Neuropsychology Review

, Volume 16, Issue 1, pp 17–42 | Cite as

Executive Function and the Frontal Lobes: A Meta-Analytic Review

  • Julie A. Alvarez
  • Eugene Emory
Original Artical

Currently, there is debate among scholars regarding how to operationalize and measure executive functions. These functions generally are referred to as “supervisory” cognitive processes because they involve higher level organization and execution of complex thoughts and behavior. Although conceptualizations vary regarding what mental processes actually constitute the “executive function” construct, there has been a historical linkage of these “higher-level” processes with the frontal lobes. In fact, many investigators have used the term “frontal functions” synonymously with “executive functions” despite evidence that contradicts this synonymous usage. The current review provides a critical analysis of lesion and neuroimaging studies using three popular executive function measures (Wisconsin Card Sorting Test, Phonemic Verbal Fluency, and Stroop Color Word Interference Test) in order to examine the validity of the executive function construct in terms of its relation to activation and damage to the frontal lobes. Empirical lesion data are examined via meta-analysis procedures along with formula derivatives. Results reveal mixed evidence that does not support a one-to-one relationship between executive functions and frontal lobe activity. The paper concludes with a discussion of the implications of construing the validity of these neuropsychological tests in anatomical, rather than cognitive and behavioral, terms.

KEY WORDS:

Executive function Frontal lobe Neuropsychology Meta-analysis 

REFERENCES

  1. Ahola, K., Vilkki, J., and Servo, A. (1996). Frontal tests do not detect frontal infarctions after ruptured intracranial aneurysm. Brain and Cognition 31: 116.PubMedGoogle Scholar
  2. Anderson, S. W., Damasio, H., Jones, R. D., and Tranel, D. (1991). Wisconsin Card Sorting Test performance as a measure of frontal lobe damage. J. Clinical and Experimental Neuropsychology 13: 909922.Google Scholar
  3. Axelrod, B. N., Goldman, R. S., Heaton, R. K., Curtiss, G., Thompson, L. T., Chelune, G. J., and Kay, G. G. (1996). Discriminability of the Wisconsin Card Sorting Test using the standardization sample. J. Clin. Exp. Neuropsyc. 18: 338342.Google Scholar
  4. Axelrod, B. N., and Henry, R. R. (1992). Age-related performance on the Wisconsin Card Sorting, Similarities, and Controlled Oral Word Association Tests. Clinical Neuropsychologist 6: 1626.Google Scholar
  5. Baddeley, A. (1996). Exploring the central executive. Quarterly Journal of Experimental Psychology 49A: 5–28.Google Scholar
  6. Baldo, J. V., Shimamura, A. P., Delis, D. C., Kramer, J., and Kaplan, E. (2001). Verbal and design fluency in patients with frontal lobe lesions. Journal of the International Neuropsychological Society 7: 586596.Google Scholar
  7. Banich, M. T., Milham, M. P., Atchley, R., Cohen, N. J., Webb, A., Wszalek, T., Kramer, A. F., Liang, Z., Barad, V., Gullett, D., Shah, C., and Brown, C. (2000). Prefrontal regions play a predominant role in imposing an attentional ‘set’: Evidence from fMRI. Cognitive Brain Research 10: 19.Google Scholar
  8. Barcelo, F. (2001). Does the Wisconsin Card Sorting Test measure prefrontal function? Spanish Journal of Psychology 4: 79100.Google Scholar
  9. Barcelo, F., and Knight, R. T. (2002). Both random and perseverative errors underlie WCST deficits in prefrontal patients. Neuropsychologia 40: 349356.PubMedGoogle Scholar
  10. Barcelo, F., Munoz-Cespedes, J. M., Pozo, M. A., and Rubia, F. J. (2000). Attentional set shifting modulates the target P3b response in the Wisconsin card sorting test. Neuropsychologia 38: 13421355.PubMedGoogle Scholar
  11. Barcelo, F., and Rubia, F. J. (1998). Non-frontal P3b-like activity evoked by the Wisconsin Card Sorting Test. Neuroreport 9: 747751.PubMedCrossRefGoogle Scholar
  12. Barkley, R. A. (1996). Linkages between attention and executive functions. In: Lyon, G. R. and Krasnegor, N. A. (Eds.), Attention, memory, and executive function (pp. 307–325). Baltimore, MD, US: Paul H. Brookes Publishing Co.Google Scholar
  13. Bayless, J. D., Varney, N. R., and Roberts, R. J. (1989). Tinker Toy Test performance and vocational outcome in patients with closed-head injuries. J. Clin. Exp. Neuropsyc. 11: 913917.Google Scholar
  14. Bechara, A., Damasio, A. R., Damasio, H., and Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50: 715.PubMedGoogle Scholar
  15. Bench, C. J., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S. J., and Dolan, R. J. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia 31: 907922.PubMedGoogle Scholar
  16. Benton, A. L. (1968). Differential behavioral effects in frontal lobe disease. Neuropsychologia 6: 5360.Google Scholar
  17. Benton, A. L., and Hamsher, K. (1976). Multilingual aphasia examination. Iowa City: University of Iowa Press.Google Scholar
  18. Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking. Journal of General Psychology 39: 1522.CrossRefGoogle Scholar
