Neuropsychology Review

, Volume 15, Issue 2, pp 59–71 | Cite as

The Role of the Corpus Callosum in Interhemispheric Transfer of Information: Excitation or Inhibition?

  • Juliana S. BloomEmail author
  • George W. Hynd


The corpus callosum is the major neural pathway that connects homologous cortical areas of the two cerebral hemispheres. The nature of how that interhemispheric connection is manifested is the topic of this review; specifically, does the corpus callosum serve to communicate an inhibitory or excitatory influence on the contralateral hemisphere? Several studies take the position that the corpus callosum provides the pathway through which a hemisphere or cortical area can inhibit the other hemisphere or homologous cortical area in order to facilitate optimal functional capacity. Other studies suggest that the corpus callosum integrates information across cerebral hemispheres and thus serves an excitatory function in interhemispheric communication. This review examines these two contrasting theories of interhemispheric communication. Studies of callosotomies, callosal agenesis, language disorders, theories of lateralization and hemispheric asymmetry, and comparative research are critically considered. The available research, no matter how limited, primarily supports the notion that the corpus callosum serves a predominantly excitatory function. There is evidence, however, to support both theories and the possibility remains that the corpus callosum can serve both an inhibitory and excitatory influence on the contralateral hemisphere.


corpus callosum interhemispheric communication excitation inhibition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banich, M. T., and Belder, A. (1990). Interhemispheric interaction: How do the hemispheres divide and conquer the task? Cortex 26: 77–94.PubMedGoogle Scholar
  2. Banich, M. T. (1995a). Interhemispheric processing: Theoretical considerations and empirical approaches. In Davidson, R. J., and Hugdahl, K. (eds.), Brain Asymmetry, MIT Press, Cambridge, MA. pp. 427–450.Google Scholar
  3. Banich, M. T. (1995b). Interhemispheric interaction: Mechanisms of unified processing. In Kitterle, F. L. (ed.), Hemispheric Communication: Mechanisms and Models, Erlbaum, Hillsdale, NJ. pp. 271–300.Google Scholar
  4. Beaton, A. (1985). Left Side, Right Side: A Review of Laterality Research, London, England: Batsford Academic and Educational.Google Scholar
  5. Beaton, A. (1997). The relation of planum temporale asymmetry and morphology of the corpus callosum to handedness, gender and dyslexia: A review of the evidence. Brain Language 60: 255–322.CrossRefGoogle Scholar
  6. Bryden, M. P. (1988). An overview of the dichotic listening procedure and its relation to cerebral organization. In Hugdahl, K. (ed.), Handbook of Dichotic Listening: Theory, Methods, and Research. Chichester, Great Britain: Wiley.Google Scholar
  7. Buono, L. A. (1997). Evidence for nonverbal learning disability in children with brain tumors. (Doctoral dissertation). Abstr. Int.: Sect. B: Sci. Eng. 57(8-B): 5318.Google Scholar
  8. Chiarello, C. (1995). Does the corpus callosum play a role in the activation and suppression of ambiguous word meanings? In Kitterle, F. L. (ed.), Hemispheric Communication: Mechanisms and Models, Erlbaum, Hillsdale, NJ. pp. 271–300.Google Scholar
  9. Chiarello, C., Maxfield, L., and Kahan, T. (1995). Initial right hemisphere activation of subordinate word meanings is not due to homotopic callosal inhibition. Psychonom. Bull. Rev. 2(3): 375–380.Google Scholar
  10. Clarke, J. M., Lufkin, R. B., and Zaidel, E. (1993). Corpus Callosum morphometry and dichotic listening performance: Individual differences in functional interhemispheric interaction. Neurops. 31(6): 547–557.CrossRefGoogle Scholar
