Neuropsychology Review

, Volume 14, Issue 4, pp 197–224 | Cite as

Neuropsychological Functioning Associated with High-Altitude Exposure

  • Javier Virués-Ortega
  • Gualberto Buela-Casal
  • Eduardo Garrido
  • Bernardino Alcázar
Article

Abstract

This article focuses on neuropsychological functioning at moderate, high, and extreme altitude. This article summarizes the available literature on respiratory, circulatory, and brain determinants on adaptation to hypoxia that are hypothesized to be responsible for neuropsychological impairment due to altitude. Effects on sleep are also described. At central level, periventricular focal damages (leuko-araiosis) and cortical atrophy have been observed. Frontal lobe and middle temporal lobe alterations are also presumed. A review is provided regarding the effects on psychomotor performance, perception, learning, memory, language, cognitive flexibility, and metamemory. Increase of reaction time and latency of P300 are observed. Reduced thresholds of tact, smell, pain, and taste, together with somesthetic illusions and visual hallucinations have been reported. Impairment in codification and short-term memory are especially noticeable above 6,000 m. Alterations in accuracy and motor speed are identified at lower altitudes. Deficits in verbal fluency, language production, cognitive fluency, and metamemory are also detected. The moderating effects of personality variables over the above-mentioned processes are discussed. Finally, methodological flaws found in the literature are detailed and some applied proposals are suggested.

KEY WORDS:

altitude acute hypoxia hypocapnia brain dysfunction mild neuropsychological impairment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abraini, J. H., Bouquet, C., Joulia, F., Nicolas, M., and Kriem, B. (1998). Cognitive performance during a simulated climb of Mount Everest: Implications of brain function and central adaptive processes under chronic hypoxia stress. Eur. J. Physiol. 436: 553–559.Google Scholar
  2. Adams, R. A., Victor, M., and Ropper, A. H. (1999). Trastornos metabólicos adquiridos del sistema nervioso [Acquired metabolic nervous system disorders]. Principios de Neurología (7th ed.) (pp. 961–967), McGraw Hill, Mexico DF.Google Scholar
  3. Agadzhanyan, N. A., Doronin, G. P., and Elfimov, A. I. (1972). Influence of pressure chamber training on conditioned chain motor reflexes. Zh. Vyssh. Nerv. Deyat. 22: 27–45.Google Scholar
  4. Anholm, J. D., Powles, A. C., Downey, R., Houston, C. S., Sutton, J. R., Bonnet, M. H., et al. (1992). Operation Everest II: Arterial oxygen saturation and sleep at extreme simulated altitude. Am. Rev. Respir. Dis. 145: 817–826.Google Scholar
  5. Anooshiravani, M., Dumont, L., Mardirosoff, C., and Soto-Debeuz, G. (1999). Brain magnetic resonance imaging (MRI) and neurological changes after a single high altitude climb. Med. Sci. Sports Exerc. 31: 969–972.Google Scholar
  6. Bahrke, M. S., and Shukitt-Hale, B. (1993). Effect of altitude on mood, behavior and cognitive functioning. Sports Med. 16: 97–125.Google Scholar
  7. Bakharev, V. D. (1981). Investigation of memory during adaptation to high mountain conditions. Hum. Physiol. 7: 409–414.Google Scholar
  8. Barach, A. L. (1944). Impairment in emotional control producing in both by lowering and raising the oxygen pressure in the atmosphere. Med. Clin. North Am. 28: 704–718.Google Scholar
  9. Bartholomew, C. J., Jensen, W., Petros, T. V., Ferraro, F. R., Fire, K. M., Biberdorf, D., et al. (1999). The effect of moderate levels of simulated altitude on sustained cognitive performance. Int. J. Aviat. Psychol. 9: 351–359.Google Scholar
  10. Basnyat, B. (1997). Seizure and hemiparesis at high-altitude outside the setting of acute mountain sickness. Wilderness Environ. Med. 8: 221–222.Google Scholar
