Advertisement

Neuropsychology Review

, Volume 17, Issue 2, pp 91–101 | Cite as

Meta-Analysis of Neuropsychological Symptoms of Adolescents and Adults with PKU

  • J. J. Moyle
  • A. M. Fox
  • M. Arthur
  • M. Bynevelt
  • J. R. Burnett
Original Paper

Abstract

Phenylketonuria (PKU; OMIM 261600) is an autosomal recessive inborn error of phenylanaline metabolism. PKU is characterized by deficient or defective phenylalanine hydroxylase activity and persistantly increased levels of the essential amino acid phenylalanine in the circulation. The present article examines current understanding of the etiology of PKU, along with a meta-analysis examining neuropsychological and intellectual presentations in continuously treated adolescents and adults. Patients with PKU differed significantly from controls on Full-Scale IQ, processing speed, attention, inhibition, and motor control. Future research utilizing an integrative approach and detailed analysis of specific cognitive domains will assist both the scientist and clinician, and ultimately the patient.

Keywords

Phenylketonuria Phenylalanine Phenylalanine hydroxylase Meta-analysis Oligodendrocytes 

References

  1. Antshel, K. M., & Waisbren, S. E. (2003). Timing is everything: Executive functions in children exposed to elevated levels of phenylalanine. Neuropsychology, 17, 458–468.PubMedCrossRefGoogle Scholar
  2. Barkhof, F. (2004). Assessing treatment effects on axonal loss–evidence from MRI monitored clinical trials. Journal of Neurology, 254, 6–12.Google Scholar
  3. Bick, U., Ullrich, K., Stober, U., Moller, H., Schuierer, G., Ludolph, A. C., et al. (1993). White matter abnormalities in patients with treated hyperphenylalaninaemia: Magnetic resonance relaxometry and proton spectroscopy findings. European Journal of Pediatrics, 152, 1012–1020.PubMedCrossRefGoogle Scholar
  4. Brassington, J. C., & Marsh, N. V. (1998). Neuropsychological aspects of multiple sclerosis. Neuropsychology Review, 8, 43–77.PubMedCrossRefGoogle Scholar
  5. Bruck, W., Kuhlmann, T., & Stadelmann, C. (2003). Remyelination in multiple sclerosis. Journal of the Neurological Sciences, 206, 181–185.PubMedCrossRefGoogle Scholar
  6. Brumm, V. L., Azen, C., Moats, R. A., Stern, A. M., Broomand, C., Nelson, M. D., et al. (2004). Neuropsychological outcome of subjects participating in the PKU adult collaborative study: A preliminary review. Journal of Inherited Metabolic Disease, 27, 549– 566.PubMedCrossRefGoogle Scholar
  7. Brunner, R. L., & Berry, H. K. (1987). Phenylketonuria and sustained attention: The continuous performance test. International Journal of Clinical Neuropsychology, 9, 68–70.Google Scholar
  8. Burgard, P., Rey, F., Rupp, A., Abadie, V., & Rey, J. (1997). Neuropsychologic functions of early treated patients with phenylketonuria, on and off diet: Results of a cross-national and cross-sectional study. Pediatric Research, 41, 368–374.PubMedCrossRefGoogle Scholar
  9. Cerone, R., Schiaffino, M. C., Di Stefano, S., & Veneselli, E. (1999). Phenylketonuria: Diet for life or not? Acta Paediatrica, 88, 664–666.PubMedCrossRefGoogle Scholar
  10. Chan, R. C., Hoosain, R., Lee, T. M., Fan, Y., & Fong, D. (2003). Are there sub-types of attentional deficits in patients with persisting post-concussive symptoms? A cluster analytical study. Brain Injury, 17, 131–148.PubMedCrossRefGoogle Scholar
  11. Channon, S., German, E., Cassina, C., & Lee, P. (2004). Executive functioning, memory, and learning in phenylketonuria. Neuropsychology, 18, 613–620.PubMedCrossRefGoogle Scholar
  12. Channon, S., Mockler, C., & Lee, P. (2005). Executive functioning and speed of processing in phenylketonuria. Neuropsychology, 19, 679–686.PubMedCrossRefGoogle Scholar
  13. Christ, S. E. (2003). Asbjorn Folling and the discovery of phenylketonuria. Journal of the History of the Neurosciences, 12, 44– 54.PubMedCrossRefGoogle Scholar
