Neuropsychology Review

, Volume 17, Issue 2, pp 127–143 | Cite as

Use of Functional Magnetic Resonance Imaging in the Early Identification of Alzheimer's Disease

Original Paper

Abstract

A growing body of evidence suggests that a preclinical phase of Alzheimer's disease (AD) exists several years or more prior to the overt manifestation of clinical symptoms and is characterized by subtle neuropsychological and brain changes. Identification of individuals prior to the development of significant clinical symptoms is imperative in order to have the greatest treatment impact by maintaining cognitive abilities and preserving quality of life. Functional magnetic resonance imaging (fMRI) offers considerable promise as a non-invasive tool for detecting early functional brain changes in asymptomatic adults. In fact, evidence to date indicates that functional brain decline precedes structural decline in preclinical samples. Therefore, fMRI may offer the unique ability to capture the dynamic state of change in the degenerating brain. This review examines the clinical utility of blood oxygen level dependent (BOLD) fMRI in those at risk for AD as well as in early AD. We provide an overview of fMRI findings in at-risk groups by virtue of genetic susceptibility or mild cognitive decline followed by an appraisal of the methodological issues concerning the diagnostic usefulness of fMRI in early AD. We conclude with a discussion of future directions and propose that BOLD-fMRI in combination with cerebral blood flow or diffusion techniques will provide a more complete accounting of the neurovascular changes that occur in preclinical AD and thus improve our ability to reliably detect early brain changes prior to disease onset.

Keywords

BOLD-fMRI Preclinical Alzheimer's disease APOE ε4 Mild cognitive impairment Arterial spin labeling Cerebral blood perfusion 

Notes

Acknowledgments

This work was supported by NIH R01 AG12674 and P50 AG05131. The authors thank Nikki Horne, Thomas Liu, and Khalid Restom for their invaluable assistance in conducting the case example.

References

  1. Albert, M. S., Moss, M. B., Tanzi, R., & Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7, 631–639.PubMedCrossRefGoogle Scholar
  2. Backman, L., Andersson, J. L., Nyberg, L., Winblad, B., Nordberg, A., & Almkvist, O. (1999). Brain regions associated with episodic retrieval in normal aging and Alzheimer's disease. Neurology, 52, 1861–1870.PubMedGoogle Scholar
  3. Bangen, K. J., Restom, K., Liu, T. T., Jak, A. J., Han, S. D., Fleisher, A. S., Salmon, D. P., Thal, L. J., & Bondi, M. W. (2006). Hippocampal perfusion during picture encoding: A comparison between younger and older adults. Human Brain Mapping (abstract).Google Scholar
  4. Bassett, S. S., Yousem, D. M., Cristinziio, C., Kusevic, I., Yassa, M. A., Caffo, B. S., & Zeger, S. L. (2006). Familial risk for Alzheimer's disease alters fMRI activation patterns. Brain, 129, 1229–1239.PubMedCrossRefGoogle Scholar
  5. Baxter L. C., Sparks D. L., Johnson S. C., Lenoski B., Lopez J. E., Connor D. J., & Sabbagh M. N. (2006). Relationship of cognitive measures and gray and white matter in Alzheimer's disease. Journal of Alzheimers Disorder, 9, 253–260.Google Scholar
  6. Becker, J. T., Mintun, M. A., Aleva, K., Wiseman, M. B., Nichols, T., & DeKosky, S. T. (1996). Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer's disease. Neurology, 46, 692–700.PubMedGoogle Scholar
  7. Bentourkia, M., Bol, A., Ivanoiu, A., Labar, D., Sibomana, M., Coppens, A., Michel, C., Cosnard, G., & De Volder, A. G. (2000). Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: Effect of aging. Journal of Neurological Sciences, 181, 19–28.CrossRefGoogle Scholar
  8. Blackwell, A. D., Sahakian, B. J., Vessey, R., Semple, J. M., Robbins, T. W., & Hodges, J. R. (2004). Detecting dementia: Novel neuropsychological markers of preclinical Alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 17, 42–48.PubMedCrossRefGoogle Scholar
  9. Bondi, M. W., Houston, W. W., Eyler, L. T., & Brown, G. G. (2005). fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer's disease. Neurology, 64, 501–508.PubMedGoogle Scholar
  10. Bondi, M. W., Monsch, A. U., Galasko, D., Butters, N., Salmon, D. P., & Delis, D. C. (1994). Preclinical cognitive markers of dementia of the Alzheimer type. Neuropsychology, 8, 374–384.CrossRefGoogle Scholar
  11. Bondi, M. W., Salmon, D. P., Galasko, D., Thomas, R. G., & Thal, L. J. (1999). Neuropsychological function and apolipoprotein E genotype in the preclinical detection of Alzheimer's disease. Psychology and Aging, 14, 295–303.PubMedCrossRefGoogle Scholar
  12. Bookheimer, S. Y., Strojwas, M. H., Cohen, M. S., Saunders, A. M., Pericak-Vance, M. A., Mazziotta, J. C., & Small, G. W. (2000). Patterns of brain activation in people at risk for Alzheimer's disease. New England Journal of Medicine, 343, 450–456.PubMedCrossRefGoogle Scholar
  13. Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82, 239–259.PubMedCrossRefGoogle Scholar