  11. Basnyat, B. (2002). Case report: Delirium at high altitude. High Alt. Med. Biol. 3: 69–71.Google Scholar
  12. Basnyat, B., and Murdoch, D. R. (2003). High-altitude illness. Lancet. 361: 1967–1974.CrossRefPubMedGoogle Scholar
  13. Baumgartner, R. W., Spyridopoulus, I., Bärtsch, P., Maggiorini, M., and Oelz, O. (1999). Acute mountain sickness is not related to cerebral blood flow: A decompression chamber study. J. Appl. Physiol. 86: 1578–1582.Google Scholar
  14. Bedard, M., Montplaisir, J., Richer, F., Rouleau, I., and Malo, J. (1991). Obstructive sleep apnea syndrome: pathogenesis of neuropsychological deficits. J. Clin. Exp. Neuropsychol. 13: 950–964.Google Scholar
  15. Berry, D., McConnel, J. W., Phillips, B. A., Carswell, C. M., Lamb, D. G., and Prine, B. C. (1989). Isocapnic hypoxemia and neuropsychological functioning. J. Clin. Exp. Neuropsychol. 11: 241–251.Google Scholar
  16. Bert, P. (1978). La Pression Barometrique [The barometric pressure]. In: Hichcock, M. A., Hichcock, F. A., and Colombus, O. H. (eds. and trans.), Undersea Medical Society, Bethesda, MD. (Original document published 1878)Google Scholar
  17. Bolmont, B., and Abraini, J. H. (2001). State-anxiety and low moods: Evidence for a single concept. Physiol. Behav. 74: 421–424.Google Scholar
  18. Bolmont, B., Bouquet, C., and Thullier, F. (2001). Relationship of personality traits with performance in RT, psychomotor ability, and mental efficiency during a 31-day simulated climb of Mount Everest in a hypobaric chamber. Percept. Mot. Skills 92: 1022–1030.Google Scholar
  19. Bolmont, B., Thullier, F., and Abraini, J. H. (2000). Relationship between mood states and performances in RT, psychomotor ability, and mental efficiency during 31-day gradual decompression in a hypobaric chamber from sea level to 8848 m equivalent altitude. Physiol. Behav. 71: 469–476.Google Scholar
  20. Bonnon, M., Nöel-Jorand, M. C., and Therme, P. (2000). Effects of different stay duration in attentional performance during two mountain expeditions. Aviat. Space Environ. Med. 71: 678–684.Google Scholar
  21. Bouquet, C., Gardette, B., Gortan, C., and Abraini, J. H. (1999). Psychomotor skills learning under chronic hypoxia. Neuroreport 10: 3093–3099.Google Scholar
  22. Bouquet, C., Gardette, B., Gortan, C., Therme, P., and Abraini, J. H. (2000). Color discrimination under chronic hypoxia conditions (simulated climb “Everest-Comex 97”). Percept. Mot. Skills 90: 169–179.Google Scholar
  23. Bradwell, A. R., Williams, D., Beazley, M., and Imray, C. H. E. (1999). Can acute mountain sickness be induced by exercise? In: Roach, R. C., Wagner, P. D., and Hackett, P. H. (eds.),Hypoxia: Into the Next Millennium (p. 368), Plenum/Kluwer Academic Publishing, New York.Google Scholar
  24. Brierley, J. B. (1976). Cerebral Hypoxia (Chapter II). In: Blackwood, W., and Corsellis, J. A. (eds.), Greenfield’s Neuropathology, Arnold, London.Google Scholar
  25. Brugger, P., Regard, M., Landis, T., and Oelz, O. (1999). Hallucinatory experiences in extreme altitude clambers. Neuropsychiatry Neuropsychol. Behav. Neurol. 12: 67–71.Google Scholar
  26. Buguet, A., Pivot, A., Montmayeur, A., and Tapie, P. (1994). Ambulatory sleep-wake recording in an acclimatized mountaineer over 8 days at high altitude. J. Wilderness Med. 5: 399–404.Google Scholar
  27. Burkett, P. R., and Perrin, W. F. (1976). Hypoxia and auditory thresholds. Aviat. Space Environ. Med. 47: 649–651.Google Scholar
  28. Bushov, Y. V., Makhnaham, A. V., and Protasov, K .T. (1994). Analysis of individual differences in human psychological reaction to combined hypoxic effect. Human Physiol. 19: 302–306.Google Scholar
  29. Cahoon, R. L. (1970). Vigilance performance under hypoxia. J. Appl. Psychol. 54: 479–483.Google Scholar
  30. Cahoon, R. L. (1972). Simple decision making at high altitude. Ergonomics 15: 157–164.Google Scholar