  19. Berman, K. F., Ostrem, J. L., Randolph, C., Gold, J., Goldberg, T. E., Coppola, R., Carson, R. E., Herscovitch, P., and Weinberger, D. R. (1995). Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study. Neuropsychologia 33: 10271046.PubMedGoogle Scholar
  20. Bigler, E. D. (1988). Frontal lobe damage and neuropsychological assessment. Archives of Clinical Neuropsychology 3: 279297.Google Scholar
  21. Blenner, J. L. (1993). The discriminant capacity of the Stroop test in tumor neurosurgical patients and its relationship to the visual evoked potential measure. Personality and Individual Differences 15: 99102.Google Scholar
  22. Blumer, D., and Benson, D. F. (1975). Personality changes with frontal and temporal lobe lesions. In: Benson, D. F. and Blumer, D. (Eds.), Psychiatric aspects of neurologic disease (pp. 151–170). New York: Grune and Stratton.Google Scholar
  23. Bornstein, R. A. (1986). Contribution of various neuropsychological measures to detection of frontal lobe impairment. International Journal of Clinical Neuropsychology 8: 1822.Google Scholar
  24. Bowden, S. C., Fowler, K. S., Bell, R. C., Whelan, G., Clifford, C. C., Ritter, A. J., and Long, C. M. (1998). The reliability and internal validity of the Wisconsin Card Sorting Test. Neuropsychological Rehabilitation 8: 243254.Google Scholar
  25. Brown, G. G., Kindermann, S. S., Siegle, G. J., Granholm, E., Wong, E. C., and Buxton, R. B. (1999). Brain activation and pupil response during covert performance of the Stroop Color Word task. Journal of the International Neuropsychological Society 5: 308319.Google Scholar
  26. Bryan, J., and Luszcz, M. A. (2000). Measurement of executive function: Consideration for detecting adult age differences. J. Clin. Exp. Neuropsyc. 22: 4055.CrossRefGoogle Scholar
  27. Burgess, P. W. (1997). Theory and methodology in executive function research. In: Rabbitt, P. (Ed.), Methodology of frontal and executive function (pp. 81–116). Hove, UK: Psychology Press.Google Scholar
  28. Burgess, P. W. (2000). Strategy application disorder: The role of the frontal lobes in human multitasking. Psychological Research 63: 279288.Google Scholar
  29. Burgess, P. W., Alderman, N., Ernslie, H., Evans, J., and Wilson, B. A. (1998). The ecological validity of tests of executive function. Journal of the International Neuropsychological Society 4: 547558.Google Scholar
  30. Bush, G., Whalen, P. J., Rosen, B. R., Jenike, M. A., McInerney, S. C., and Rauch, S. L. (1998). The Counting Stroop: An interference task specialized for functional neuroimaging: Validation study with functional MRI. Human Brain Mapping 6: 270282.Google Scholar
  31. Butler, M., Retzlaff, P. D., and Vanderploeg, R. (1991). Neuropsychological test usage. Professional Psychology: Research and Practice 22: 510512.Google Scholar
  32. Butler, R. W., Rorsman, I., Hill, J. M., and Tuma, R. (1993). The effects of frontal brain impairment on fluency: Simple and complex paradigms. Neuropsychology 7: 519529.Google Scholar
  33. Cabeza, R., and Nyberg, L. (2000). Imaging cognition: An empirical review of PET studies with normal subjects. Journal of Cognitive Neuroscience 12: 147.PubMedGoogle Scholar
  34. Carlin, D., Bonerba, J., Phipps, M., Alexander, G., Shapiro, M., and Grafman, J. (2000). Planning impairments in frontal lobe dementia and frontal lobe lesion patients. Neuropsychologia 38: 655665.PubMedGoogle Scholar
  35. Carter, C. S., Mintun, M., and Cohen, J. D. (1995). Interference and facilitation effects during selective attention: an H215O PET study of Stroop task performance. Neuroimage 2: 26472.PubMedGoogle Scholar
  36. Catefau, A. M., Parellada, E., Lomena, F., Bernardo, M., Setoain, J., Catarineu, S., Pavia, J., and Herranz, R. (1998). Role of the cingulate gyrus during the Wisconsin Card Sorting Test: A single photon emission computed tomography study in normal volunteers. Psychiatry Research and Neuroimaging 83: 6774.Google Scholar
  37. Cattell, J. M. (1886). The time it takes to see and name objects. Mind 11: 6365.Google Scholar
  38. Çiçek, M., and Nalçaci, E. (2001). Interhemispheric asymmetry of EEG alpha activity at rest and during the Wisconsin Card Sorting Test: Relations with performance. Biological Psychology 58: 7588.PubMedGoogle Scholar
  39. Cockburn, J. (1995). Performance on the Tower of London test after severe head injury. Journal of the International Neuropsychological Society 1: 537544.Google Scholar
  40. Cohen, J. (1992). A power primer. Psychological Bulletin 112: 155–159.PubMedGoogle Scholar
  41. Cohen, J. D., Dunbar, K., and McClelland, J. L. (1990). A parallel distributed processing model of the Stroop effect. Psychological Review 97: 332361.PubMedGoogle Scholar
  42. Cooper, H., and Hedges, L. V. (Eds.). (1994). The handbook of research synthesis. New York: Russell Sage Foundation.Google Scholar
  43. Costa, L. (1988). Clinical neuropsychology: Prospects and problems. Clinical Neuropsychologist 2: 311.Google Scholar
  44. Cripe, L. I. (1996). The ecological validity of executive function testing. In: Sbordone, R. J. and Long, C. J. (Eds.), Ecological validity of neuropsychological testing (pp. 171–202). Delray Beach, FL: GR/St Lucie Press, Inc.Google Scholar