  14. Brewer, J. B., & Moghekar, A. (2002). Imaging the medial temporal lobe: Exploring new dimensions. Trends in Cognitive Science, 6, 217–223.CrossRefGoogle Scholar
  15. Brown, G. G., Perthen, J., Liu, T. T., & Buxton, R. (2007). A primer on functional magnetic resonance imaging. Neuropsychology Review.Google Scholar
  16. Buckner, R. L., Snyder, A. Z., Sanders, A. L., Raichle, M. E., & Morris, J. C. (2000). Functional brain imaging of young, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 12(Suppl 2), 24–34.PubMedCrossRefGoogle Scholar
  17. Burggren, A. C., Small, G. W., Sabb, F. W., & Bookheimer, S. Y. (2002). Specificity of brain activation patterns in people at genetic risk for Alzheimer disease. American Journal of Geriatric Psychiatry, 10, 44–51.PubMedCrossRefGoogle Scholar
  18. Buxton, R. B., Uludag, K., Dubowitz, D. J., & Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. Neuroimage, 23(Suppl 1), S220–33.PubMedCrossRefGoogle Scholar
  19. Caselli, R. J., Reiman, E. M., Osborne, D., Hentz, J. G., Baxter, L. C., Hernandez, J. L., & Alexanter, G. G. (2004). Longitudinal changes in cognition and behavior in asymptomatic carriers of the APOE e4 allele. Neurology, 62, 1990–1995.PubMedGoogle Scholar
  20. Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., DePeau, K., Rentz, D. M., Selkoe, D. J., Blacker, D., Albert, M. S., & Sperling, R. A. (2006). Journal of Neuroscience, 26, 10222–10231.PubMedCrossRefGoogle Scholar
  21. Claus, J. J., Breteler, M. M., Hasan, D., Krenning, E. P., Bots, M. L., Grobbee, D. E., Van Swieten, J. C., Van Harskamp, F., & Hofman, A. (1998). Regional cerebral blood flow and cerebrovascular risk factors in the elderly population. Neurobiology of Aging, 19, 57–64.PubMedCrossRefGoogle Scholar
  22. Collie, A., & Maruff, P. (2000). The neuropsychology of preclinical Alzheimer's disease and mild cognitive impairment. Neuroscience and Biobehavioral Reviews, 24, 365–374.PubMedCrossRefGoogle Scholar
  23. Corkin, S., Kennedy, A. M., Bucci, J., et al. (1997). Relation between recognition performance and fMRI data in Alzheimer's disease and older normal subjects. Society for Neuroscience, 23, 193–195.Google Scholar
  24. Davis, T. L., Kwong, K. K., Weisskoff, R. M., & Rosen, B. R. (1998). Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proceedings of the National Academy of Sciences, USA, 95, 1834–1839.CrossRefGoogle Scholar
  25. Delano-Wood, L., Bozoki, A., & Abeles, N. (2006). Evidence for heterogeneity in mild cognitive impairment: Differences in neuropsychological profile and associated white matter lesion pathology. International Neuropsychological Society (published abstract).Google Scholar
  26. Delano-Wood, L., Jak, A. J., Schweinsburg, B. C., Wierenga, C. E., Horne, N. R., Salmon, D. P., Thal, L. J., Frank, L. R., & Bondi, M. W. (2007). Posterior white matter changes in MCI: Associations with cognition and stroke risk. Journal of the International Neuropsychological Society (abstract).Google Scholar
  27. Desgranges, B., Baron, J. D., de la Sayette, V., Petit-Taboue, M. C., Benali, K., Landeau, B., Lechevalier, B., & Eustache, F. (1998). The neural substrates of memory systems impairment in Alzheimer's disease. A PET study of resting brain glucose utilization. Brain, 121, 611–631.PubMedCrossRefGoogle Scholar
  28. D’Esposito, M., Deouell, L. Y., & Gazzaley, A. (2003). Alterations in the BOLD-fMRI signal with ageing and disease: A challenge for neuroimaging. Nature Reviews Neuroscience, 4, 863–72.PubMedCrossRefGoogle Scholar
  29. Devanand, D. P., Pelton, G. H., Zamora, D., Liu, X., Tabert, M. H., Goodkind, M., Scarmeas, N., Braun, I., Stern, Y., & Mayeux, R. (2005). Predictive utility of apolipoprotein E genotype for Alzheimer disease in outpatients with mild cognitive impairment. Archives of Neurology, 62, 975–980.PubMedCrossRefGoogle Scholar
  30. Devi, G., Ottman, R., Tang, M. X., Marder, K., Stern, Y., & Mayeux, R. (2000). Familial aggregation of Alzheimer disease among whites, African Americans, and Caribbean Hispanics in northern Manhattan. Archives of Neurology, 57, 72–77.PubMedCrossRefGoogle Scholar
  31. Dickerson, B. C., Salat, D. H., Bates, J. F., Atiya, M., Killiany, R. J., Greve, D. N., Dale, A. M., Stern, C. E., Blacker, D., Albert, M. S., & Sperling, R. A. (2004). Medial temporal lobe function and structure in mild cognitive impairment. Annals of Neurology, 56, 27–35.PubMedCrossRefGoogle Scholar
  32. Dickerson, B. C., Salat, D. H., Greve, D. N., Chua, E. F., Rand-Giovannetti, E., Rentz, D. M., Bertram, L., Mullin, K., Tanzi, R. E., Blacker, D., Albert, M. S., & Sperling, R. A. (2005). Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology, 65, 404–411.PubMedCrossRefGoogle Scholar
  33. Dickerson, B. C., & Sperling, R. A. (2005). Neuroimaging biomarkers for clinical trials of disease-modifying therapies in Alzheimer's disease. NeuroRx, 2, 348–360.PubMedCrossRefGoogle Scholar
  34. Edison, P., Archer, H. A., Hinz, R., Hammers, A., Pavese, N., Tai, Y. F., Hotton, G., Cutler, D., Fox, N., Kennedy, A., Rossor, M., & Brooks, D. J. (2007). Amyloid, hypometabolism, and cognition in Alzheimer disease: An [11C]PIB and [18F]FDG PET study. Neurology, 68, 501–508.PubMedCrossRefGoogle Scholar