  31. Carretié, L., and Iglesias, J. (1995). Estudio electrofisiológico de la actividad cerebral relacionada con acontecimientos discretos [Electrophysiological study of brain activity related to enviromental events]. In: Carretié, L., and Iglesias, J. (eds.), Psicofisiología: Fundamentos Metodológicos (pp. 120–121), Pirámide, Madrid, Spain.Google Scholar
  32. Castelló-Roca, A. (1993). Hombre, Montaña y Medicina (p. 22), [Man, Mountains and Medicine]. Editor Service, Barcelona, Spain.Google Scholar
  33. Cavaletti, G., Moroni, R., Garavaglia, P., and Tredici, G. (1987). Brain damage after high-altitude climbs without oxygen. Lancet 10: 101.Google Scholar
  34. Clark, C. F., Heaton, R. K., and Weins, A. N. (1983). Neuropsychological functioning after prolonged high altitude exposure in mountaineering. Aviat. Space Environ. Med. 54: 202–207.Google Scholar
  35. Clark, W. C., and Clark, S. B. (1980). Pain responses in Nepalese porters. Science 209: 410–412.Google Scholar
  36. Coote, J. H., Stone, B. M., and Tsang, G. (1992). Sleep of Andean high altitude natives. Eur. J. Appl. Physiol. 64: 178–181.Google Scholar
  37. Coote, J. H., Tsang, B., and Baker, A. (1993a). Respiratory changes and quality sleep in young high altitude dwellers in the Andes of Peru. Eur. J. Appl. Physiol. 66: 249–253.Google Scholar
  38. Coote, J. H., Tsang, B., and Baker, A. (1993b). Polycythemia and central sleep apnea in high altitude residents of the Andes. J. Physiol. 459: 749.Google Scholar
  39. Crews, W. D., Jeffreson, A. L., Bolduc, T., Elliott, J. B., Ferro, N. M., Broshek, D. K., et al. (2001). Neuropsychological dysfunction in patients suffering from end-stage chronic obstructive pulmonary disease. Arch. Clin. Neuropsychol. 16: 643–652.Google Scholar
  40. Crow, T. J., and Kelman, G. R. (1969). Physiological effects of mild hypoxia. J. Physiol. 24: 204.Google Scholar
  41. Crow, T., and Kelman, G. (1971). Effect of mild acute hypoxia on human short-term. Br. J. Anesth. 43: 548–552.Google Scholar
  42. Crow, T., and Kelman, G. (1973). Psychological effects of mild acute hypoxia. Br. J. Anesth. 43: 335–337.Google Scholar
  43. Cudaback, D. D. (1984). Four-km altitude effects on performance and health. Publ. Astronomical Soc. Pac. 96: 463–477.Google Scholar
  44. Chleide, E., Bruhwyler, J., and Mercier, M. (1991). Effect of chronic hypoxic treatment in the retention of fixed -interval responding. Physiol. Behav. 49: 465–470.Google Scholar
  45. Dahmea, B. (1996). Interoception of airway resistance in healthy and asthmatic subjects. Biol. Psychol. 43: 247–248.Google Scholar
  46. De Acosta, J. (1590). Historia Natural Y Moral de Las Indias, Libro III [Natural and morale history of America: Vol. 3]. Juan de León, Sevilla, Spain.Google Scholar
  47. Denison, D. M., Ledwith, F., Poulton, E. C. (1966). Complex reaction times at simulated cabin altitudes at 5000 feet and 8000 feetAerospace Med. 37: 1010–1013.Google Scholar
  48. Doughty, H. A., and Bearmore, C. (1994). Bleeding time at altitude. J. R. Soc. Med. 87: 317–319.Google Scholar
  49. Dunlap, K. (1918). Medical studies in aviation: IV. Psychologic observations and methods. J. Am. Med. Assoc. 71: 1392–1393.Google Scholar
  50. Echemendia, R. J., and Julian, L. J. (2001). Mild traumatic brain injury in sports: Neuropsychology’s contribution to a developing field. Neuropsychol. Rev. 11: 69–88.Google Scholar
  51. Ettinger, R. H., and Sttadon, J. E. (1982). Decreased feeding associated with acute hypoxia in rats. Physiol. Behav. 29: 455–458.Google Scholar
  52. Evans, W., and Wit, N. F. (1966). The interaction of high altitude and psychotropic drug action. Psychopharmacologua 10: 184–188.Google Scholar
  53. Farrace, S., Cenni, P., Tuozzi, G., Casagrande, M., Barbarito, B., and Peri, A. (1999). Endocrine and psychophysiological aspects of human adaptation to the extreme. Physiol. Behav. 66: 613–620.Google Scholar