  14. Clarke, J. T., Gates, R. D., Hogan, S. E., Barrett, M., & MacDonald, G. W. (1987). Neuropsychological studies on adolescents with phenylketonuria returned to phenylalanine-restricted diets. American Journal of Mental Retardation, 92, 255–262.PubMedGoogle Scholar
  15. Cleary, M. A., Walter, J. H., Wraith, J. E., Jenkins, J. P., Alani, S. M., Tyler, K., et al. (1994). Magnetic resonance imaging of the brain in phenylketonuria. Lancet, 344, 87–90.PubMedCrossRefGoogle Scholar
  16. Coull, J. T. (1998). Neural correlates of attention and arousal: Insights from electrophysiology, functional neuroimaging and psychopharmacology. Progress in Neurobiology, 55, 343–361.PubMedCrossRefGoogle Scholar
  17. Crinella, F. M., & Yu, J. (2000). Brain mechanisms and intelligence. Psychometric g and executive function. Intelligence, 27, 299–327.CrossRefGoogle Scholar
  18. De Sonneville, L. M., Boringa, J. B., Reuling, I. E., Lazeron, R. H., Ader, H. J., & Polman, C. H. (2002). Information processing characteristics in subtypes of multiple sclerosis. Neuropsychologia, 40, 1751–1765.PubMedCrossRefGoogle Scholar
  19. Diamond, A., Prevor, M. B., Callender, G., & Druin, D. P. (1987). Prefrontal cortex cognitive deficits in children treated early and continuously for PKU. Monographs of the Society for Research in Child Development, 62, 1–205.Google Scholar
  20. Duncan, J. (1986). Disorganisation of behaviour after frontal lobe damage. Cognitive Neuropsychology, 3, 271–290.CrossRefGoogle Scholar
  21. Duncan, J., Johnson, R., Swales, M., & Freer, C. (1997). Frontal lobe deficits after head injury: Unity and diversity of function. Cognitive Neuropsychology, 14, 713–741.CrossRefGoogle Scholar
  22. Dyer, C. A. (1999). Pathophysiology of phenylketonuria. Mental Retardation and Developmental Disabilities Research Reviews, 5, 104–112.CrossRefGoogle Scholar
  23. Dyer, C. A., Kendler, A., Philibotte, T., Gardiner, P., Cruz, J., & Levy, H. L. (1996). Evidence for central nervous system glial cell plasticity in phenylketonuria. Journal of Neuropathology & Experimental Neurology, 55, 795–814.Google Scholar
  24. Feldmann, R., Denecke, J., Grenzebach, M., & Weglage, J. (2005). Frontal lobe-dependent functions in treated phenylketonuria: Blood phenylalanine concentrations and long-term deficits in adolescents and young adults. Journal of Inherited Metabolic Disease, 28, 445–455.PubMedCrossRefGoogle Scholar
  25. Goldberg, E., & Bougakov, D. (2005). Neuropsychologic assessment of frontal lobe dysfunction. Psychiatric Clinics of North America, 28, 567–580.PubMedCrossRefGoogle Scholar
  26. Griffiths, P., Paterson, L., & Harvie, A. (1995). Neuropsychological effect of subsequent exposure to phenylalanine in adolescents and young adults with early-treated phenylketonuria. Journal of Intellectual Disability Research, 39, 365–372.PubMedCrossRefGoogle Scholar
  27. Hedges, L., & Olkin, I. (1985). Statistical Methods for Meta-Analysis. Orlando: Academic Press.Google Scholar
  28. Huijbregts, S., de Sonneville, L., Licht, R., Sergeant, J., & van Spronsen, F. (2002a). Inhibition of prepotent responding and attentional flexibility in treated phenylketonuria. Developmental Neuropsychology, 22, 481–499.PubMedCrossRefGoogle Scholar
  29. Huijbregts, S. C. J., de Sonneville, L. M., Licht, R., van Spronsen, F. J., & Sergeant, J. A. (2002c). Short-term dietary interventions in children and adolescents with treated phenylketonuria: Effects on neuropsychological outcome of a well-controlled population. Journal of Inherited Metabolic Disease, 25, 419–430.PubMedCrossRefGoogle Scholar
  30. Huijbregts, S. C., de Sonneville, L. M., Licht, R., van Spronsen, F. J., Verkerk, P. H., & Sergeant, J. A. (2002b). Sustained attention and inhibition of cognitive interference in treated phenylketonuria: Associations with concurrent and lifetime phenylalanine concentrations. Neuropsychologia, 40, 7–15.PubMedCrossRefGoogle Scholar
