Brown, G. G., Braff, D. L., et al. (2002). Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology, 26(1), 53–63.PubMedGoogle Scholar
  134. Paulus, M. P., Tapert, S. F., & Schuckit, M. A. (2005). Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Archives of General Psychiatry, 62(7), 761–768.PubMedGoogle Scholar
  135. Perez, J. A., Jr., Arsura, E. L., & Strategos, S. (1999). Methamphetamine-related stroke: Four cases. Journal of Emergency Medicine, 17(3), 469–471.PubMedGoogle Scholar
  136. Piatt, A. L., Fields, J. A., Paolo, A. M., Koller, W. C., & Tröster, A. I. (1999a). Lexical, semantic, and action verbal fluency in Parkinson’s disease with and without dementia. Journal of Clinical and Experimental Neuropsychology, 21(4), 435–443.PubMedGoogle Scholar
  137. Piatt, A. L., Fields, J. A., Paolo, A. M., & Tröster, A. I. (1999b). Action (verb naming) fluency as an executive function measure: Convergent and divergent evidence of validity. Neuropsychologia, 37(13), 1499–1503.PubMedGoogle Scholar
  138. Pliszka, S. R. (2007). Pharmacologic treatment of attention-deficit/hyperactivity disorder: Efficacy, safety and mechanisms of action. Neuropsychology Review, 17(1), 61–72.PubMedGoogle Scholar
  139. Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). GLLAMM manual. In Berkeley Division of Biostatistics working paper series, paper 160. Berkeley, CA: U.C. Berkeley Division of Biostatistics. Retrieved from http://www.bepress.com/ucbbiostat/paper160.
  140. Ricaurte, G. A., Guillery, R. W., Seiden, L. S., Schuster, C. R., & Moore, R. Y. (1982). Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Research, 235(1), 93–103.PubMedGoogle Scholar
  141. Richards, J. R., Bretz, S. W., Johnson, E. B., Turnipseed, S. D., Brofeldt, B. T., & Derlet, R. W. (1999). Methamphetamine abuse and emergency department utilization. Western Journal of Medicine, 170(4), 198–202.PubMedGoogle Scholar
  142. Rippeth, J. D., Heaton, R. K., Carey, C. L., Marcotte, T. D., Moore, D. J., Gonzalez, R., et al. (2004). Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. Journal of the International Neuropsychological Society, 10(1), 1–14.PubMedGoogle Scholar
  143. Ross, B., Lin, A., Harris, K., Bhattacharya, P., & Schweinsburg, B. (2003). Clinical experience with 13C MRS in vivo. NMR in Biomedicine, 16(6–7), 358–369.PubMedGoogle Scholar
  144. Sadek, J. R., Vigil, O., Grant, I., & Heaton, R. K. (2007). The impact of neuropsychological functioning and depressed mood on functional complaints in HIV-1 infection and methamphetamine dependence. Journal of Clinical and Experimental Neuropsychology, 29(3), 266–276.PubMedGoogle Scholar
  145. Salo, R., Nordahl, T. E., Moore, C., Waters, C., Natsuaki, Y., Galloway, G. P., et al. (2005). A dissociation in attentional control: Evidence from methamphetamine dependence. Biological Psychiatry, 57(3), 310–313.PubMedGoogle Scholar
  146. Salo, R., Nordahl, T. E., Natsuaki, Y., Leamon, M. H., Galloway, G. P., Waters, C., et al. (2007). Attentional control and brain metabolite levels in methamphetamine abusers. Biological Psychiatry, 61(11), 1272–1280.PubMedGoogle Scholar
  147. Salo, R., Nordahl, T. E., Possin, K., Leamon, M., Gibson, D. R., Galloway, G. P., et al. (2002). Preliminary evidence of reduced cognitive inhibition in methamphetamine-dependent individuals. Psychiatry Research, 111, 65–74.PubMedGoogle Scholar
  148. Sato, M. (1986). Acute exacerbation of methamphetamine psychosis and lasting dopaminergic supersensitivity—a clinical survey. Psychopharmacology Bulletin, 22(3), 751–756.PubMedGoogle Scholar
  149. Schuckit, M. A. (1994). The treatment of stimulant dependence. Addiction, 89(11), 1559–1563.PubMedGoogle Scholar
  150. Sekine, Y., Iyo, M., Ouchi, Y., Matsunaga, T., Tsukada, H., Okada, H., et al. (2001). Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. American Journal of Psychiatry, 158(8), 1206–1214.PubMedGoogle Scholar