  35. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B., & Weinberger, D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.PubMedCrossRefGoogle Scholar
  36. Festa, E. K., Insler, R. Z., Salmon, D. P., Paxton, J., Hamilton, J. M., & Heindel, W. C. (2005). Neocortical disconnectivity disrupts sensory integration in Alzheimer's disease. Neuropsychology, 19, 728–738.PubMedCrossRefGoogle Scholar
  37. Filbey, F. M., Slack, K. J., Sunderland, T. P., & Cohen, R. M. (2006). Functional magnetic resonance imaging and magnetoencephalography differences associated with APOE epsilon 4 in young healthy adults. Neuroreport, 17, 1585–1590.PubMedCrossRefGoogle Scholar
  38. Fleisher, A. S., Houston, W. S., Eyler, L. T., Frye, S., Jenkins, C., Thal, L. J., & Bondi, M. W. (2005). Identification of Alzheimer disease risk by functional magnetic resonance imaging. Archives of Neurology, 62, 1881–1888.PubMedCrossRefGoogle Scholar
  39. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1976). ‘Mini-mental State.’ A practical method for grading the cognitive status of patients for the clinician. Journal of Psychiatry Research, 12, 189–198.CrossRefGoogle Scholar
  40. Fratiglioni, L. (1993). Epidemiology of Alzheimer's disease. Issues of etiology and validity. Acta Neurologica Scandinavia Supplement, 145, 1–70.Google Scholar
  41. Frisoni, G. B. (2007). Dementia: Important advances in research in 2006. Lancet Neurology, 6, 4–5.PubMedCrossRefGoogle Scholar
  42. Frisoni, G. B., Scheltens, P., Galluzzi, S., Nobili, F. M., Fox, N. C., Robert, P. H., Soininen, H., Wahlund, L-O, Waldemar, G., & Salmon, E. (2006). Neuroimaging tools to rate regional atrophy, subcortical cerebrovascular disease, and regional cerebral blood flow and metabolism: Consensus paper of the EADC. Journal of Neurology, Neurosurgery, and Psychiatry, 74, 1371–1381.CrossRefGoogle Scholar
  43. Golay, X., Hendrikse, J., & Lim, T. C. (2004). Perfusion Imaging Using Arterial Spin Labeling. Topics in Magnetic Resonance Imaging, 15, 10–27.PubMedCrossRefGoogle Scholar
  44. Golby, A., Silverberg, F., Race, E., Gabrieli, S., O’Shea, J., Knierim, K., Stebbins, G., & Gabrieli, J. (2005). Memory encoding in Alzheimer's disease: An fMRI study of explicit and implicit memory. Brain, 128, 773–787.PubMedCrossRefGoogle Scholar
  45. Gopinath, K., Wierenga, C. E., Conway, T., Crosson, B., & Briggs, R. (2006). Differential BOLD hemodynamics in young and elderly: Emphasis on post-stimulus undershoot. Proceedings of the International Society for Magnetic Resonance in Medicine, 14.Google Scholar
  46. Gould, R. L., Brown, R. G., Owen, A. M., Bullmore, E. T., Williams, S. C. R., & Howard, R. J. (2005). Functional neuroanatomy of successful paired associate learning in Alzheimer's disease. American Journal of Psychiatry, 162, 2049–2060.PubMedCrossRefGoogle Scholar
  47. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Science, USA, 100, 253–258.CrossRefGoogle Scholar
  48. Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences, USA, 101, 4637–4642.CrossRefGoogle Scholar
  49. Grober, E., & Kawas, C. (1997). Learning and retention in preclinical and early Alzheimer's disease. Psychology and Aging, 12, 183–188.PubMedCrossRefGoogle Scholar
  50. Gron, G., & Riepe, M. W. (2004). Neural basis for the cognitive continuum in episodic memory from health to Alzheimer disease. American Journal of Geriatric Psychiatry, 12, 648–652.PubMedCrossRefGoogle Scholar
  51. Grossman, M., Koenig, P., Glosser, G., DeVita, C., Moore, P., Rhee, J., Detre, J., Alsop, D., & Gee, J. (2003). Neural basis for semantic memory difficulty in Alzheimer's disease: An fMRI study. Brain, 126, 292–311.PubMedCrossRefGoogle Scholar
  52. Guye, M., Parker, G. J., Symms, M., Boulby, P., Wheeler-Kingshott, C. A., Salek-Haddadi, A., Barker, G. J., & Duncan, J. S. (2003). Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. NeuroImage, 19, 1349–13460.PubMedCrossRefGoogle Scholar
  53. Hamalainen, A., Pihlajamaki, M., Tanila, H., Hanninen, T., Niskanen, E., Tervo, S., Karjalainen, P. A., Vanninen, R. L., & Soininen, H. (2006). Increased fMRI responses during encoding in mild cognitive impairment. Neurobiology of Aging [Epub ahead of print].Google Scholar
  54. Han, S. D., Drake, A. I., Cessante, L. M., Jak, A. J., Houston, W. S., Delis, D. C., Filoteo, J. V., & Bondi, M. W. (2007). APOE and TBI in a U.S. military population: Evidence of a neuropsychological compensatory mechanism? Journal of Neurology, Neurosurgery & Psychiatry [Epub ahead of print].Google Scholar
  55. Han, S. D., Houston, W. S., Jak, A. J., Eyler, L. T., Nagel, B. J., Fleisher, A. S., Brown, G. G., Corey-Bloom, J., Salmon, D. P., Thal, L. J., & Bondi, M. W. (2006). Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemisphere compensatory response. Neurobiology of Aging [Epub ahead of print].Google Scholar
  56. Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., & Weinberger, D. R. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience, 23, 6690–6694.PubMedGoogle Scholar