  45. Crockett, D., Bilsker, D., Hurwitz, T., Kozak, J. (1986). Clinical utility of three measures of frontal lobe dysfunction in neuropsychiatric samples. International Journal of Neuroscience 30: 241248.PubMedCrossRefGoogle Scholar
  46. Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology 50: 873880.PubMedGoogle Scholar
  47. Cummings, J. L. (1995). Anatomic and behavioral aspects of frontal-subcortical circuits. In: Grafman, J., Holyoak, K. J. and Boller, F. (Eds.), Structure and functions of the human prefrontal cortex. Annals of the New York Academy of Sciences, 769, 1–13.Google Scholar
  48. Dagher, A., Owen, A. M., Boecker, H., and Brooks, D. J. (2001). The role of the striatum and hippocampus in planning: A PET activation study in Parkinson's disease. Brain 124: 10201032.PubMedGoogle Scholar
  49. Damasio, A. R. (1994). Descartes’ error: Emotion, reason, and human brain. New York: Grosset/Putnam.Google Scholar
  50. de Oliveira-Souza, R., Moll, J., Tovar Moll, F., and de Oliveira, D. L. G. (2001). Executive amnesia in a patient with pre-frontal damage due to a gunshot wound. Neurocase 7: 383389.PubMedGoogle Scholar
  51. Dehaene, S. and Changeux, J. P. (1991). The Wisconsin Card Sorting Test: theoretical analysis and modeling in a neuronal network. Cerebral Cortex 1: 6279.PubMedGoogle Scholar
  52. Demakis, G. J. (2003). A meta-analytic review of the sensitivity of the Wisconsin Card Sorting Test to frontal and lateralized frontal brain damage. Neuropsychology 17: 255264.PubMedGoogle Scholar
  53. Denckla, M. B. (1994). Measurement of executive function. In: Lyon, G. R. (Ed.), Frames of reference for the assessment of learning disabilities: New views on measurement issues (pp. 117–142). Baltimore, MD, US: Paul H. Brookes Publishing Co.Google Scholar
  54. Denckla, M. B. (1996). A theory and model of executive function: A neuropsychological perspective. In: Lyon, G. R. and Krasnegor, N. A. (Eds.), Attention, memory, and executive function (pp. 263–278). Baltimore, MD: Paul H. Brookes Publishing Company.Google Scholar
  55. Drewe, E. A. (1974). The effect of type and area of brain lesion on Wisconsin Card Sorting Performance. Cortex 10: 159170.PubMedGoogle Scholar
  56. Duke, L. M., and Kaszniak, A. W. (2000). Executive functions in degenerative dementias: A comparative review. Neuropsychology Review 10: 7599.Google Scholar
  57. Duffy, J. D., and Campbell, J. J. III. (2001). Regional prefrontal syndromes: A theoretical and clinical overview. In: Salloway, S. P., Malloy, P. F. and Duffy, J. D. (Eds.), The frontal lobes and neuropsychiatric illness (pp. 113–123). Washington, DC, US: American Psychiatric Publishing, Inc.Google Scholar
  58. Dunbar, K., and Sussman, D. (1995). Toward a cognitive account of frontal lobe function: Simulating frontal lobe deficits in normal subjects. In: Grafman, J., Holyoak, K. J. and Boller, F. (Eds.), Structure and functions of the human prefrontal cortex. Annals of the New York Academy of Sciences (Vol. 769, pp. 289–304). New York, NY: New York Academy of Sciences.Google Scholar
  59. Duncan, J., Burgess, P., and Emslie, H. (1995). Fluid intelligence after frontal lobe lesions. Neuropsychologia 33: 261268.PubMedGoogle Scholar
  60. Duncan, J., Johnson, R., Swales, M., and Freer, C. (1997). Frontal lobe deficits after head injury: Unity and diversity of function. Cognitive Neuropsychology 14: 713741.Google Scholar
  61. Eslinger, P. J. (1996). Conceptualizing, describing, and measuring components of executive function: A summary. In: Lyon, G. R. and Krasnegor, N. A. (Eds.), Attention, memory, and executive function (pp. 367–395). Baltimore, MD, US: Paul H. Brookes Publishing Co.Google Scholar
  62. Eslinger, P. J., and Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR. Neurology 35: 17311741.PubMedGoogle Scholar
  63. Eslinger, P. J., and Grattan, L. M. (1993). Frontal lobe and frontal-striatal substrates for different forms of human cognitive flexibility. Neuropsychologia 31: 1728.PubMedGoogle Scholar
  64. Espy, K. A., and Kaufmann, P. M. (2002). Individual differences in the development of executive function in children: Lessons from the delayed response and A-not-B tasks. In: Molfese, D. L. and Molfese, V. J. (Eds.), Developmental variations in learning: Applications to social, executive function, language, and reading skills (pp. 113–137). Mahwah, NJ, US: Lawrence Erlbaum Associates.Google Scholar
  65. Ettlinger, G., Teuber, H., and Milner, B. (1975). The seventeenth International Symposium of Neuropsychology. Neuropsychologia 13: 125133.Google Scholar
  66. Ferstl, E. C., Guthke, T., and von Cramon, D. Y. (2002). Text comprehension after brain injury: Left prefrontal lesions affect inference processes. Neuropsychology 16: 292308.PubMedGoogle Scholar
  67. Frith, C. D., Friston, K. J., Herold, S., Silbersweig, D., Fletcher, P., Cahill, C., Dolan, R. J., Frackowiak, R. S., and Liddle, P. F. (1995). Regional brain activity in chronic schizophrenia patients during the performance of a verbal fluency task. British Journal of Psychiatry 167: 343349.PubMedCrossRefGoogle Scholar
  68. Frith, C. D., Friston, K., Liddle, P. F., and Fracknowiak, R. S. J. (1991). Willed action and the prefrontal cortex in man: A study with PET. Proceedings of the Royal Society of London 244: 241248.Google Scholar