  54. Findley, L., Barth, J., Powers, D., Wilhoit, S., Boyd, D., and Suratt, P. (1986). Cognitive impairments in patients with obstructive sleep apnea and associated hypoxemia. Chest 90: 696–690.Google Scholar
  55. Finesinger, J. E., Lindermann, E., Brazier, M. A. B., and Chapple, E. D. (1947). The effect of anoxia as measured by the electroencephalogram and the interaction chronogram of psychoneurotics patients. Am. J. Psychiatry. 103: 738–748.Google Scholar
  56. Fleisch, A., and Von Murant, A. (1944). Klimaphysiologische Untersuchungen in der Schweiz, Part I [Environmental physiology research in Switzerland, Part I]. Bemo Schwabe, Basel, Switzerland.Google Scholar
  57. Fleisch, A., and Von Murant, A. (1948). Klimaphysiologische Untersuchungen in Der Schweiz, Part II [Environmental physiology research in Switzerland, Part II]. Bemo Schwabe, Basel, Switzerland.Google Scholar
  58. Forster, H. V., Dempsey, J. A., Birnbaum, M. L., Reddan, W. G., Thoden, J. S., Grover, R. F., et al. (1971). Effect of chronic exposure to hypoxia on ventilatory response to CO2 and hypoxia. J. Appl. Physiol. 31: 586–592.Google Scholar
  59. Forster, P. J. (1985). Effects of different ascent profiles on performance at 4200 m elevation. Aviat. Space Environ. Med. 56: 758–764.Google Scholar
  60. Fowler, B., and Adams, J. (1993). Dissociation of the effects of alcohol and amphetamine on inert gas narcosis using reaction time and P300 latency. Aviat. Space Environ. Med. 64: 493–499.Google Scholar
  61. Fowler, B., Elcombe, D. D., Kelso, B., and Porlier, G. (1987). The threshold for hypoxia effects on perceptual-motor performance. Hum. Factors 29: 61–66.Google Scholar
  62. Fowler, B., and Grant, A. (2000). Hearing thresholds acute hypoxia and relationship to slowing in the auditory modality. Aviat. Space Environ. Med. 71: 946–949.Google Scholar
  63. Fowler, B., and Lindeis, A. E. (1992). The effect of hypoxia on auditory RT and P300 latency. Aviat. Space Environ. Med. 63: 976–981.Google Scholar
  64. Fowler, B., and Prlic, H. (1995). A comparison of visual and auditory RT and P300 latency thresholds to acute hypoxia. Aviat. Space Environ. Med. 66: 645–650.Google Scholar
  65. Fowler, B., Prlic, H., and Brabant, M. (1994). Acute hypoxia fails to influence two aspects of short-term memory: implications for the source of cognitive deficits. Aviat. Space Environ. Med. 65: 641–645.Google Scholar
  66. Fox, A. W., Monoson, P. K., and Morgan, C. D. (1989). Speech dysfunction of obstructive sleep apnea: A discriminant analysis of its descriptors. Chest 96: 589–585.Google Scholar
  67. Freixanet, M. (1991). Personality profile of subject engaged in high physical risk sports participants. Pers. Individual Differences 12: 1087–1093.Google Scholar
  68. Fried, R. (1995). The capnometer and oximeter in the biofeedback treatment of asthma and emphysema. Biol. Psychol. 41: 87.Google Scholar
  69. Garner, S. H., Sutton, J. R., Burse, R. L., McComas, A. J., Cymerman, A., and Houston, C. S. (1990). Operation Everest II: Neuromuscular performance under conditions of extreme simulated altitude. J. Appl. Physiol. 68: 1167–1172.Google Scholar
  70. Garrido, E. (1997). Altitud y Riesgo Neurológico: Alpinistas Europeos vs. Sherpas Del Himalaya [Altitude and neurological risk: Alpinists vs. Himalayan Sherpas]. Unpublished doctoral dissertation, University of Barcelona, Barcelona, Spain.Google Scholar
  71. Garrido, E., and Botella, J. (1998). El mal de montaña [The mountain sickness]. Med. Clín. 110: 462–468.Google Scholar
  72. Garrido, E., and Javierre, C. (1996). Extreme altitude transient aphasia. Br. J. Sports Med. 30: 364.Google Scholar
  73. Garrido, E., Castelló, A., Ventura, J. L., Capdevilla, A., and Rodriguez, F. A. (1993). Cortical atrophy and other brain magnetic resonance imaging (MRI) changes after extremely high altitude climbs without oxigen. Int. J. Sport Med. 14: 232–234.Google Scholar