  57. Hoge, R. D., Atkinson, J., Gill, B., Crelier, G. R., Marrett, S., & Pike, G. B. (1999) Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proceedings of the National Academy of Sciences, USA, 96(16), 9403–9408.CrossRefGoogle Scholar
  58. Houston, W. S., Delis, D. C., Lansing, A., Cobell, C., Jacobson, M., Salmon, D. P., & Bondi, M. W. (2005). Executive function asymmetry in older adults genetically at risk for Alzheimer's disease: Verbal versus design fluency. Journal of the International Neuropsychological Society, 11, 863–870.PubMedCrossRefGoogle Scholar
  59. Huang, W., Qui, C., von Strauss, E., Winblad, B., Fratiglioni, L. (2004). APOE genotype, family history of dementia, and Alzheimer disease risk: A 6-year follow-up study. Archives of Neurology, 61, 1930–1934.PubMedCrossRefGoogle Scholar
  60. Hyder, F. (2004). Neuroimaging with calibrated fMRI. Stroke, 35(11 Suppl 1), 2635–2641.PubMedCrossRefGoogle Scholar
  61. Jacobs, D. M., Sano, M., Dooneief, G., Marder, K., Bell, K. L., & Stern, Y. (1995). Neuropsychological detection and characterization of preclinical Alzheimer's disease. Neurology, 45, 957–962.PubMedGoogle Scholar
  62. Jacobson, M. W., Delis, D. C., Lansing, A., Houston, W. S., Olsen, R., Wetter, S., Bondi, M. W., & Salmon, D. P. (2005a). Asymmetries in global and local processing in elderly with the APOE ε4 allele. Neuropsychology, 19, 822–829.PubMedCrossRefGoogle Scholar
  63. Jacobson, M., Delis, D. C., Bondi, M. W., & Salmon, D. P. (2005b). Asymmetry in auditory and spatial attention span in normal elderly genetically at risk for Alzheimer's disease. Journal of Clinical and Experimental Neuropsychology, 27, 240–253.PubMedCrossRefGoogle Scholar
  64. Jacobson, M., Delis, D. C., Bondi, M. W., & Salmon, D. P. (2002). Do neuropsychological tests detect preclinical Alzheimer's disease: Individual-test versus cognitive-discrepancy score analysis. Neuropsychology, 16, 132–139.PubMedCrossRefGoogle Scholar
  65. Johnson, S. C., Baxter, L. C., Susskind-Wilder, L., Connor, D. J., Sabbagh, M. N., & Caselli, R. J. (2004). Hippocampal adaptation to face repetition in healthy elderly and mild cognitive impairment. Neuropsychologia, 42, 980–989.PubMedCrossRefGoogle Scholar
  66. Johnson, S. C., Saykin, A. J., Baxter, L. C., Flashman, L. A., Santulli, R. B., McAllister, T. W., & Mamourian, A. C. (2000). The relationship between fMRI activation and cerebral atrophy: Comparison of normal aging and Alzheimer disease. Neuroimage, 11, 179–187.PubMedCrossRefGoogle Scholar
  67. Johnson, S. C., Schmitz, T. W., Trivedi, M. A., Ries, M. L., Torgerson, B., Carlsson, C., Asthana, S., Hermann, B., & Sager, M. A. (2006). The influence of Alzheimer disease family history and APOE e4 on mesial temporal lobe activation. Journal of Neuroscience, 26, 6069–6076.PubMedCrossRefGoogle Scholar
  68. Jorm, A. F., Mather, K. A., Butterworth, P., Anstey, K. J., Christensen, H., & Easteal, S. (2007). APOE genotype and cognitive functioning in a large age-stratified population sample. Neuropsychology, 21, 1–8.PubMedCrossRefGoogle Scholar
  69. Kantarci, K., Petersen, R. C., Boeve, B. F., Knopman, D. S., Weigand, S. D., O’Brien, P. C., Shiung, M. M., Smith, G. E., Ivnik, R. J., Tangalos, E. G., & Jack, C. R. (2005). DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology, 64, 902–904.PubMedGoogle Scholar
  70. Kato, T., Knopman, D., & Liu, H. Y. (2001). Dissociation of regional activation in mild AD during visual encoding —a functional MRI study. Neurology, 57, 812–816.PubMedGoogle Scholar
  71. Kawamura, J., Terayma, Y., Takashima, S., Obara, K., Pavol, M. A., Meyer, J. S., Mortel, K. F., & Weathers, S. (1993). Leuko-araiosis and cerebral perfusion in normal aging. Experimental Aging Research, 19, 225–240.PubMedGoogle Scholar
  72. Kawas, C., & Katzman, R. (1999). The epidemiology of dementia and Alzheimer disease. In R. D. Terry, R. Katzman, K. L. Bick, & S. S. Sisodia (Eds.), Alzheimer disease (2nd edn.). New York: Raven Press.Google Scholar
  73. Knopman, D. S., DeKosky, S. T., Cummings, J. L., Chui, H., Corey-Bloom, J., Relkin, N., Small, G. W., Miller, B., & Stevens, J. C. (2001). Practice parameter: Diagnosis of dementia (an evidence-based review). Neurology, 56, 1143–1153.PubMedGoogle Scholar
  74. Lange, K. L., Bondi, M. W., Galasko, D. G., Delis, D. C., Salmon, D. P., & Thal, L. J. (2002). Decline in verbal memory during preclinical Alzheimer's disease: Examination of the effect of Apolipoprotein E genotype. Journal of the International Neuropsychological Society, 8, 943–955.PubMedCrossRefGoogle Scholar
  75. La Rue, A., Matsuyama, S. S., McPherson, S., Sherman, J., & Jarvik, L. F. (1992). Cognitive performance in relatives of patients with probable Alzheimer's disease: An age at onset effect? Journal of Clinical and Experimental Neuropsychology, 14, 533–538.PubMedGoogle Scholar