  31. Huijbregts, S. C. J., De Sonneville, L. M., Van Spronsen, F. J., Berends, I. E., Licht, R., Verkerk, P. H., et al. (2003). Motor function under lower and higher controlled processing demands in early and continuously treated phenylketonuria. Neuropsychology, 17, 369–379.PubMedCrossRefGoogle Scholar
  32. Huijbregts, S. C. J., de Sonneville, L. M., van Spronsen, F. J., Licht, R., & Sergeant, J. A. (2002). The neuropsychological profile of early and continuously treated phenylketonuria: Orienting, vigilance, and maintenance versus manipulation-functions of working memory. Neuroscience & Biobehavioral Reviews, 26, 697–712.CrossRefGoogle Scholar
  33. Huttenlocher, P. R. (2000). The neuropathology of phenylketonuria: Human and animal studies. European Journal of Pediatrics, 159, S102–106.PubMedCrossRefGoogle Scholar
  34. Jervis, G. A. (1953). Phenylpyruvic oligophrenia deficiency of phenylalanine-oxidizing system. Proceedings of the Society for Experimental Biology & Medicine, 82, 514–515.Google Scholar
  35. Jones, L., Cardno, A., Sanders, R., Owen, M., & Williams, J. (2001). Sustained and selective attention as measures of genetic liability to schizophrenia. Schizophrenia Research, 48, 263–272.PubMedCrossRefGoogle Scholar
  36. Joseph, B., & Dyer, C. A. (2003). Relationship between myelin production and dopamine synthesis in the PKU mouse brain. Journal of Neurochemistry, 86, 615–626.PubMedCrossRefGoogle Scholar
  37. Knudsen, G. M., Hasselbalch, S., Toft, P. B., Christensen, E., Paulson, O. B., & Lou, H. (1995). Blood-brain barrier transport of amino acids in healthy controls and in patients with phenylketonuria. Journal of Inherited Metabolic Disease, 18, 653–664.PubMedCrossRefGoogle Scholar
  38. Koch, R., Burton, B., Hoganson, G., Peterson, R., Rhead, W., Rouse, B., et al. (2002). Phenylketonuria in adulthood: A collaborative study. Journal of Inherited Metabolic Disease, 25, 333–346.PubMedCrossRefGoogle Scholar
  39. Kornguth, S., Anderson, M., Markley, J. L., & Shedlovsky, A. (1994). Near-microscopic magnetic resonance imaging of the brains of phenylalanine hydroxylase-deficient mice, normal littermates, and of normal BALB/c mice at 9.4 Tesla. Neuroimage, 1, 220–229.PubMedCrossRefGoogle Scholar
  40. Krause, W., Halminski, M., McDonald, L., Dembure, P., Salvo, R., Freides, D., et al. (1985). Biochemical and neuropsychological effects of elevated plasma phenylalanine in patients with treated phenylketonuria. A model for the study of phenylalanine and brain function in man. Journal of Clinical Investigation, 75, 40–48.PubMedCrossRefGoogle Scholar
  41. Lau, J., Ioannidis, J. P., & Schmid, C. H. (1997). Quantitative synthesis in systematic reviews. Annals of Internal Medicine, 127, 820– 826.PubMedGoogle Scholar
  42. Leuzzi, V., Bianchi, M. C., Tosetti, M., Carducci, C. L., Carducci, C. A., & Antonozzi, I. (2000). Clinical significance of brain phenylalanine concentration assessed by in vivo proton magnetic resonance spectroscopy in phenylketonuria. Journal of Inherited Metabolic Disease, 23, 563–570.PubMedCrossRefGoogle Scholar
  43. Lou, H. C. (1994). Dopamine precursors and brain function in phenylalanine hydroxylase deficiency. Acta Paediatrica Supplement, 407, 86–88.PubMedGoogle Scholar
  44. Luciana, M., Hanson, K. L., & Whitley, C. B. (2004). A preliminary report on dopamine system reactivity in PKU: Acute effects of haloperidol on neuropsychological, physiological, and neuroendocrine functions. Psychopharmacology, 175, 18–25.PubMedCrossRefGoogle Scholar
  45. Luciana, M., Sullivan, J., & Nelson, C. A. (2001). Associations between phenylalanine-to-tyrosine ratios and performance on tests of neuropsychological function in adolescents treated early and continuously for phenylketonuria. Child Development, 72, 1637–1652.PubMedCrossRefGoogle Scholar
  46. MacDonald, A. (2000). Diet and compliance in phenylketonuria. European Journal of Pediatrics, 159, S136–141.PubMedCrossRefGoogle Scholar
  47. Miller, D. H., Thompson, A. J., & Filippi, M. (2003). Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. Journal of Neurology, 250, 1407–1419.PubMedCrossRefGoogle Scholar