  69. Glass, G. V. (1976). Primary, secondary and meta-analysis of research. Educational Researcher 10: 38.Google Scholar
  70. Goldstein, K., and Scheerer, M. (1941). Abstract reasoning and concrete behavior: An experimental study with special tests. Psychological Monographs 53: 1151.Google Scholar
  71. Goodglass, H., and Kaplan, E. (1979). Assessment of cognitive deficit in the brain-injured patient. In: Gazzaniga, M. S. (Ed.), Handbook of behavioral neurology (Vol. 2, pp. 3–22). NY: Plenum Press.Google Scholar
  72. Grafman, J., Jonas, B., and Salazar, A. (1990). Wisconsin Card Sorting Test performance based on location and size of neuroanatomical lesion in Vietnam veterans with penetrating head injury. Perceptual & Motor Skills 71: 11201122.Google Scholar
  73. Grafman, J., and Litvan, I. (1999). Recognizing the importance of deficits in executive functions. Lancet 354: 19211923.PubMedGoogle Scholar
  74. Grafman, J., Vance, S. C., Weingartner, H., Salazar, A. M., and Amin, D. (1986). The effects of lateralized frontal lesions on mood regulation. Brain 109: 11271148.PubMedGoogle Scholar
  75. Grant, D. A., and Berg, E. (1948). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. Journal of Experimental Psychology 38: 404411.Google Scholar
  76. Greve, K. W., Love, J. M., Sherwin, E., Mathias, C. W., Ramzinski, P., and Levy, J. (2002). Wisconsin Card Sorting Test in chronic severe traumatic brain injury: Factor structure and performance subgroups. Brain Injury 16: 2940.PubMedGoogle Scholar
  77. Haines, J., Hoffman, W., Hanada, J., Brown, P., Labs, S., Loberg, D., Walter, C. T. (1994). Further evaluation of prefrontal lobe function data in schizophrenic patients during Wisconsin Card Sorting Test. American Journal of Psychiatry 151: 18421843.PubMedGoogle Scholar
  78. Heaton, R. K. (1981). Wisconsin Card Sorting Test Manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
  79. Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., and Curtiss, G. (1993). Wisconsin Card Sorting Test Manual: Revised and Expanded. Odessa, FL: Psychological Assessment Resources.Google Scholar
  80. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
  81. Heck, E. T., and Bryer, J. B. (1986). Superior sorting and categorizing ability in a case of bilateral frontal atrophy: An exception to the rule. Journal of Clinical & Experimental Neuropsychology 8: 313316.Google Scholar
  82. Hedges, L. V. (1994). Fixed effects models. In: Cooper, H. and Hedges, L. V. (Eds.), The handbook of research synthesis (pp. 285–299). New York, NY: Russell Sage Foundation.Google Scholar
  83. Hedges, L. V., and Olkin, I. (1985). Statistical methods for meta-analysis. San Diego: Academic Press.Google Scholar
  84. Henry, J. D., and Crawford, J. R. (2004). A meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology 18: 284295.PubMedGoogle Scholar
  85. Holst, P., and Vilkki, J. (1988). Effect of frontomedial lesions on performance on the Stroop Test and word fluency tasks. J. Clin. Exp. Neuropsyc. 10: 7980.Google Scholar
  86. Humes, G. E., Welsh, M. C., Retzlaff, P., and Cookson, N. (1997). Towers of Hanoi and London: Reliability of two executive function tasks. Assessment 4: 249257.CrossRefGoogle Scholar
  87. James, W. (1890). The principles of psychology. New York: Holt.Google Scholar
  88. Janowsky, J. S., Shimamura, A. P., Kritchevsky, M., and Squire, L. R. (1989). Cognitive impairment following frontal lobe damage and its relevance to human amnesia. Behavioral Neuroscience 103: 548560.Google Scholar
  89. Johnson, B. T. (1989). DSTAT: Software for the meta-analytic review of research literatures (Version 1.00) [Computer software]. Lawrence Erlbaum Associates, Inc.Google Scholar
  90. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., and Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature 363: 623625.PubMedGoogle Scholar
  91. Kafer, K. L., and Hunter, M. (1997). On testing the face validity of planning/problem-solving tasks in a normal population. Journal of the International Neuropsychological Society 3: 108119.Google Scholar
  92. Kawasaki, Y., Maeda, Y., Suzuki, M., Urata, K., Higashima, M., Kiba, K., Yamaguchi, N., Matsuda, H., and Hisada, K. (1993). SPECT analysis of regional cerebral blood flow changes in patients with schizophrenia during the Wisconsin Card Sorting Test. Schizophrenia Research 10: 109116.PubMedGoogle Scholar
  93. Konishi, S., Kawazu, M., Uchida, I., Kikyo, H., Asakura, I., and Miyashita, Y. (1999). Contribution of working memory to transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card Sorting Test. Cerebral Cortex 9: 745753.PubMedGoogle Scholar
  94. Konishi, S., Nakajima, K., Uchida, I., Kameyama, M., Nakahara, K., Sekihara, K., and Miyashita, Y. (1998). Transient activation of inferior prefrontal cortex during cognitive set shifting. Nature Neuroscience 1: 8084.PubMedGoogle Scholar
  95. Leung, H., Skudlarski, P., Gatenby, J. C., Peterson, B. S., and Gore, J. C. (2000). An event-related functional MRI study of the Stroop color word interference task. Cerebral Cortex 10: 552560.PubMedGoogle Scholar