  76. Levy, J. A., Bergeson, J., Putnam, K., Rosen, V., Cohen, R., Lalonde, F., Mirza, N., Linker, G., & Sunderland, T. (2004). Context-specific memory and apolipoprotein E (ApoE) e4: Cognitive evidence from the NIMH prospective study of risk for Alzheimer's disease. Journal of the International Neuropsychological Society, 10, 362–370.PubMedCrossRefGoogle Scholar
  77. Li, S. C., & Lindenberger U. (1999). Cross-level unification: A computational exploration of the link between deterioration of neurotransmitter systems dedifferentiation of cognitive abilities in old age (pp. 103–146). In L. G. Nilsson & H. J. Markowitsch (Eds.), Cognitive neuroscience of memory. Seattle, WA: Hogrefe & Huber.Google Scholar
  78. Lind, J., Ingvar, M., Persson, J., Sleegers, K., Van Broeckhoven, C., Adolfsson, R., Nilsson, L-G., & Nyberg, L. (2006a). Parietal cortex activation predicts memory decline in apolipoprotein E e4 carriers. NeuroReport, 17, 1683–1686.PubMedCrossRefGoogle Scholar
  79. Lind, J., Persson, J., Ingvar, M., Larsson, A., Cruts, M., Van Broeckhoven, C., Adolfsson, R., Backman, L., Nilsson, L-G., Petersson, K. M., & Nyberg, L. (2006b). Reduced functional brain activity response in cognitively intact apolipoprotein E e4 carriers. Brain, 129, 1240–1248.PubMedCrossRefGoogle Scholar
  80. Lustig, C., Snyder, A. Z., Ghakta, M., O’Brien, K. C., McAvoy, M., Raichle, M. E., Morris, J. C., & Buckner, R. L. (2003). Functional deactivations: Change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences, USA, 100, 14505–14509.CrossRefGoogle Scholar
  81. Machulda, M. M., Ward, H. A., Borowski, B., Gunter, J. L., Cha, R. H., O’Brien, P. C., Petersen, R. C., Boeve, B. F., Knopman, D., Tang-Wai, D. F., Ivnik, R. J., Smith, G. E., Tangalos, E. G., & Jack, C. R. (2003). Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients. Neurology, 61, 500–506.PubMedGoogle Scholar
  82. Madden, D. J., Spaniol, J., Whiting, W. L., Bucor, B., Provenzale, J. M., Cabeza, R., White, L. E., & Huttel., S. A. (2006). Adult age differences in the functional neuroanatomy of visual attention: A combined fMRI and DTI study. Neurobiology of Aging, 28, 457–476.Google Scholar
  83. Markus, H., & Cullinane, M. (2001). Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain, 124, 457–467.PubMedCrossRefGoogle Scholar
  84. Masdeu, J. C., Zubieta, J. L., & Arbizu, J. (2005). Neuroimaging as a marker of the onset and progression of Alzheimer's disease. Journal of the Neurological Sciences, 236, 55–64.PubMedCrossRefGoogle Scholar
  85. Matsuda, H. (2001). Cerebral blood flow and metabolic abnormalities in Alzheimer's disease. Annals of Nuclear Medicine, 15, 85–92.PubMedCrossRefGoogle Scholar
  86. Mayeux, R., & Sano, M. (1999). Treatment of Alzheimer's disease. New England Journal of Medicine, 341, 1670–1679.PubMedCrossRefGoogle Scholar
  87. Medina, D., de T.-M., Urresta, F., Gabrieli, J. D. E., Moseley, M., Fleischman, D., Bennett, D. A., Leurgans, S., Turner, D. A., & Stebbins, G. T. (2006). White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neurobiology of Aging, 27, 663–672.PubMedCrossRefGoogle Scholar
  88. Mondadori, C. R. A., Buchmann, A., Mustovic, H., Schmidt, C. F., Boesiger, P., Nitsch, R. M., Hock, C., Streffer, J., & Henke, K. (2006a). Enhanced brain activity may precede the diagnosis of Alzheimer's disease by 30 years. Brain, 129, 2908–2922.PubMedCrossRefGoogle Scholar
  89. Mondadori, C. R. A., de Quervain, D.J-F., Buchmann, A., Mustovic, H., Wollmer, M. A., Schmidt, C. F., Boesiger, P., Hock, C., Nitsch, R. M., Papassotiropoulos, A., & Henke, K. (2006b). Better memory and neural efficiency in young apolipoprotein E e4 carriers. Cerebral Cortex [Epub ahead of print].Google Scholar
  90. Mosconi, L., Brys, M., Glodzik-Sobanska, L., De Santi, S., Rusinek, H., & de Leon, M. J. (in press). Early detection of Alzheimer's disease using neuroimaging. Experimental Gerontology.Google Scholar
  91. Muller, M. J., Greverus, D., Weibrich, C., Dellani, P. R., Scheurich, A., Stoeter, P., & Fellgiebel, A. (2007). Diagnostic utility of hippocampal size and mean diffusivity in amnestic MCI. Neurobiology of Aging, 28, 398–403.Google Scholar
  92. Pariente, J., Cole, S., Henson, R., Clare, L., Kennedy, A., Rossor, M., Cipoloti, L., Puel, M., Demonet, J. F., Chollet, F., & Frackowiak, R. S. J. (2005). Alzheimer's patients engage an alternative network during a memory task. Annals of Neurology, 58, 870–879.PubMedCrossRefGoogle Scholar
  93. Peck, K. K., Wierenga, C. E., Bacon Moore, A., Maher, L., Gopinath, K., Gaiefsky, M., Briggs, R. W., & Crosson, B. (2004). Comparison of baseline conditions to investigate syntactic production using functional magnetic resonance imaging. NeuroImage, 23, 104–110.PubMedCrossRefGoogle Scholar
  94. Persson, J., Lind, J., Larsson, A., Ingvar, M., Cruts, M., Van Broeckhoven, C., Adolfsson, R., Nilsson, L. G., & Nyberg, L. (2006). Altered brain white matter integrity in healthy carriers of the APOE epsilon4 allele: a risk for AD? Neurology, 66, 1029–1033.PubMedCrossRefGoogle Scholar
  95. Petersen, R. C. (2006). Mild cognitive impairment: Where are we? Alzheimer Disease Association Dis, 19, 166–169.CrossRefGoogle Scholar