  48. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.PubMedCrossRefGoogle Scholar
  49. Moyle, J., Fox., A., Bynevelt, M., Arthur, M., & Burnett, J. (in press). A neuropsychological profile of off-diet adults with phenylketonuria. Journal of Clinical and Experimental Neuropsychology.Google Scholar
  50. Moyle, J. J., Fox, A. M., Bynevelt, M., Arthur, M., & Burnett, J. R. (2006). Event-related potentials elicited during a visual go-nogo task in adults with phenylketonuria. Clinical Neurophysiology, 117, 2154–2160.PubMedCrossRefGoogle Scholar
  51. Natale, E., Marzi, C. A., Girelli, M., Pavone, E. F., & Pollman, S. (2006). ERP and fMRI correlates of endogenous and exogenous focusing of visual-spatial attention. European Journal of Neuroscience, 23, 2511–2521.PubMedCrossRefGoogle Scholar
  52. O’Connor, T. A., & Burns, N. R. (2003). Inspection time and general speed of processing. Personality and Individual Differences, 35, 713–724.CrossRefGoogle Scholar
  53. Owens, T. (2003). The enigma of multiple sclerosis: Inflammation and neurodegeneration cause heterogeneous dysfunction and damage. Current Opinion in Neurology, 16, 259–265.PubMedCrossRefGoogle Scholar
  54. Penrose, L. S., & Quastel, J. H. (1937). Metabolic studies in phenylketonuria. The Biochemical Journal, 31, 266–271.PubMedGoogle Scholar
  55. Pietz, J., Dunckelmann, R., Rupp, A., Rating, D., Meinck, H. M., Schmidt, H., et al. (1998). Neurological outcome in adult patients with early-treated phenylketonuria. European Journal of Pediatrics, 157, 824–830.PubMedCrossRefGoogle Scholar
  56. Pietz, J., Landwehr, R., Kutscha, A., Schmidt, H., de Sonneville, L., & Trefz, F. K. (1995). Effect of high-dose tyrosine supplementation on brain function in adults with phenylketonuria. Journal of Pediatrics, 127, 936–943.PubMedCrossRefGoogle Scholar
  57. Pietz, J., Schmidt, E., Matthis, P., Kobialka, B., et al. (1993). EEGs in phenylketonuria: I. Follow-up to adulthood: II. Short-term diet-related changes in EEGs and cognitive function. Developmental Medicine & Child Neurology, 35, 54–64.CrossRefGoogle Scholar
  58. Ris, M. D., Williams, S. E., Hunt, M. M., Berry, H. K., & Leslie, N. (1994). Early-treated phenylketonuria: Adult neuropsychologic outcome. Journal of Pediatrics, 124, 388–392.PubMedCrossRefGoogle Scholar
  59. Ruge, H., & Naumann, E. (2006). Brain-electrical correlates of negative location priming under sustained and tranient attentional context conditions. Journal of Psychophysiology, 20, 160–169.CrossRefGoogle Scholar
  60. Schmidt, E., Rupp, A., Burgard, P., Pietz, J., et al. (1994). Sustained attention in adult phenylketonuria: The influence of the concurrent phenylalanine-blood-level. Journal of Clinical and Experimental Neuropsychology, 16, 681–688.PubMedGoogle Scholar
  61. Scriver, C. (2004). Translating knowledge into practice in the “post-genome” era. Acta Paediatrica, 93, 294–300.PubMedCrossRefGoogle Scholar
  62. Scriver, C. R., & Kaufman, S. (2001). Hyperphenylalaninemia: Phenylalanine Hydroxylase Deficiency. In The Metabolic and Molecular Bases of Inherited Disease (Vol. VIII, pp. 1667–1724).Google Scholar
  63. Sener, R. N. (2003). Diffusion MRI findings in phenylketonuria. European Radiology, 13, L226–229.CrossRefGoogle Scholar
  64. Somsen, R. J. M., Van Der Molen, M.W., Jennings, J.R., & van Beek, B. (2000). Wisconsin card sorting in adolescents: Analysis of performance, response times and heart rate. Acta Psychologia, 104, 227–257.CrossRefGoogle Scholar
  65. Stemerdink, N. B. A., Van Der Molen, M. W., Kalverboer, A. F., Van Der Meere, J. J., Huisman, J., de Jong, L. W., et al. (1999). Prefrontal dysfunction in early and continuously treated phenylketonuria. Developmental Neuropsychology, 16, 29–57.CrossRefGoogle Scholar