  74. Garrido, E., Javierre, C., Ventura, J. L., and Segura, R. (2000). Hallucinatory experiences at high altitude. Neuropsychiatry Neuropsychol. Beba. Neurol. 13: 148.Google Scholar
  75. Garrido, E., Segura, R., Capdevilla, A., Aldomá, J., Rodriguez, F. A., Javierre, C., et al. (1995). New evidence from magnetic resonance imaging of brain changes after climbs at extreme altitude. Eur. J. Appl. Physiol. 70: 477–481.Google Scholar
  76. Garrido, E., Segura, R., Capdevilla, A., Pujol, J., Javierre, C., and Ventura, J. L. (1996). Are Himalayan Sherpas better protected against brain damage associate with extreme altitude climbs? Clin. Sci. 90: 81–85.Google Scholar
  77. Gilbert, D. L. (1983). The first documented report of mountain sickness: The China or headache mountain story. Respir. Physiol. 52: 315–326.Google Scholar
  78. Gotoh, G., Meyer, J., and Takagi, Y. (1965). Cerebral effects of hyperventilation in man. Arch. Neurol. 12: 410–423.Google Scholar
  79. Gozal, D., Daniel, J. M., and Dohanich, G. P. (2001). Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in rat. J. Neurosci. 21: 2442–2450.Google Scholar
  80. Grant, I., Prigatano, G. P., Heaton, R. K., McSweeney, A. J., Wright, E. C., and Adams, K. M. (1987). Progressive neuropsychological impairment and hypoxemia. Arch. Gen. Psychiatry 44: 999–1006.Google Scholar
  81. Green, R. G., and Morgan, D. R. (1985). The effects of mild hypoxia on a logical reasoning task. Aviat. Space Environ. Med. 56: 1004–1008.Google Scholar
  82. Griggs, R. C., and Sutton, J. R. (1992). Neurological manifestation of respiratory diseases. In Asbury, A. K., McKhann, G. M., and McDonald, W. I. (eds.), Disease of the Nervous System (pp. 1433–1439), Saunders, Philadelphia.Google Scholar
  83. Hackett, P. H., Hollingsmead, K., Roach, R., Schoene, R., and Mills, W. (1987). Cortical blindness in high altitude climbers and trekkers. A report of six cases. In: Sutton, J., Houston, C., and Coates, G. (eds.), Hypoxia and Cold (pp. 536–550), Praeger Press, New York.Google Scholar
  84. Hackett, P. H., and Rennie, D. (1976). The incidence, importance, and prophylaxis of acute mountain sickness. Lancet 27: 1149–1155.Google Scholar
  85. Hackett, P. H., Rennie, D., Hofmeister, S. E., Grover, R. F., and Reeves, J. T. (1982). Fluid retention and relative hypoventilation in acute mountain sickness. Respir. Physiol. 43: 321–329.Google Scholar
  86. Hackett, P. H., Roach, R., and Harrison, G. (1987). Respiratory stimulants and sleep periodic breathing at high altitude. Almitrine vs. acetazolamide. Am. Rev. Respir. Dis. 135: 896–898.Google Scholar
  87. Hackett, P. H., Yarnell, P. R., Hill, R., Reynard, K., Heit, J., and McCormick, J. (1998). High-altitude cerebral edema evaluated with magnetic resonance imaging. J. Am. Med. Assoc. 280: 1920–1925.Google Scholar
  88. Hansen, J. E., Harris, C. W., and Evans, W. O. (1967). Influence in elevation on origin, rate of ascent and a physical conditioning program on symptoms of acute mountain sickness. Mil. Med. 132: 585–592.Google Scholar
  89. Herzog, M. (1952). Annapurna, Premier 8000 [Annapurna, First 8,000]. Arthaud, Paris.Google Scholar
  90. Hillsman, D. (1996a). A visual biofeedback method to define and teach breathing patterns. Biol. Psychol. 43: 261.Google Scholar
  91. Hillsman, D. (1996b). Clinical experience with a visual method in COPD rehabilitation. Biol. Psychol. 43: 243–244.Google Scholar
  92. Hochachka, P. W., Clark, C. M., Matheson, G. O., Brown, W. D., Stone, C. K., Nicles, R. J., et al. (1999). Effects on regional brain metabolism of high-altitude hypoxia: A study of six US marines. Am. J. Physiol. 277: 314–319.Google Scholar