  96. Petersen, R. C., & Morris, J. C. (2005). Mild cognitive impairment as a clinical entity and treatment target. Archives of Neurology, 62, 1160–1166.PubMedCrossRefGoogle Scholar
  97. Petersen, R. C., Smith, G., Ivnik, R. J., Tangalos, E. G., Schaid, D. J., Thibodeau, S. N., Kokmen, E., Waring, S. C., & Kurland, L. T. (1995). APOE status as a predictor of the development of Alzheimer's disease in memory-impaired individuals. Journal of the American Medical Association, 273, 1274–1278.PubMedCrossRefGoogle Scholar
  98. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56, 303–308.PubMedCrossRefGoogle Scholar
  99. Petrella, J. R., Coleman, R. E., & Doraiswamy, P. M. (2003). Neuroimaging and early diagnosis of Alzheimer disease: A look to the future. Radiology, 226, 315–336.PubMedCrossRefGoogle Scholar
  100. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, USA, 98, 676–682.Google Scholar
  101. Rajah, M. N., & D’Esposito, M. (2005). Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain, 128(Pt 9), 1964–1983.PubMedCrossRefGoogle Scholar
  102. Reiman, E. M., Caselli, R. J., Yun, L. S., Chen, K., Bandy, D., Minoshima, S., Thibodeau, S. N., & Osborne, D. (1996). Preclinical evidence of Alzheimer's disease in persons homozygous for the e4 allele for apolipoprotein E. The New England Journal of Medicine, 334, 752–758.PubMedCrossRefGoogle Scholar
  103. Reiman, E. M., Chen, K., Alexander, G. E., Caselli, R. J., Bandy, D., Osborne, D., Saunders, A. M., & Hardy, J. (2004). Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proceedings of the National Academy of Sciences, USA, 101, 284–289.Google Scholar
  104. Reiman, E. M., Chen, K., Alexander, G. E., Caselli, R. J., Bandy, D., Osborne, D., Saunders, A. M., & Hardy, J. (2005). Correlations between apolipoprotein E e4 gene dose and brain-imaging measurements of regional hypometabolism. Proceedings of the National Academy of Sciences, USA, 102, 8299–8302.CrossRefGoogle Scholar
  105. Reiman, E. M., Uecker, A., Caselli, R. J., Lewis, S., Bandy, D., de Leon, M. J., De Santi, S., Convit, A., Osborne, D., Weaver, A., & Thibodeau, S. N. (1998). Hippocampal volumes in cognitively normal persons at genetic risk for Alzheimer's disease. Annals of Neurology, 44, 288–291.PubMedCrossRefGoogle Scholar
  106. Restom, K., Perthen, J. E., Ances, B. M., & Liu, T. T. (2007). Calibrated BOLD in the medial temporal lobe during a memory encoding task. Proceedings of the International Society for Magnetic Resonance in Medicine (abstract).Google Scholar
  107. Roberts, W., Dember, W. N., & Brodwick, M. (1962). Alternation and exploration in rats with hippocampal lesions. Journal of Computational and Physiological Psychology, 55, 695.CrossRefGoogle Scholar
  108. Rombouts, S. A. R. B., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005a). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study. Human Brain Mapping, 26, 231–239.PubMedCrossRefGoogle Scholar
  109. Rombouts S.A.R.B., Barkhof, F., Veltman, D. J., Machielsen, W. C. M., Witter, M. P., Bierlaagh, M. A., Lazeron, R. H. C., Valk, J., & Scheltens, P. (2000). Functional MR imaging in Alzheimer's disease during memory encoding. American Journal of Neuroradiology, 21, 1869–1875.PubMedGoogle Scholar
  110. Rombouts, S. A. R. B., Goekoop, R., Stam, C. J., Barkhof, F., & Scheltens, P. (2005b). Delayed rather than decreased BOLD response as a marker for early Alzheimer's disease. Neuroimage, 26, 1078–1085.PubMedCrossRefGoogle Scholar
  111. Rose, S. E., McMahon, K. L., Janke, A. L., O’Dowd, B., de Zubicaray, G., Strudwick, M. W., & Chalk, J. B. (2006). MRI diffusion indices and neuropsychological performance in amnestic mild cogntive impairment. Journal of Neurology Neurosurgery and Psychiatry, 77, 1122–1128.Google Scholar
  112. Sager, M. A., Hermann, B., & La Rue, A. (2005). Middle-aged children of persons with Alzheimer's disease: APOE genotypes and cognitive function in the Wisconsin Registry for Alzheimer's Prevention. Journal of Geriatric Psychiatry and Neurology, 18, 245–249.PubMedCrossRefGoogle Scholar
  113. Salmon, D. P., & Bondi, M. W. (2008). Neuropsychology of aging and dementia. Annual Review of Psychology.Google Scholar
  114. Saunders, A. M., Strittmatter, W. J., Schmechel, D., St. George-Hyslop, P. H., Perick-Vance, M. A., Joo, S. H., Rosi, B. L., Gusella, J. F., Crapper-MacLachlan, D. R., Alberts, M. J., Hulette, C., Crain, B., Goldgaber, D., & Roses, A. D. (1993). Association of apolipoprotein E allele e4 with late-onset familial and sporadic Alzheimer's disease. Neurology, 43, 1467–1472.PubMedGoogle Scholar
  115. Saykin, A. J., Flashman, L. A., Frutiger, S. A., Johnson, S. C., Mamourian, A. C., Moritz, C. H., O’Jile, J. R., Riordan, H. J., Santulli, R. B., Smith, C. A., & Weaver, J. B. (1999). Neuroanatomic substrates of semantic memory impairment in Alzheimer's disease: Patterns of functional MRI activation. Journal of the International Neuropsychological Society, 5, 377–392.PubMedCrossRefGoogle Scholar