  11. Cook, N. D. (1984). Homotopic callosal inhibition. Brain Language 23: 116–125.CrossRefGoogle Scholar
  12. Cook, N. D. (1999). Simulating consciousness in a bilateral neural network: “Nuclear” and “fringe” awareness. Consciousness Cogn.: Int. J. 8(1): 62–93.CrossRefGoogle Scholar
  13. Corballis, M. C. (1983). Human Laterality. New York: Academic Press.Google Scholar
  14. Crandall, P. H. (1985). Clinical phenomenology following hemispherectomy and the syndromes of hemispheric disconnection. In Benson, D. F., and Zaidel, E. (eds.), The Dual Brain: Hemispheric Specialization in Humans, Guilford Press, New York. pp. 277–288.Google Scholar
  15. Denenberg, V. H., Gall, J. S., Berrebi, A., and Yutzey, D. A. (1986). Callosal mediation of cortical inhibition in the lateralized rat brain. Brain Res. 397(2): 327–332.CrossRefPubMedGoogle Scholar
  16. Dennis, M. (1976). Impaired sensory and motor differentiation with corpus callosum agenesis: A lack of callosal inhibition during ontogeny? Neuropsychol. 14(4): 455–469.CrossRefGoogle Scholar
  17. Dorion, A. A., Chantome, M., Hasboun, D., Zouaoui, A., Marsault, C., Capron, C., et al. (2000). Hemispheric asymmetry and corpus callosum morphometry: A magnetic resonance imaging study. Neurosci. Res. 36: 9–13.CrossRefPubMedGoogle Scholar
  18. Duara, R., Kushch, A., Gross-Glenn, K., Barker, W., Jallad, B., Pascal, S., Loewenstein, D. A., Sheldon, J., Rabin, M., Levin, B., & Lubs, H. (1991). Neuroanatomic differences between dyslexic and normal readers on magnetic resonance imaging scans. Arch. Neurol. 48: 410–416.PubMedGoogle Scholar
  19. Egaas, B., Courchesne, E., and Saitoh, O. (1995). Reduced size of the corpus callosum in autism. Arch. Neurol. 52(8): 794–801.PubMedGoogle Scholar
  20. Galaburda, A. M. (1984). Anatomical asymmetries. In Galaburda, A. M., and Geschwind, N. (eds.), Cerebral Dominance, Harvard Press, Cambridge, MA. pp. 11–25.Google Scholar
  21. Galaburda, A. M. (1995). Anatomic basis of cerebral dominance. In Davidson, R. J., and Hugdahl, K. (eds.), Brain Asymmetry, MIT Press,Cambridge, MA. pp. 51–74.Google Scholar
  22. Galaburda, A. M., Rosen, G. D., and Sherman, G. F. (1990a). Individual variability in cortical organization: Its relationship to brain laterality and implications to function. Neuropsy. 28(6): 529–546.CrossRefGoogle Scholar
  23. Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., and Geschwind, N. (1990b). Developmental dyslexia: Four consecutive patients with cortical abnormalities. Annals of Neurology 18: 222–233.CrossRefGoogle Scholar
  24. Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain 123: 1293–1326.CrossRefPubMedGoogle Scholar
  25. Geschwind, N., and Galaburda, A. M. (1985). Cerebral lateralization: Biological mechanisms, associations, and pathology. Arch. Neurol. 42: 428–459.PubMedGoogle Scholar
  26. Geschwind, N., and Levitsky, W. (1968). Human-brain: Left-right asymmetries in temporal speech region. Science 161: 186–187.PubMedGoogle Scholar
  27. Gilles, F. H., Leviton, A., and Dooling, E. C. (1983). The Developing Human Brain: Growth and Epidemiologic Neuropathology, Great Road, Littleton, MA: John Wright & Sons.Google Scholar
  28. Harrington, A. (1995). Unfinished business: models of laterality in the nineteenth century. In Davidson, R. J., and Hugdahl, K. (eds.), Brain Asymmetry, MIT Press, Cambridge, MA. pp. 3–27.Google Scholar
  29. Hellige, J. B. (1993). Hemispheric Asymmetry: What's Right and What's Left, Harvard University Press, Cambridge, MA.Google Scholar
  30. Hopkins, W. D., and Rilling, J. K. (2000). A comparative MRI study of the relationship between neuroanatomical asymmetry and interhemispheric connectivity in primates: Implication for the evolution of functional asymmetries. Behav. Neurosci. 114(4): 739–748.Google Scholar