  151. Sekine, Y., Minabe, Y., Kawai, M., Suzuki, K., Iyo, M., Isoda, H., et al. (2002). Metabolite alterations in basal ganglia associated with methamphetamine-related psychiatric symptoms. A proton MRS study. Neuropsychopharmacology, 27(3), 453–461.PubMedGoogle Scholar
  152. Sekine, Y., Minabe, Y., Ouchi, Y., Takei, N., Iyo, M., Nakamura, K., et al. (2003). Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. American Journal of Psychiatry, 160(9), 1699–1701.PubMedGoogle Scholar
  153. Sekine, Y., Ouchi, Y., Takei, N., Yoshikawa, E., Nakamura, K., Futatsubashi, M., et al. (2006). Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Archives of General Psychiatry, 63(1), 90–100.PubMedGoogle Scholar
  154. Semple, S. J., Patterson, T. L., & Grant, I. (2003). Binge use of methamphetamine among HIV-positive men who have sex with men: Pilot data and HIV prevention implications. AIDS Education and Prevention, 15(2), 133–147.PubMedGoogle Scholar
  155. Semple, S. J., Patterson, T. L., & Grant, I. (2004). A comparison of injection and non-injection methamphetamine-using HIV positive men who have sex with men. Drug and Alcohol Dependence, 76(2), 203–212.PubMedGoogle Scholar
  156. Semple, S. J., Zians, J., Grant, I., & Patterson, T. L. (2005). Impulsivity and methamphetamine use. Journal of Substance Abuse Treatment, 29(2), 85–93.PubMedGoogle Scholar
  157. Shadish, W. R., Robinson, L., & Lu, C. (1999). ES: A computer program and manual for effect size calculation. Minneapolis, MN: Assessment Systems.Google Scholar
  158. Shoptaw, S. (2006). Methamphetamine use in urban gay and bisexual populations. Topics in HIV Medicine, 14(2), 84–87.PubMedGoogle Scholar
  159. Shoptaw, S., Peck, J., Reback, C. J., & Rotheram-Fuller, E. (2003). Psychiatric and substance dependence comorbidities, sexually transmitted diseases, and risk behaviors among methamphetamine-dependent gay and bisexual men seeking outpatient drug abuse treatment. Journal of Psychoactive Drugs, 35(Suppl 1), 161–168.PubMedGoogle Scholar
  160. Silber, B. Y., Croft, R. J., Papafotiou, K., & Stough, C. (2006). The acute effects of d-amphetamine and methamphetamine on attention and psychomotor performance. Psychopharmacology, 187(2), 154–169.PubMedGoogle Scholar
  161. Sim, T., Simon, S. L., Domier, C. P., Richardson, K., Rawson, R. A., & Ling, W. (2002). Cognitive deficits among methamphetamine users with attention deficit hyperactivity disorder symptomatology. Journal of Addictive Diseases, 21(1), 75–89.PubMedGoogle Scholar
  162. Simon, S. L., Dacey, J., Glynn, S., Rawson, R., & Ling, W. (2004). The effect of relapse on cognition in abstinent methamphetamine abusers. Journal of Substance Abuse Treatment, 27(1), 59–66.PubMedGoogle Scholar
  163. Simon, S. L., Domier, C., Carnell, J., Brethen, P., Rawson, R., & Ling, W. (2000). Cognitive impairment in individuals currently using methamphetamine. American Journal on Addictions, 9(3), 222–231.PubMedGoogle Scholar
  164. Simons, J. S., Oliver, M. N., Gaher, R. M., Ebel, G., & Brummels, P. (2005). Methamphetamine and alcohol abuse and dependence symptoms: Associations with affect lability and impulsivity in a rural treatment population. Addictive Behaviors, 30(7), 1370–1381.PubMedGoogle Scholar
  165. Smith, D. E., & Fischer, C. M. (1970). An analysis of 310 cases of acute high-dose methamphetamine toxicity in Haight-Ashbury. Clinical Toxicology, 3(1), 117–124.PubMedCrossRefGoogle Scholar
  166. Soetens, E., Casaer, S., D’Hooge, R., & Hueting, J. E. (1995). Effect of amphetamine on long-term retention of verbal material. Psychopharmacology, 119(2), 155–162.PubMedGoogle Scholar
  167. Srisurapanont, M., Ali, R., Marsden, J., Sunga, A., Wada, K., & Monteiro, M. (2003). Psychotic symptoms in methamphetamine psychotic in-patients. International Journal of Neuropsychopharmacology, 6(4), 347–352.PubMedGoogle Scholar
  168. StataCorp. (2006). Stata Statistical Software: Release 9.2. College Station, TX.Google Scholar
  169. Stuss, D. T., & Alexander, M. P. (2007). Is there a dysexecutive syndrome? Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 362(1481), 901–915.Google Scholar