  116. Slooter, A. J. C., Breteler, M. M. B., Ott, A., Van Broeckhoven, C., & Van Duijn, C. M. (1996). APOE genotyping in differential diagnosis of Alzheimer's disease. The Lancet, 348, 334.CrossRefGoogle Scholar
  117. Small, G. W., Ercoli, L. M., Silverman, D. H., Huang, S. C., Komo, S., Bookheimer, S. Y., Lavretsky, H., Miller, K., Siddarth, P., Rasgon, N. L., Mazziotta, J. C., Sexena, S., Wu, H. M., Mega, M. S., Cummings, J. L., Saunders, A. M., Pericak-Vance, M. A., Roses, A. D., Barrio, J. R., & Phelps, M. E. (2000a). Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proceedings of the National Academy of Science, USA, 97, 6037–6042.Google Scholar
  118. Small, S. A., Nava, A. S., Perera, G. M., Delapaz, R., & Stern, Y. (2000b). Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer's disease and aging. Microscopy Research and Technique, 51, 101–108.PubMedCrossRefGoogle Scholar
  119. Small, G. W., Kepe, V., Ercoli, L. M., Siddarth, P., Bookheimer, S. Y., Miller, K. J., Lavretsky, H., Burggren, A. C., Cole, G. M., Vinters, H. V., Thompson, P. M., Huang, S. C., Satyamurthy, N., Phelps, M. E., & Barrio, J. R. (2006). PET of brain amyloid and tau in mild cognitive impairment. New England Journal of Medicine, 21, 2652–2663.CrossRefGoogle Scholar
  120. Small, S. A., Perera, G. M., DeLaPaz, R., Mayeux, R., & Stern, Y. (1999). Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer's disease. Annals of Neurology, 45, 466–472.PubMedCrossRefGoogle Scholar
  121. Smith, C. D., Andersen, A. H., Kryscio, R. J., Schmitt, F. A., Kindy, M. S., Blonder, L. X., & Avison, M. J. (1999). Altered brain activation in cognitively intact individuals at high risk for Alzheimer's disease. Neurology, 53, 1391–1396.PubMedGoogle Scholar
  122. Smith, C. D., Andersen, A. H., Kryscio, R. J., Schmitt, F. A., Kindy, M. S., Blonder, L. X., & Avison, M. J. (2002). Women at risk for AD show increased parietal activation during a fluency task. Neurology, 58, 1197–1202.PubMedGoogle Scholar
  123. Smith, C. D., Kryscio, R. J., Schmitt, F. A., Lovell, M. A., Blonder, L. X., Rayens, W. S., & Andersen, A. H. (2005). Longitudinal functional alterations in asymptomatic women at risk for Alzheimer's disease. Journal of Neuroimaging, 15, 271–277.PubMedCrossRefGoogle Scholar
  124. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z. Matthews, P. M., & Behrens, T. E. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage, 31, 1487–1505.PubMedCrossRefGoogle Scholar
  125. Sperling, R. A., Bates, J. F., Chua, E. F., Cocchiarella, A. J., Rentz, D. M., Rosen, B. R., Schacter, D. L., & Albert, M. S. (2003). fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 74, 44–50.PubMedCrossRefGoogle Scholar
  126. Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231.PubMedCrossRefGoogle Scholar
  127. Stefanovic, B., Warnking, J. M., Rylander, K. M., & Pike, G. B. (2005). The effect of global cerebral vasodilation on focal activation hemodynamics. Neuroimage.Google Scholar
  128. Stoub, T. R., de T.-M., Stebbins, G. T., Leurgans, S., Bennett, D. A., & Shah, R. C. (2006). Hippocampal disconnection contributes to memory dysfunction individuals at risk for Alzheimer's disease. Proceedings of the National Academy of Sciences, USA, 103, 10041–10045.Google Scholar
  129. Sunderland, T., Hampal, H., Takeda, M., Putnam, K. T., & Cohen, R. M. (2006). Biomarkers in the diagnosis of Alzheimer's disease: Are we ready? Journal of Geriatric Psychiatry and Neurology, 19, 172–179.PubMedCrossRefGoogle Scholar
  130. Takada, H., Nagata, K., Hirata, Y., Satoh, Y., Watahiki, Y., Sugawara, J., Yokoyama, E., Kondoh, Y., Shishido, F., Inugami, A., et al. (1992). Age-related decline of cerebral oxygen metabolism in normal population detected with positron emission tomography. Neurological Research, 14(2 Suppl), 128–131.PubMedGoogle Scholar
  131. Takahashi, E., Ohki, K., & Kim, D. (2007). Diffusion tensor studies dissociated two fronto-temporal pathways in the human memory system. NeuroImage, 34, 827–838.PubMedCrossRefGoogle Scholar
  132. Tariot, P. N., & Federoff, H. J. (2003). Current treatment for Alzheimer disease and future prospects. Alzheimer Disease and Associated Disorders, 17(4 Suppl), 105–113.Google Scholar
  133. Tekes, A., Mohamed, M. A., Browner, N. M., Calhoun, V. D., & Yousem, D. M. (2005). Effect of age on visuomotor functional MR imaging. Academy of Radiology, 12, 739–745.CrossRefGoogle Scholar
  134. Terry, R. D., Masliah, E., & Hansen, L. A. (1999). The neuropathology of Alzheimer disease and the structural basis of its cognitive alterations. In R. D. Terry, R. Katzman, K. L. Bick, & S. S. Sisodia (Eds.), Alzheimer disease (2nd edn.). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  135. Tiraboschi, P., Hansen, L. A., Masliah, E., Alford, M., Thal, L. J., & Corey-Bloom, J. (2004). Impact of APOE genotype on neuropathologic and neurochemical markers of Alzheimer disease. Neurology, 62, 1977–1983.PubMedGoogle Scholar
  136. Tohgi, H., Takahashi, S., Kato, E., Homma, A., Niina, R., Sasaki, K., Yonezawa, H., & Sasaki, M. (1997). Reduced size of right hippocampus in 39- to 80-year-old normal subjects carrying the apolipoprotein E epsilon4 allele. Neuroscience Letters, 236, 21–24.PubMedCrossRefGoogle Scholar