  93. Hochachka, P. W., Clark, C. M., Monge, C., Stanley, C., Brown, W. D., Stone, C. K., et al. (1996). Sherpa brain glucose metabolism and defense adaptations against chronic hypoxia. J. Appl. Physiol. 81: 1355–1361.Google Scholar
  94. Hopko, D. R., Ashcraft, M. H., Gute, J., Ruggiero, K. J., and Lewis, C. (1998). Mathematics anxiety and working memory: Support for the existence of a deficient inhibition mechanism. J. Anxiety Disord. 12: 343–355.Google Scholar
  95. Hornbein, T. F. (1992). Long term effects of high altitude on brain function. Int. J. Sports Med. 13: S43–S45.Google Scholar
  96. Hornbein, T. F., and Schoene, R. B. (2001). High Altitude: An Exploration of Human Adaptation, Marcel Dekker, New York.Google Scholar
  97. Hornbein, T. F., Townes, B. D., Shoene, R. B., Sutton, J. R., and Houston, C. S. (1989). The cost to the central nervous system of climbing to high extremely altitude. N. Engl. J. Med. 321: 1714–1719.Google Scholar
  98. Huppert, F. A. (1982). Memory impairment associated with chronic hypoxia. Thorax37: 858–860.Google Scholar
  99. Ikeda, M., Iwagana, M., and Seiwa, H. (1996). Test anxiety and working memory system. Percept. Mot. Skills 82: 1223–1231.Google Scholar
  100. Jack, S. J., and Ronan, K. R. (1998). Sensation seeking among high and low risk sports participants. Pers. Individual Differences 25: 1063–1083.Google Scholar
  101. Janowsky, J. S., Shimamura, A. P., and Squire, L. R. (1989). Memory and metamemory: comparisons between patients with frontal lobe lesions and amnesic patients. Psychobiology 17: 3–11.Google Scholar
  102. Janssen, J. (1890). Club Alpin Francais, Annuaire 1882–1887.Google Scholar
  103. Jason, G., Pajurkova, E., and Lee, R. (1989). High altitude mountaineering and brain function: Neuropsychological testing of members of a Mount Everest expedition. Avia. Space Environ. Med. 60: 170–173.Google Scholar
  104. Jensen, J. B., Wright, A. D., Lassen, N. A., Harvey, T. C., Harvey, M. H., Winterborn, M. H., et al. (1990). Cerebral blood flow in acute mountain sickness. J. Appl. Phys. 69: 430–433.Google Scholar
  105. Johnson, R., Jr. (1988). The amplitude of P300 component of the event-related potential: Review and synthesis. In: Ackles, P., Jennings, J. R., and Coles, M. G. H. (eds.), Advances in Psychophysiology (pp. 69–137, Vol. 3), JAI Press, London.Google Scholar
  106. Johnson, T. S., and Rock, R. B. (1988). Acute mountain sickness. N. Engl. J. Med. 319: 841–845.Google Scholar
  107. Junqué, C., Pujol, J., Vendrell, P., Bruna, O., Jodar, M., Ribas, J. C., et al. (1990). Leuko-araiosis on magnetic resonance imaging and speed of mental processing. Arch. Neurol. 47: 151–156.Google Scholar
  108. Kales, A., Caldwell, A. B., Cadieux, R. J., Vela-Bueno, A, Ruch, L. G., and Mayes, S. D. (1985). Severe obstructive sleep apnea-II: Associated psychopathology and psychosocial consequences. J. Chronic Dis. 38: 427–434.Google Scholar
  109. Karliner, J. S., Sarnquist, F. F., Garbers, D. J., Peters, R. N., and West, J. B. (1985). The electrocardiogram at extreme altitude. Am. Heart J. 109: 505–513.Google Scholar
  110. Kawakami, I., Yoshikawea, T., Shida, A., Asanuma, Y., and Murao, M. (1982). Control of breathing in young twins. J. Appl. Physiol. 52: 537–542.Google Scholar
  111. Kazora, E., Filley, C. M., Julian, L. J., and Collum, C. M. (1999). Cognitive functioning in patients with chronic obstructive pulmonary normal controls. Neuropsychiatry, Neuropsychol. Behav. Neurol. 12: 178–183.Google Scholar
  112. Kelly, D. A., Claypoole, K. H., and Coppel, D. B. (1990). Sleep apnea syndrome: Symptomatology, associated features, and neurocognitive correlates. Neuropsychol. Rev. 1: 323–342.Google Scholar
  113. Kelman, G. R., Crow, T. J., and Bursill, A. E. (1969). Effect of mild hypoxia on mental performance assessed by a test of selective attention. Aerospace Med. 40: 301–303.Google Scholar