  96. Levin, H. S., Song, J., Scheibel, R. S., Fletcher, J. M., Harward, H., Lilly, M., and Goldstein, F. (1997). Concept formation and problem-solving following closed head injury in children. Journal of the International Neuropsychological Society 3: 598607.Google Scholar
  97. Levine, D. S., and Prueitt, P. S. (1989). Modeling some effects of frontal lobe damage: Novelty and perseveration. Neural Networks 2: 103116.Google Scholar
  98. Lezak, M. D. (1995). Neuropsychological assessment (3rd ed.). New York: Oxford University Press.Google Scholar
  99. Little, D. M., and Hartley, A. A. (2000). Further evidence that negative priming in the Stroop color-word task is equivalent in older and younger adults. Psychology and Aging 15: 917.PubMedGoogle Scholar
  100. Luria, A. R. (1966). Higher cortical functions in man. NY: Basic Books.Google Scholar
  101. Lyon, G. R., and Krasnegor, N. A. (Eds.). (1996). Attention, memory, and executive function. Baltimore, MD, US: Paul H. Brookes Publishing Co.Google Scholar
  102. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin 109: 163203.Google Scholar
  103. Malloy, P. F., and Richardson, E. D. (2001). Assessment of frontal lobe functions. In: Salloway, S. P., Malloy, P. F., and Duffy, J. D. (Eds.), The frontal lobes and neuropsychiatric illness (pp. 125–137). Washington, DC, US: American Psychiatric Publishing, Inc.Google Scholar
  104. Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N., Aitken, M., and Robbins, T. (2002). Decision-making processes following damage to the prefrontal cortex. Brain 125: 624639.PubMedGoogle Scholar
  105. Manly, T., and Robertson, I. H. (1997). Sustained attention and the frontal lobes. In: Rabbitt, P. (Ed.), Methodology of frontal and executive function (pp. 135–153). Hove, UK: Psychology Press.Google Scholar
  106. Marenco, S., Coppola, R., Daniel, D. G., Zigun, J. R., and Weinberger, D. R. (1993). Regional cerebral blood flow during the Wisconsin Card Sorting Test in normal subjects studied by xenon-133 dynamic SPECT: Comparison of absolute values, percent distribution values, and covariance analysis. Psychiatry Research: Neuroimaging 50: 177192.Google Scholar
  107. Mentzel, H. J., Gaser, C., Volz, H. P., Rzanny, R., Hager, F., Sauer, H., and Kaiser, W. A. (1998). Cognitive stimulation with the Wisconsin Card Sorting Tests: Functional MR imaging at 1.5 T. Radiology 207: 399404.PubMedGoogle Scholar
  108. Miceli, G., Caltagirone, C., Gainotti, G., Masullo, C., and Silveri, M. C. (1981). Neuropsychological correlates of localized cerebral lesions in non-aphasic brain-damaged patients. Journal of Clinical Neuropsychology 3: 5363.PubMedGoogle Scholar
  109. Miller, E. (1984). Verbal fluency as a function of a measure of verbal intelligence and in relation to different types of cerebral pathology. British Journal of Clinical Psychology 23: 5357.Google Scholar
  110. Milner, B. (1963). Effects of different brain lesions on card sorting: The role of the frontal lobes. Archives of Neurology 9: 100110.Google Scholar
  111. Milner, B. (1964). Some effects of frontal lobectomy in man. In: Warren, J. M. and Akert, K. (Eds.), The frontal granular cortex and behavior (pp. 313–335). New York: McGraw Hill.Google Scholar
  112. Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin 27: 272277.PubMedGoogle Scholar
  113. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., and Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology 41: 49100.PubMedGoogle Scholar
  114. Morgan, A. B., and Lilienfeld, S. O. (2000). A meta-analytic review of the relation between antisocial behavior and neuropsychological measures of executive function. Clinical Psychology Review 20: 113136.PubMedGoogle Scholar
  115. Mountain, M. A., and Snow, W. G. (1993). Wisconsin Card Sorting Test as a measure of frontal pathology: A review. Clinical Neuropsychologist 7: 108118.Google Scholar
  116. Mullen, B. (1989). Advanced BASIC meta-analysis. New Jersey: Lawrence Erlbaum Associates.Google Scholar
  117. Nagahama, Y., Fukuyama, H., Yamaguchi, H., Katsumi, Y., Magata, Y., Shibasaki, H., and Kimura, J. (1997). Age-related changes in cerebral blood flow activation during performance of a card sorting test. Experimental Brain Research 114: 571577.PubMedGoogle Scholar
  118. Nagahama, Y., Fukuyama, H., Yamauchi, H., Matsuzaki, S., Konishi, J., Shibasaki, H., and Kimura, J. (1996). Cerebral activation during performance of a card sorting test. Brain 119: 16671675.PubMedGoogle Scholar
  119. Nagahama, Y., Sadato, N., Yamauchi, H., Katsumi, Y., Hayashi, T., Fukuyama, H., Kimura, J., Shibasaki, H., and Yonekura, Y. (1998). Neural activity during attention shifts between object features. Neuroreport: an International Journal for the Rapid Communication of Research in Neuroscience 9: 26332638.Google Scholar
  120. Nelson, H. E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex 12: 313324.PubMedGoogle Scholar
  121. Nieuwenstein, M. R., Aleman, A., and de Haan, E. H. F. (2001). Relationship between symptom dimensions and neurocognitive functioning in schizophrenia: A meta-analysis of WCST and CPT studies. Journal of Psychiatric Research 35: 119125.Google Scholar
  122. Orwin, R. G. (1983). A fail-safe N for effect size in meta-analysis. Journal of Educational Statistics 8: 157159.Google Scholar