  137. Toosy, A. T., Ciccarelli, O., Parker, G. J., Wheeler-Kingshott, C. A., Miller, D. H., & Thompson, A. J. (2004). Characterizing function-structure relationships in the human visual system with functional MRI and diffusion tensor imaging. NeuroImage, 21, 1452–1463.PubMedCrossRefGoogle Scholar
  138. Trivedi, M. A., Schmitz, T. W., Ries, M., Torgerson, B. M., Sager, M. A., Hermann, B. P., Asthana, S., & Johnson, S. C. (2006). Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer's disease: A cross-sectional study. BioMed Central, 4, 1–14.Google Scholar
  139. Twamley, E. W., Ropacki, S., & Bondi, M. W. (2006). Neuropsychological and neuroimaging changes in preclinical Alzheimer's disease. Journal of the International Neuropsychological Society, 12, 707–735.PubMedCrossRefGoogle Scholar
  140. Uspenskaia, O., Liebetrau, M., Herms, J., Danek, A., & Hamann, G. F. (2004). Aging is associated with increased collagen type IV accumulation in the basal lamina of human cerebral microvessels. BioMed Central Neuroscience, 5, 37.PubMedGoogle Scholar
  141. Valdes-Sosa, P. A., Kotter, R., & Friston, K. J. (2005). Introduction: Multimodal neuroimaging of brain connectivity. Phil Trans R Soc B, 360, 865–867.PubMedCrossRefGoogle Scholar
  142. van Duijn, C. M., Clayton, D., Chandra, V., Fratiglioni, L., Graves, A. B., Heyman, A., Jorm, A. F., Kokmen, E., Kondo, K., & Mortimer, J. A. (1991). Familial aggregation of Alzheimer's disease and related disorders: A collaborative re-analysis of case-control studies. EURODEM Risk Factors Research Group. International Journal of Epidemiology, 20(Suppl 2), 13–20.Google Scholar
  143. Vinogradova, O. S. (2001). Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus, 11, 578–598.PubMedCrossRefGoogle Scholar
  144. Wang, P. J., Saykin, A. J., Flashman, L. A., Wishart, H. A., Rabin, L. A., Santulli, R. B., McHugh, T. L., MacDonald, J. W., & Mamouriuan, A. C. (2006). Regionally specific atrophy of the corpus callosum in AD, MCIl and cognitive complaints. Neurobiology of Aging, 27, 1613–1617.PubMedCrossRefGoogle Scholar
  145. Wang, L., Zang, Z., He, Y., Liang, M., Zhang, X., Tian, L., Wu, T., Jiang, T., & Li, K. (2006). Changes in hippocampal connectivity in the early stages of Alzheimer's disease: Evidence from resting state fMRI. Neuroimage, 31, 496–504.PubMedCrossRefGoogle Scholar
  146. Wetter, S., Delis, D. C., Houston, W. S., Jacobson, M., W., Lansing, A., Cobell, K., Salmon, D. P., & Bondi, M. W. (2006). Heterogeneity in verbal memory: A marker of preclinical Alzheimer's disease? Aging, Neuropsychology, and Cognition, 13, 503–515.CrossRefGoogle Scholar
  147. Wetter, S., Delis, D. C., Houston, W. S., Jacobson, M. W., Lansing, A., Cobell, K., Salmon, D. P. & Bondi, M. W. (2005). Deficits in inhibition and flexibility are associated with the APOE ε4 allele in nondemented older adults. Journal of Clinical and Experimental Neuropsychology, 27, 943–952.PubMedCrossRefGoogle Scholar
  148. Wierenga, C. E., Benjamin, M., Gopinath, K., Perlstein, W. M., Leonard, C. M., Rothi, L. J., Conway, T., Cato, M. A., Briggs, R., & Crosson, B. (2006). Age-related changes in word retrieval: Role of bilateral frontal and subcortical networks. Neurobiology of Aging [Epub ahead of print].Google Scholar
  149. Wishart, H. A., Saykin, A. J., Rabin, L. A., Santulli, R. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., Belloni, D. R., Rhodes, C. H., & McAllister, T. W. (2006). Increased brain activation during working memory in cognitively intact adults with the APOE e4 allele. American Journal of Psychiatry, 163, 1603–1610.PubMedCrossRefGoogle Scholar
  150. Wolf, H., Jelic, V., Gertz, H-J., Nordberg, A., Julin, P., & Wahlund, L-O. (2003). A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurologica Scandinavica, 107(s179), 52–76.CrossRefGoogle Scholar
  151. Woodard, J. L., Grafton, S. T., Votaw, J. R., Green, R. C., Dobraski, M. E., & Hoffman, J. M. (1998). Compensatory recruitment of neural resources during overt rehearsal of word lists in Alzheimer's disease. Neuropsychology, 12, 491–504.PubMedCrossRefGoogle Scholar
  152. Yamaguchi, T., Kanno, I., Uemura, K., Shishido, F., Inugami, A., Ogawa, T., Murakami, M., & Suzuki, K. (1986). Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke, 17, 1220–1228.PubMedGoogle Scholar
  153. Yamamoto, M., Meyer, J. S., Sakai, F., & Yamaguchi, F. (1980). Aging and cerebral vasodilator responses to hypercarbia: responses in normal aging and in persons with risk factors for stroke. Archives of Neurology, 37, 489–496.PubMedGoogle Scholar
  154. Yip, A. G., McKee, A. C., Green, R. C., Wells, J., Young, H., Cupples, L. A., & Farrer, L. A. (2005). APOE, vascular pathology, and the AD brain. Neurology, 65, 259–265.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PsychiatryUniversity of California San DiegoLa JollaUSA
  2. 2.Psychology ServiceVA San Diego Healthcare SystemLa JollaUSA
  3. 3.VA San Diego Healthcare System (116B)San DiegoUSA

Personalised recommendations