  114. Kennedy, R. S., Dunlap, W. P., Banderet, L. E., Smith, M. G., and Houston, C. S. (1989). Cognitive performance deficits in a simulated ascent climb of Mount Everest: Operation Everest II. Avia. Space Environ. Med. 60: 99–104.Google Scholar
  115. Khoo, M. C. K., Anholm, J. D., Ko, S., Downey, R., Powles, A. C. P., Sutton, J. R., et al. (1995). Dynamics of periodic breathing and arousal during sleep at extreme altitude. Respir. Physiol. 103: 33–43.Google Scholar
  116. Kida, M. (1997). Psychophysiological studies under simulated high altitude. Jpn. J. of Psychon. Sci. 16: 37–44.Google Scholar
  117. Kobrick, J. (1983). Effects of hypoxia on the luminance threshold for target detection. Avia. Space Environ. Med. 53: 112–115.Google Scholar
  118. Kobrick, J. L., and Appleton, B. (1971). Effects of extended hypoxia on visual performance and retinal vascular state. J. Appl. Physiol. 31: 357–362.Google Scholar
  119. Kobrick, J. L., Crohn, E., Shukitt, B., Houston, C. S., and Sutton, J. E. (1988). Operation Everest II: Lack of an effect of extreme altitude on visual contrast sensitivity. Avia. Space Environ. Med. 59: 160–164.Google Scholar
  120. Kobrick, J. L., Zwick, H., Witt, C. E., and Devine, J. A. (1984). Effects of extended hypoxia on night vision. Avia. Space Environ. Med. 55: 191–195.Google Scholar
  121. Koller, E. A., Bischoff, M., Buhrer, A., Felder, L., and Schopen, M. (1991). Respiratory, circulatory and neuropsychological responses to acute hypoxia in acclimatized and non acclimatized subjects. Eur. J. Appl. Physiol. 62: 67–72.Google Scholar
  122. Kramer, A. F., Coyne, J. T., and Strayer, D. L. (1993). Cognitive function at high altitude. Hum. Factors 35: 329–344.Google Scholar
  123. Krammar, P., Drinkwater, B., Folins, J., and Bedi, J. (1983). Ocular functions and incidence of acute mountain sickness in women at altitude. Avia., Space Environ. Med. 54: 116–120.Google Scholar
  124. Lahiri, S. (1984). Respiratory control in Andean and Hymalayan high altitude natives. In: J. B. West, and Lahiri, S. (eds.), High Altitude and Man (pp. 147–162), Williams and Wilkins, Baltimore.Google Scholar
  125. Lahiri, S., and Cherniack, N. S. (2001). Cellular and molecular mechanisms of O2 sensing with special reference to the carotid body (Chapter IV). In: T. H. Hornbein, and Schoene, R. B. (eds.), High Altitude: Exploration of Human Adaptation, Marcel Dekker, New York.Google Scholar
  126. Lahiri, S., and Data, P. G. (1992). Chemosensivity and regulation of ventilation during sleep at high altitude. Int. J. Sports Med. 13: S31–S33.Google Scholar
  127. Lahiri, S., Maret, K., and Sherpa, M. G. (1983). Dependence of high altitude sleep apnea on ventilatory sensivity to hypoxia. Respir. Physiol. 52: 281–301.Google Scholar
  128. Lahiri, S., Rozanov, C., and Cherniack, R. (2000). Altered structure of the carotid body at high altitude and associated chemoreflexes. High Alt. Med. Biol. 1: 64–74.Google Scholar
  129. Lahiri, S., Razanov, C., Roy, A., Storey, B., and Buerk, D. G., (2001). Regulation of oxygen sensing in peripheral arterial chemoreceptors. Int J Biochem. Cell. Biol. 33: 755–774.Google Scholar
  130. Leid, J., and Campagne, J. M. (2001). Color vision at very high altitude. Color Res. Appl. 26: S281–S283.Google Scholar
  131. Lezak, M. D. (1995). Neuropsychol Assess (3rd ed.), Oxford University Press, Oxford.Google Scholar
  132. Lieberman, P., Protopapas, A., and Kaniki, B. G. (1995). Speech production and cognitive deficit in Mount Everest. Aviat. Space Environ. Med. 66: 857–864.Google Scholar
  133. Litch, J. A., and Bishop, R. A. (1999). Transient global amnesia at high altitude. N. Engl. J Med. 318: 1444.Google Scholar
  134. Mackintosh, J. H., Thomas, D. J., Olive, J. E., Chesner, I. M., and Knight, R. J. E. (1988). The effect of altitude on tests of reaction time and alertness. Aviat. Space Environ. Med. 59: 246–248.Google Scholar