  170. Substance Abuse and Mental Health Services Administration (2006a). Drug abuse warning network, 2004: National estimates of drug-related emergency department visits (DAWN series D-28, DHHS publication no. SMA 06-4143). Rockville, MD: Office of Applied Studies.Google Scholar
  171. Substance Abuse and Mental Health Services Administration. (2006b). Results from the 2005 national survey on drug use and health: National findings (NSDUH Series H-30, DHHS publication no. SMA 06-4194). Rockville, MD: Office of Applied Studies.Google Scholar
  172. Substance Abuse and Mental Health Services Administration. (2006c). Treatment episode data set (TEDS): 1994–2004 (DASIS series: S-33, DHHS publication no. SMA 064180). Rockville, MD: Office of Applied Studies.Google Scholar
  173. Sung, Y. H., Cho, S. C., Hwang, J., Kim, S. J., Kim, H., Bae, S., et al. (2006). Relationship between N-acetyl-aspartate in gray and white matter of abstinent methamphetamine abusers and their history of drug abuse: A proton magnetic resonance spectroscopy study. Drug and Alcohol Dependence, 88(1), 28–35.PubMedGoogle Scholar
  174. Taylor, M. J., Letendre, S. L., Schweinsburg, B. C., Alhassoon, O. M., Brown, G. G., Gongvatana, A., et al. (2004). Hepatitis C virus infection is associated with reduced white matter N-acetylaspartate in abstinent methamphetamine users. Journal of the International Neuropsychological Society, 10(1), 110–113.PubMedGoogle Scholar
  175. Taylor, M., Schweinsburg, B., Alhassoon, O., Gongvatana, A., Brown, G., Young-Casey, C., et al. (2007). Effects of human immunodeficiency virus and methamphetamine on cerebral metabolites measured with magnetic resonance spectroscopy. Journal of Neurovirology, 13(2), 150–159.PubMedGoogle Scholar
  176. Thompson, P. M., Hayashi, K. M., Simon, S. L., Geaga, J. A., Hong, M. S., Sui, Y., et al. (2004). Structural abnormalities in the brains of human subjects who use methamphetamine. Journal of Neuroscience, 24(26), 6028–6036.PubMedGoogle Scholar
  177. Trevisan, L. A., Boutros, N., Petrakis, I. L., & Krystal, J. H. (1998). Complications of alcohol withdrawal: Pathophysiological insights. Alcohol Health and Research World, 22(1), 61–66.PubMedGoogle Scholar
  178. Troyer, A. K., Moscovitch, M., Winocur, G., Alexander, M. P., & Stuss, D. (1998). Clustering and switching on verbal fluency: The effects of focal frontal- and temporal-lobe lesions. Neuropsychologia, 36(6), 499–504.PubMedGoogle Scholar
  179. Ujike, H., Harano, M., Inada, T., Yamada, M., Komiyama, T., Sekine, Y., et al. (2003). Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenomics Journal, 3(4), 242–247.PubMedGoogle Scholar
  180. Ujike, H., & Sato, M. (2004). Clinical features of sensitization to methamphetamine observed in patients with methamphetamine dependence and psychosis. Annals of the New York Academy of Sciences, 1025, 279–287.PubMedGoogle Scholar
  181. Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Ding, Y. S., Sedler, M., et al. (2001a). Low level of brain dopamine D2 receptors in methamphetamine abusers: Association with metabolism in the orbitofrontal cortex. American Journal of Psychiatry, 158(12), 2015–2021.PubMedGoogle Scholar
  182. Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Franceschi, D., Sedler, M., et al. (2001b). Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. Journal of Neuroscience, 21(23), 9414–9418.PubMedGoogle Scholar
  183. Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Leonido-Yee, M., Franceschi, D., et al. (2001c). Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. American Journal of Psychiatry, 158(3), 377–382.PubMedGoogle Scholar
  184. von Mayrhauser, C., Brecht, M. L., & Anglin, M. D. (2002). Use ecology and drug use motivations of methamphetamine users admitted to substance abuse treatment facilities in Los Angeles: An emerging profile. Journal of Addictive Diseases, 21(1), 45–60.Google Scholar