  123. Owen, A. M., Sahakian, B. J., Hodges, J. R., Summers, B. A., Polkey, C. E., Robbins, T. W. (1995). Dopamine-dependent frontostriatal planning deficits in early Parkinson's disease. Neuropsychology 9: 126140.Google Scholar
  124. Pardo, J. V., Pardo, P. J., Janer, K. W., and Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences 87: 256259.Google Scholar
  125. Parellada, E., Catafau, A. M., Bernardo, M., Lomena, F., Catarineu, S., and Gonzalez-Monclus, E. (1998). The resting and activation issue of hypofrontality: A single photon emission computed tomography study in neuroleptic-naive and neuroleptic-free schizophrenic female patients. Biological Psychiatry 44: 787790.PubMedGoogle Scholar
  126. Parks, R. W., Levine, D. S., Long, D. L., Crockett, D. J., Dalton, I. E., Weingartner, H., Fedio, P., Coburn, K. L., Siler, G., Matthews, J. R., and Becker, R. E. (1992). Parallel distributed processing and neuropsychology: A neural network model of Wisconsin Card Sorting and verbal fluency. Neuropsychology Review 3: 213233.PubMedGoogle Scholar
  127. Parks, R. W., Loewenstein, D. A., Dodrill, K. L., Barker, W. W., Yoshii, F., Chang, J. Y., Emran, A., Apicella, A., Sheramata, W. A., and Duara, R. (1988). Cerebral metabolic effects of a verbal fluency test: A PET scan study. Journal of Clinical & Experimental Neuropsychology 10: 565575.PubMedGoogle Scholar
  128. Paulesu, E., Goldacre, B., Scifo, P., Cappa, S. F., Gilardi, M. C., Castiglioni, I., Perani, D., and Fazio, F. (1997). Functional heterogeneity of the left inferior frontal cortex as revealed by fMRI. Neuroreport 8: 20112017.PubMedGoogle Scholar
  129. Pendleton, M. G., Heaton, R. K., Lehman, R. A., and Hulihan, D. M. (1982). Diagnostic utility of the Thurstone Word Fluency Test in neuropsychological evaluations. Journal of Clinical Neuropsychology 4: 307317.PubMedGoogle Scholar
  130. Pennington, B. F., Bennetto, L., McAleer, O., and Roberts, R. J. (1996). Executive functions and working memory: Theoretical and measurement issues. In: Lyon, G. R. and Krasnegor, N. A. (Eds.), Attention, memory, and executive function (pp. 327–348). Baltimore, MD: Paul H. Brookes Publishing Company.Google Scholar
  131. Perret, E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behavior. Neuropsychologia 12: 323330.PubMedGoogle Scholar
  132. Perry, W., Potterat, E. G., and Braff, D. L. (2001). Self-monitoring enhances Wisconsin Card Sorting Test performance in patients with schizophrenia: Performance is improved by simply asking patients to verbalize their sorting strategy. Journal of the International Neuropsychological Society 7: 344352.Google Scholar
  133. Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., and Gore, J. C. (1999). An fMRI study of Stroop Word-Color Interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry 45: 12371258.PubMedGoogle Scholar
  134. Phelps, E. A., Hyder, F., Blamire, A. M., and Shulman, R. G. (1997). FMRI of the prefrontal cortex during overt verbal fluency. Neuroreport 8: 561565.PubMedGoogle Scholar
  135. Phillips, L. H. (1997). Do “frontal tests” measure executive function? Issues of assessment and evidence from fluency tests. In: Rabbitt, P. (Ed.), Methodology of frontal and executive function (pp. 191–213). Hove, UK: Psychology Press.Google Scholar
  136. Podell, K., Lovell, M., Zimmerman, M., and Goldberg, E. (1995). The cognitive bias task and lateralized frontal lobe functions in males. Journal of Neuropsychiatry and Clinical Neurosciences 7: 491501.PubMedGoogle Scholar
  137. Posner, M. I., and Dehaene, S. (1994). Attentional networks. Trends in Neuroscience 17: 7579.Google Scholar
  138. Posner, M. I., and Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience 13: 2542.PubMedGoogle Scholar
  139. Posner, M. I., and Snyder, C. R. R. (1975). Attention and cognitive control. In: Solso, R. L. (Ed.), Information processing and cognition: The Loyola symposium (pp. 55–85). Hillsdale, NJ: Erlbaum.Google Scholar
  140. Quantz, J. O. (1897). Problems in the psychology of reading. Psychological Review Monographs 2: (No. 5).Google Scholar
  141. Rabbitt, P. (1997). Introduction: Methodologies and models in the study of executive function. In: Rabbitt, P. (Ed.), Methodology of frontal and executive function (pp. 1–38). Hove, UK: Psychology Press.Google Scholar
  142. Ragland, J. D., Gur, R. C., Glahn, D. C., Censits, D. M., Smith, R. J., Lazarev, M. G., Alavi, A., and Gur, R. E. (1998). Frontotemporal cerebral blood flow change during executive and declarative memory tasks in schizophrenia: A positron emission tomography study. Neuropsychology 12: 399413.Google Scholar
  143. Ramier, A. M., and Hécaen, H. (1970). Rôle respectif des atteintes frontales et de la latéralisation lésionnelle dans les déficits de la “fluence verbale.” Revue Neurologique 123: 1722.PubMedGoogle Scholar
  144. Ready, R. E., Stierman, L., and Paulsen, J. S. (2001). Ecological validity of neuropsychological and personality measures of executive functions. Clinical Neuropsychologist 15: 314323.PubMedGoogle Scholar
  145. Reitan, R. M., and Wolfson, D. (1994). A selective and critical review of neuropsychological deficits and the frontal lobes. Neuropsychology Review 4: 161197.PubMedGoogle Scholar