  66. Tam, S. Y., Elsworth, J. D., Bradberry, C. W., & Roth, R. H. (1990). Mesocortical dopamine neurons: High basal firing frequency predicts tyrosine dependence of dopamine synthesis. Journal of Neural Transmission - General Section, 81, 97–110.PubMedCrossRefGoogle Scholar
  67. Thompson, A. J., Tillotson, S., Smith, I., Kendall, B., Moore, S. G., & Brenton, D. P. (1993). Brain MRI changes in phenylketonuria. Associations with dietary status. Brain, 116, 811–821.PubMedCrossRefGoogle Scholar
  68. Treacy, E. P., Delente, J. J., Elkas, G., Carter, K., Lambert, M., Waters, P. J., et al. (1997). Analysis of phenylalanine hydroxylase genotypes and hyperphenylalaninemia phenotypes using L-[1–13C]phenylalanine oxidation rates in vivo: A pilot study. Pediatric Research, 42, 430–435.PubMedCrossRefGoogle Scholar
  69. Ullrich, K., Moller, H., Weglage, J., Schuierer, G., Bick, U., Ludolph, A., et al. (1994). White matter abnormalities in phenylketonuria: Results of magnetic resonance measurements. Acta Paediatrica Supplement, 407, 78–82.PubMedGoogle Scholar
  70. Waisbren, S. E., Brown, M. J., de Sonneville, L. M., & Levy, H. L. (1994). Review of neuropsychological functioning in treated phenylketonuria: An information processing approach. Acta Paediatrica Supplement, 407, 98–103.PubMedGoogle Scholar
  71. Walter, J., White, F., Hall, S., MacDonald, A., Rylance, G., Boneh, A., et al. (2002). How practical are recommendations for dietary control in phenylketonuria? Lancet, 360, 55–57.PubMedCrossRefGoogle Scholar
  72. Walter, J. H., White, F., Wraith, J. E., Jenkins, J. P., & Wilson, B. P. (1997). Complete reversal of moderate/severe brain MRI abnormalities in a patient with classical phenylketonuria. Journal of Inherited Metabolic Disease, 20, 367–369.PubMedCrossRefGoogle Scholar
  73. Wegener, D., Freiwald, W. A., & Kreiter, A. K. (2004). The influence of sustained selective attention on stimulus selectivity in macaque visual area MT. Journal of Neuroscience, 24, 6106–6114.PubMedCrossRefGoogle Scholar
  74. Weglage, J., Bick, U., Schuierer, G., Pietsch, M., Sprinz, A., Zass, R., et al. (1997a). Progression of cerebral white matter abnormalities in early treated patients with phenylketonuria during adolescence. Neuropediatrics, 28, 239–240.PubMedCrossRefGoogle Scholar
  75. Weglage, J., Ullrich, K., Pietsch, M., Funders, B., Guttler, F., & Harms, E. (1997b). Intellectual, neurologic, and neuropsychologic outcome in untreated subjects with nonphenylketonuria hyperphenylalaninemia. German Collaborative Study on Phenylketonuria. Pediatric Research, 42, 378–384.PubMedCrossRefGoogle Scholar
  76. Weglage, J., Ullrich, K., Pietsch, M., Funders, B., Zass, R., & Koch, H. G. (1996). Untreated non-phenylketonuric-hyperphenyl- alaninaemia: Intellectual and neurological outcome. European Journal of Pediatrics, 155, S26–28.PubMedCrossRefGoogle Scholar
  77. Weintraub, D., Moberg, P. J., Culbertson, W. C., Duda, J. E., Katz, I. R., & Stern, M. B. (2005). Dimensions of executive function in Parkinson’s disease. Dementia & Geriatric Cognitive Disorders, 20, 140–4.CrossRefGoogle Scholar
  78. White, D. A., Nortz, M. J., Mandernach, T., Huntington, K., & Steiner, R. D. (2001). Deficits in memory strategy use related to prefrontal dysfunction during early development: Evidence from children with phenylketonuria. Neuropsychology, 15, 221–229.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. J. Moyle
    • 1
    • 6
  • A. M. Fox
    • 1
  • M. Arthur
    • 2
  • M. Bynevelt
    • 3
  • J. R. Burnett
    • 4
    • 5
  1. 1.School of PsychologyThe University of Western AustraliaPerthAustralia
  2. 2.Department of Dietetics and NutritionRoyal Perth HospitalPerthAustralia
  3. 3.Department of RadiologyRoyal Perth HospitalPerthAustralia
  4. 4.Department of Core Clinical Pathology and BiochemistryPathWest Laboratory Medicine WA, Royal Perth HospitalPerthAustralia
  5. 5.School of Medicine and PharmacologyThe University of Western AustraliaPerthAustralia
  6. 6.c/- The Brain Resource Company Level 12PerthAustralia

Personalised recommendations