  185. Voytek, B., Berman, S. M., Hassid, B. D., Simon, S. L., Mandelkern, M. A., Brody, A. L., et al. (2005). Differences in regional brain metabolism associated with marijuana abuse in methamphetamine abusers. Synapse, 57(2), 113–115.PubMedGoogle Scholar
  186. Wagner, G. C., Ricaurte, G. A., Seiden, L. S., Schuster, C. R., Miller, R. J., & Westley, J. (1980). Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Research, 181(1), 151–160.PubMedGoogle Scholar
  187. Wang, G. J., Volkow, N. D., Chang, L., Miller, E., Sedler, M., Hitzemann, R., et al. (2004). Partial recovery of brain metabolism in methamphetamine abusers after protracted abstinence. American Journal of Psychiatry, 161(2), 242–248.PubMedGoogle Scholar
  188. Wiegmann, D. A., Stanny, R. R., McKay, D. L., Neri, D. F., & McCardie, A. H. (1996). Methamphetamine effects on cognitive processing during extended wakefulness. International Journal of Aviation Psychology, 6(4), 379–397.PubMedGoogle Scholar
  189. Wilens, T. E., Prince, J. B., Biederman, J., Spencer, T. J., & Frances, R. J. (1995). Attention-deficit hyperactivity disorder and comorbid substance use disorders in adults. Psychiatric Services, 46(8), 761–763, 765.Google Scholar
  190. Wilson, J. M., Kalasinsky, K. S., Levey, A. I., Bergeron, C., Reiber, G., Anthony, R. M., et al. (1996). Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nature Medicine, 2(6), 699–703.PubMedGoogle Scholar
  191. Woods, S. P., Carey, C. L., Troster, A. I., & Grant, I. (2005a). Action (verb) generation in HIV-1 infection. Neuropsychologia, 43(8), 1144–1151.PubMedGoogle Scholar
  192. Woods, S. P., Conover, E., Rippeth, J. D., Carey, C. L., Gonzalez, R., Marcotte, T. D., et al. (2004). Qualitative aspects of verbal fluency in HIV-associated dementia: A deficit in rule-guided lexical-semantic search processes? Neuropsychologia, 42(6), 801–809.PubMedGoogle Scholar
  193. Woods, S. P., Rippeth, J. D., Conover, E., Gongvatana, A., Gonzalez, R., Carey, C. L., et al. (2005b). Deficient strategic control of verbal encoding and retrieval in individuals with methamphetamine dependence. Neuropsychology, 19(1), 35–43.PubMedGoogle Scholar
  194. Woolverton, W. L., Ricaurte, G. A., Forno, L. S., & Seiden, L. S. (1989). Long-term effects of chronic methamphetamine administration in rhesus monkeys. Brain Research, 486(1), 73–78.PubMedGoogle Scholar
  195. Yen, D. J., Wang, S. J., Ju, T. H., Chen, C. C., Liao, K. K., Fuh, J. L., et al. (1994). Stroke associated with methamphetamine inhalation. European Neurology, 34(1), 16–22.PubMedGoogle Scholar
  196. Yui, K., Ikemoto, S., & Goto, K. (2002). Factors for susceptibility to episode recurrence in spontaneous recurrence of methamphetamine psychosis. Annals of the New York Academy of Sciences, 965, 292–304.PubMedCrossRefGoogle Scholar
  197. Zaczek, R., Culp, S., & De Souza, E. B. (1990). Intrasynaptosomal sequestration of [3H]amphetamine and [3H]methylenedioxyamphetamine: Characterization suggests the presence of a factor responsible for maintaining sequestration. Journal of Neurochemistry, 54(1), 195–204.PubMedGoogle Scholar
  198. Zweben, J. E., Cohen, J. B., Christian, D., Galloway, G. P., Salinardi, M., Parent, D., et al. (2004). Psychiatric symptoms in methamphetamine users. American Journal on Addictions, 13(2), 181–190.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. Cobb Scott
    • 1
  • Steven Paul Woods
    • 2
    • 4
  • Georg E. Matt
    • 3
  • Rachel A. Meyer
    • 2
  • Robert K. Heaton
    • 2
  • J. Hampton Atkinson
    • 2
  • Igor Grant
    • 2
  1. 1.Joint Doctoral Program in Clinical PsychologySan Diego State University and University of CaliforniaSan DiegoUSA
  2. 2.Department of Psychiatry (0847), School of MedicineUniversity of CaliforniaSan Diego, La JollaUSA
  3. 3.Department of PsychologySan Diego State UniversitySan DiegoUSA
  4. 4.HIV Neurobehavioral Research Center, Department of Psychiatry (0847)University of California, San DiegoSan DiegoUSA

Personalised recommendations