  31. Hynd, G. W., and Willis, W. G. (1988). Pediatric Neuropsychology, New York: Grune & Stratton.Google Scholar
  32. Hynd, G. W., Hall, J., Novey, E. S., Eliopulos, D., Black, K., Gonzalez, J. J., Edmonds, J. E., Riccio, C., & Cohen, M. (1995). Dyslexia and corpus callosum morphology. Arch. Neurol. 52: 32–38.PubMedGoogle Scholar
  33. Hynd, G. W., Semrud-Clikeman, M., Lorys, A. R., Novey, E. S., and Eliopulos, D. (1990). Brain morphology in developmental dyslexia and attention-deficit disorder/hyperactivity. Arch. Neurol. 47: 919–926.PubMedGoogle Scholar
  34. Kinsbourne, M., and Hiscock, M. (1977). Does cerebral dominance develop? In Segalowitz, S. J., and Gruber, F. A. (eds.), Language development and neurological theory, Academic Press, New York. pp. 171–191.Google Scholar
  35. Kinsbourne, M. (1975). The mechanism of hemispheric control of the lateral gradient of attention. In Rabbit, P. M., and Dornic, S. (eds.), Attention and Performance, Vol. 5, Academic Press, New York.Google Scholar
  36. Kinsbourne, M. (1982). Hemispheric specialization and the growth of human understanding. Am. Psychol. 37: 411–420.CrossRefPubMedGoogle Scholar
  37. Larsen, J. P., Hoein, T., and Odegaard, H. (1992). Magnetic resonance imaging of the corpus callosum in developmental dyslexia. Cogn. Neuropsychol. 9: 123–134.Google Scholar
  38. Larsen, J. P., Hoien, T., Lundberg, I., and Odegaard, H. (1990). MRI evaluation of the size and symmetry of the planum temporale in adolescents with developmental dyslexia. Brain Language 39: 289–301.CrossRefGoogle Scholar
  39. Lassonde, M. (1986). The facilitatory influence of the corpus callosum on intrahemispheric processing. In Lepore, F., Ptito, M., and Jasper, H. H. (eds.), Two Hemispheres—One Brain: Functions of the Corpus Callosum, Alan Liss, New York. pp. 385–402.Google Scholar
  40. LeMay, M. (1984). Radiological, development, and fossil asymmetries. In Galaburda, A. M., and Geschwind, N. (eds.), Cerebral Dominance, Harvard Press, Cambridge, MA. pp. 26–42.Google Scholar
  41. Lezak, M. D. (1995). Neuropsychological Assessment, Oxford University Press New York.Google Scholar
  42. Liederman, J. (1995). A reinterpretation of the split-brain syndrome: Implications for the function of cortico-cortical fibers. In Davidson, R. J., and Hugdahl, K. (eds.), Brain Asymmetry, MIT Press, Cambridge, MA. pp. 451–490.Google Scholar
  43. Lyoo, K., Noam, G. G., Lee, C. K., Lee, H. K., Kennedy, B. P., and Renshaw, P. F. (1996). The corpus callosum and lateral ventricles in children with attention-deficit hyperactivity disorder: A brain magnetic resonance imaging study. Biol. Psychiatr. 40: 1060–1063.CrossRefGoogle Scholar
  44. Myers, R. E. (1960). Failure of intermanual transfer in corpus callosum-sectioned chimpanzees. Anatom. Rec. 136: 358.Google Scholar
  45. Myers, R. E., and Sperry, R. W. (1953). Interocular transfer of a visual form discrimination habit in cats after section of the corpus callosum and optic chiasm. Anatom Rec. 115: 351–352.Google Scholar
  46. Oka, S., Miyamoto, O., Janjua, N. A., Honjo-Fujiwara, N., Ohkawa, M., Nagao, S., Kondo, H., Minami, T., Toyoshima, T., & Itano, T. (1999). Re-evaluation of sexual dimorphism in human corpus callosum. Neuro Report 10(5): 937–940.Google Scholar
  47. Olk, B., and Hartje, W. (2001). The bilateral effect: Callosal inhibition or intrahemispheric competition? Brain Cogn. 45(3): 317–324.CrossRefPubMedGoogle Scholar
  48. Preis, S., Steinmetz, H., Knorr, U., and Jancke, L. (2000). Corpus callosum size in children with developmental language disorder. Cogn. Brain Res. 10: 37–44.CrossRefGoogle Scholar