  146. Rezai, K., Andreasen, N. C., Alliger, R., Cohen, G., Swayze, V., and O’Leary, D. S. (1993). The neuropsychology of the prefrontal cortex. Archives of Neurology 50: 636642.Google Scholar
  147. Rhodes, M. G. (2004). Age-related differences in performance on the Wisconsin Card Sorting Test: A meta-analytic review. Psychology and Aging 19: 482494.PubMedGoogle Scholar
  148. Riehemann, S., Volz, H., Stuetzer, P., Smesny, S., Gaser, C., and Sauer, H. (2001). Hypofrontality in neuroleptic-naive schizophrenic patients during the Wisconsin Card Sorting Test-A fMRI study. European Archives of Psychiatry & Clinical Neuroscience 251: 6671.Google Scholar
  149. Robbins, T. W. (1998). Dissociating executive functions of the prefrontal cortex. In: Roberts, A. C., Robbins, T. W. and Weiskrantz, L. (Eds.), The prefrontal cortex: Executive and cognitive functions (pp. 117–130). New York, NY: Oxford University Press.Google Scholar
  150. Robinson, A. L., Heaton, R. K., Lehman, R. A. W., and Stilson, D. W. (1980). The utility of the Wisconsin Card Sorting Test in detecting and localizing frontal lobe lesions. Journal of Consulting and Clinical Psychology 48: 605614.Google Scholar
  151. Rosenthal, R. (1991). Meta-analytic procedures for social research (rev. ed.). Thousand Oaks, CA: Sage Publications, Inc.Google Scholar
  152. Sbordone, R. J. (1996). Ecological validity: Some critical issues for the neuropsychologist. In: Sbordone, R. J. and Long, C. J. (Eds.), Ecological validity of neuropsychological testing (pp. 15–41). Delray Beach, FL: GR/St Lucie Press, Inc.Google Scholar
  153. Sbordone, R. J. (2000). The executive functions of the brain. In: Groth-Marnat, G. (Ed.), Neuropsychological assessment in clinical practice: A guide to test interpretation and integration (pp. 437–456). New York, NY, US: John Wiley & Sons, Inc.Google Scholar
  154. Schmidt, F. (1992). What do data really mean? Research findings, meta-analysis, and cumulative knowledge in psychology. American Psychologist, 47: 1173–1181.Google Scholar
  155. Schnirman, G. M., Welsh, M. C., and Retzlaff, P. D. (1998). Development of the Tower of London–Revised. Assessment 5: 355360.PubMedGoogle Scholar
  156. Schwarzer, R. (1989). Meta-analysis programs (Version 5.3) [Computer software]. Berlin: Author.Google Scholar
  157. Sergeant, J. A., Geurts, H., and Oosterlaan, J. (2002). How specific is a deficit of executive functioning for Attention-Deficit/Hyperactivity Disorder? Behavioural Brain Research 130: 328.PubMedGoogle Scholar
  158. Shallice, T. (1988). From neuropsychology to mental structure. Cambridge: Cambridge University Press.Google Scholar
  159. Shallice, T., and Burgess, P. (1991a). Higher-order cognitive impairments and frontal lobe lesions in man. In: Levin, H. S., Eisenberg, H. M. and Benton, A. L. (Eds.), Frontal lobe function and dysfunction (pp. 125–138). New York: Oxford University Press.Google Scholar
  160. Shallice, T., and Burgess, P. (1991b). Deficits in strategy application following frontal lobe damage in man. Brain 114: 727741.PubMedGoogle Scholar
  161. Shallice, T., and Evans, M. E. (1978). The involvement of the frontal lobes in cognitive estimation. Cortex 14: 294303.PubMedGoogle Scholar
  162. Spreen, O., and Strauss, E. (1998). A compendium of neuropsychological tests: Administration, norms, and commentary (2nd ed.). New York: Oxford University Press.Google Scholar
  163. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology 18: 643662.Google Scholar
  164. Stuss, D. T., and Alexander, M. P. (2000). Executive functions and the frontal lobes: A conceptual view. Psychological Research 63: 289298.PubMedGoogle Scholar
  165. Stuss, D. T., Alexander, M. P., Hamer, L., Palumbo, C., Dempster, R., Binns, M., Levine, B., and Izukawa, D. (1998). The effects of focal anterior and posterior brain lesions on verbal fluency. Journal of the International Neuropsychological Society 4: 265278.PubMedGoogle Scholar
  166. Stuss, D. T., and Benson, D. F. (1984). Neuropsychological studies of the frontal lobes. Psychological Bulletin 95: 328.PubMedGoogle Scholar
  167. Stuss, D. T., and Benson, D. F. (1986). The frontal lobes. NY: Raven Press.Google Scholar
  168. Stuss, D. T., Benson, D. F., Kaplan, E. F., Weir, W. S., and Della Malva, C. (1981). Leucotomized and nonleucotomized schizophrenics: Comparison on tests of attention. Biological Psychiatry 16: 10851100.PubMedGoogle Scholar
  169. Stuss, D. T., Benson, D. F., Kaplan, E. F., Weir, W. S., Naeser, M. A., Lieberman, I., and Ferrill, D. (1983). The involvement of orbitofrontal cerebrum in cognitive tasks. Neuropsychologia 21: 235248.PubMedGoogle Scholar
  170. Stuss, D. T., Floden, D., Alexander, M. P., Levine, B., and Katz, D. (2001). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia 39: 771786.PubMedGoogle Scholar
  171. Stuss, D. T., and Levine, B. (2002). Adult clinical neuropsychology: Lessons from studies of the frontal lobes. Annual Review of Psychology 53: 401433.PubMedGoogle Scholar
  172. Stuss, D. T., Levine, B., Alexander, M. P., Hong, J., Palumbo, C., Hamer, L., Murphy, K. J., and Isukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia 38: 388402.PubMedGoogle Scholar