  49. Pribram, K. H. (1986). The role of cortico-cortical connections. In Lepore, F., Ptito, M., and Jasper, H. H. (eds.), Two Hemispheres— One Brain: Functions of the Corpus Callosum, Alan Liss, New York. pp. 523–540.Google Scholar
  50. Purves, D., Augustine, G., Fitzpatrick, D., Katz, L., LaMantia, A., and McNamara, J. (1997). Neuroscience, Sinauer, Sunderland, MA.Google Scholar
  51. Ramachandran, V. S., and Blakeslee, S. (1998). Phantoms in the Brain: Human Nature and the Architecture of the Mind, Fourth Estate. London, England.Google Scholar
  52. Rattenborg, N. C., Amlaner, C. J., and Lima, S. L. (2000). Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci. Biobehav. Rev. 24(8): 817–842.CrossRefPubMedGoogle Scholar
  53. Roberts, D. W. (1999). Corpus callosotomy in the treatment of neuronal migration disorders. In Kotagal, P., and Luders, H. O. (eds.), The Epilepsies: Etiologies and Prevention, Academic Press, San Diego, CA. pp. 103–112.Google Scholar
  54. Schaefer, G. B., and Bodensteiner, J. B. (1999). Developmental anomalies of the brain in mental retardation. Int. Rev. Psychiatr. 11: 47–55.CrossRefGoogle Scholar
  55. Sergent (1983). Unified response to bilateral hemispheric stimulation by a split-brain patient. Nature 305: 800–802.CrossRefPubMedGoogle Scholar
  56. Shafer, V. L., Schwartz, R. G., Morr, M. L., Kessler, K. L., and Kurtzberg, D. (2000). Deviant neurophysiological asymmetry in children with language impairment. Cogn. Neurosci. Neuropsychol. 11(17): 3715–3718.Google Scholar
  57. Shaywitz, B., Shaywitz, S., Pugh, K., Constable, T., Skudlarksi, P., Fulbright, R., Bronen, R., Fletcher, J., Shankweiler, D., Katz, L., & Gore, J. (1995). Sex differences in the functional organization of the brain for language. Nature 373(6515): 607–609.CrossRefPubMedGoogle Scholar
  58. Smock, T. K. (1999). Physiological Psychology: A Neuroscience Approach, Prentice-Hall Upper Saddle River, NJ.Google Scholar
  59. Sperry, R. W. (1958) Corpus callosum and interhemispheric transfer in the moneky (Macaca mulatta). Anatom. Rec. 131: 297.Google Scholar
  60. Sperry, R. W. (1974) Lateral specialization in the surgically separated hemispheres. In Schmitt, F. D., and Worden, F. G. (eds.), The Neuroscience: Third Study Program, MIT Press, Cambridge, MA. pp. 5–19.Google Scholar
  61. Sperry, R. W., Stamm, J. S., and Miner, N. (1956). Relearning tests for interocular transfer following division of the optic chiasma and corpus callosum in cats. J. Comp. Physiol. Psychol. 49: 529–533.Google Scholar
  62. Sperry, R. W., Zaidel, E., and Zaidel, D. (1979). Self recognition and social awareness in the deconnected minor hemisphere. Neuropsychol. 17: 153–166.CrossRefGoogle Scholar
  63. Wang, P. P., Doherty, S., Hesselink, J. R., and Bellugi, U. (1992). Callosal morphology concurs with neurobehavioral and neuropathological findings in two neurodevelopmental disorders. Arch. Neurol. 49: 407–411PubMedGoogle Scholar
  64. Watson, R. T., Valenstein, E., Day, A. L., and Heilman, K. M. (1984). The effect of corpus callosum lesions on unilateral neglect in monkeys. Neurology 34(6): 812–815.Google Scholar
  65. Yazgan, M. Y., Wexler, B. E., Kinsbourne, M., Peterson, B., and Leckman, J. F. (1995). Functional significance of individual variations in callosal area. Neuropsy. 33(6): 769–779.CrossRefGoogle Scholar
  66. Zaidel, E. (1995). Interhemispheric transfer in the split brain: Long-term status following complete cerebral commissurectomy. In Davidson, R. J., and Hugdahl, K. (eds.), Brain Asymmetry, MIT Press, Cambridge, MA. pp. 491–532.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Clinical and Developmental NeuropsychologyUniversity of GeorgiaAthens
  2. 2.Purdue UniversityWest Lafayette

Personalised recommendations