  173. Stuss, D. T., Shallice, T., Alexander, M. P., and Picton, T. W. (1995). A multidisciplinary approach to anterior attentional functions. Annals of the New York Academy of Sciences 769: 191211.PubMedGoogle Scholar
  174. Taylor, S. F., Kornblum, S., Lauber, E. J., Minoshima, S., and Koeppe, R. A. (1997). Isolation of specific interference processing in the Stroop task: PET activation studies. Neuroimage 6: 8192.PubMedGoogle Scholar
  175. Teuber, H. L., Battersby, W. S., and Bender, M. B. (1951). Performance of complex visual tasks after cerebral lesions. Journal of Nervous and Mental Disease 114: 413429.PubMedCrossRefGoogle Scholar
  176. Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago Press.Google Scholar
  177. Tien, A. Y., Schlaepfer, T. E., Orr, W., and Pearlson, G. D. (1998). SPECT brain blood flow changes with continuous ligand infusion during previously learned WCST performance. Psychiatry Research and Neuroimaging 82: 4752.Google Scholar
  178. Tranel, D., Anderson, S. W., and Benton, A. (1994). Development of the concept of “executive function” and its relationship to the frontal lobes. In: Boller, F. and Grafman, J. (Eds.), Handbook of Neuropsychology (Vol. 9, pp. 125–148). Amsterdam: Elsevier.Google Scholar
  179. Troyer, A. K., Moscovitch, M., Winocur, G., Alexander, M. P., and Stuss, D. (1998). Clustering and switching on verbal fluency: The effects of focal frontal- and temporal-lobe lesions. Neuropsychologia 36: 499504.PubMedGoogle Scholar
  180. van den Broek, M. D., Bradshaw, C. M., and Szabadi, E. (1993). Utility of the Modified Wisconsin Card Sorting Test in neuropsychological assessment. British Journal of Clinical Psychology 32: 333343.PubMedGoogle Scholar
  181. Vandierendonck, A. (2000). Executive functions and task switching. Psychologica Belgica 40: 211226.Google Scholar
  182. Vendrell, P., Junque, C., Pujol, J., Jurado, M. A., Molet, J., and Grafman, J. (1995). The role of prefrontal regions in the Stroop task. Neuropsychologia 33: 341352.PubMedGoogle Scholar
  183. Vigotsky, L. (1934). Thought in schizophrenia. Archives of Neurology and Psychiatry 31: 10631077.Google Scholar
  184. Volz, H., Gaser, C., Häger, F., Rzanny, R., Mentzel, H., Kreitschmann-Andermahr, I., Kaiser, W. A., and Sauer, H. (1997). Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test–A functional MRI study on healthy volunteers and schizophrenics. Psychiatry Research: Neuroimaging 75: 145–157.PubMedGoogle Scholar
  185. Wallesch, C. W., Kornhuber, H. H., Kunz, T., and Brunner, R. J. (1983). Neuropsychological deficits associated with small unilateral thalamic lesions. Brain 106: 141152.PubMedGoogle Scholar
  186. Wang, L. (1987). Concept formation and frontal lobe function: The search for a clinical frontal lobe test. In: Perecman, E. (Ed.), The frontal lobes revisited (pp. 189–205). New York: IRBN Press.Google Scholar
  187. Warbuton, E., Wise, R. J. S., Price, C. J., Weiller, C., Hadar, U., Ramsay, S., and Frackowiak, R. S. J. (1996). Noun and verb retrieval by normal subjects: Studies with PET. Brain 119: 159179.Google Scholar
  188. Warkentin, S., and Passant, U. (1997). Functional imaging of the frontal lobes in organic dementia. Dementia & Geriatric Cognitive Disorders 8: 105109.Google Scholar
  189. Weigl, E. (1941). On the psychology of so-called processes of abstraction. Journal of Abnormal and Social Psychology 36: 333.Google Scholar
  190. Weinberger, D. R., Berman, K. F., and Zec, R. F. (1986). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow (rCBF) evidence. Archives of General Psychiatry 43: 114124.PubMedGoogle Scholar
  191. Welsh, M. C. (2002). Developmental and clinical variations in executive functions. In: Molfese, D. L. and Molfese, V. J. (Eds.), Developmental variations in learning: Applications to social, executive function, language, and reading skills (pp. 139–185). Mahwah, NJ, US: Lawrence Erlbaum Associates.Google Scholar
  192. Welsh, M. C., Satterlee-Cartmell, T., and Stine, M. (1999). Towers of Hanoi and London: Contribution of working memory and inhibition to performance. Brain & Cognition 41: 231242.Google Scholar
  193. Wilson, B. A. (1993). Ecological validity of neuropsychological assessment: Do neuropsychological indexes predict performance in everyday activities? Applied & Preventive Psychology 2: 209215.Google Scholar
  194. Zable, M., and Harlow, H. F. (1946). The performance of rhesus monkeys on a series of object quality and positional discriminations and discrimination reversals. Journal of Comparative Psychology 39: 1323.Google Scholar
  195. Zangwill, O. L. (1966). Psychological deficits associated with frontal-lobe lesions. International Journal of Neurology 5: 395402.Google Scholar
  196. Zelazo, P. D., Carter, A., Reznick, J. S., and Frye, D. (1997). Early development of executive function: A problem-solving framework. Review of General Psychology 1: 198226.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Julie A. Alvarez
    • 1
  • Eugene Emory
    • 2
  1. 1.Department of Psychology, Emory UniversityAtlantaUSA
  2. 2.Center for Prenatal Assessment and Human DevelopmentEmory UniversityAtlantaUSA

Personalised recommendations