  135. Magni, G., Rupolo, G., Simini, G., DeLeo, D., and Rampazzo, M. (1985). Aspects of the psychology and personality of high altitude mountain climbers: A study on the members of the 1983 Italian expedition to K-2 (8,611m Karakorum). Int. J. Sports Psychol. 16: 12–19.Google Scholar
  136. Martin, L. (1999). All You Really Need to Know to Interpret Arterial Blood Gases, Lippincott Williams and Wilkins, Philadelphia.Google Scholar
  137. Martin, R. L., Watson, D. B., Smith, S. E., McAnally, K. I., and Emonson, D. L. (2000). Effect of normobaric hypoxia on sound localization. Aviat. Space Environ. Med. 71: 991–995.Google Scholar
  138. Massot i Palmers, J. (1911). El excursionismo como medio de desarrollo físico e intelectual en el niño [The exclusionism as a way for physical and intellectual development in the child]. Actas del I Congreso Excursionista Catalán, Catalonian Excursionist Association, Barcelona, Spain.Google Scholar
  139. Masuyama, S., Kimura, H., Sugita, T., Kuriyama, T., Tatsumi, K., Kunimoto, F., et al. (1986). Control of ventilation in extreme-altitude climbers. J. Appl. Physiol. 61: 500–506.Google Scholar
  140. Matsuzawa, Y., Toshio, K., Kesisaku, F., Shinji, Y., Shiro, S., Keishi, K., et al. (1994). Nocturnal periodic breathing and arterial oxygen desaturation in acute mountain sickness. J. Wilderness Med. 5: 269–281.Google Scholar
  141. McCallum, W. C. (1988). Potential related to expectancy, preparation and motor activity. In Picton, T. W. (ed.), Handbook of Electroencephalography and Clinical Electrophysiology (pp. 427–535, Vol. 3), Elsevier, Amsterdam.Google Scholar
  142. McFarland, R. A. (1932). The psychological effects of oxygen deprivation (anoxemia) on human behavior. Arch. Psychol. 145: 1–135.Google Scholar
  143. McFarland, R. A. (1937a). Psychophysiological studies at high altitude in the Andes. J. Comp. Physiol. 23: 191–225.Google Scholar
  144. McFarland, R. A. (1937b) Psycho-physiological studies at high altitude in the Andes: I. The effects of rapid ascents by airplane and train. Comp. Psychol. 23: 191–225.Google Scholar
  145. McFarland, R. A. (1937c) Psycho-physiological studies at high altitude in the Andes: II. Sensory and motor responses during acclimatization. Comp. Psychol. 23: 227–258.Google Scholar
  146. McFarland, R. A. (1937d) Psycho-physiological studies at high altitude in the Andes: III. Mental and psycho-somatic responses during gradual adaptation. Comp. Psychol. 24: 147–187.Google Scholar
  147. McFarland, R. A. (1941). The internal environment and behavior. Am. J. Psychiatry 97: 868–877.Google Scholar
  148. McFarland, R. A. (1971). Human factors in relation to the development of pressurized cabins. Aerospace. Med. 12: 1303–1318.Google Scholar
  149. McFarland, R. A., and Barach, A. L. (1937). The response of psycho-neurotics to variation in oxygen tension. Am. J. Psychiatry 93: 1315–1341.Google Scholar
  150. McFarland, R. A., and Evans, J. N. (1939). Alterations in dark adaptations under reduced oxygen tensions. Am. J. Physiol. 127: 37–50.Google Scholar
  151. McLeod, C., and McLaughlin, K. (1995). Implicit and explicit memory bias in anxiety. Behav. Res. Ther. 33: 1–14.Google Scholar
  152. McSweeney, A. J., Grant, I., Heaton, R. K., Prigatano, G. P., and Adams, K. M. (1985). Relationship of neuropsychological status to everyday functioning in healthy chronically ill persons. J. Clin. Exp. Neuropsychol. 7: 281–291.Google Scholar
  153. Milne, D., and Gray, D. (1983). Evidence bearing on the generalizability of the laboratory findings relating to high-altitude mountaineering. Percept. Mot. Skills57: 172–174.Google Scholar
  154. Milledge, J. S. (1963). Electrocardiographic changes at high altitude. Br. Heart J. 25: 291–298.Google Scholar
  155. Milledge, J. S. (2002). Altitude deterioration. In: Viscor G., Ricart A., and Leal, C. (eds.), Proceedings of the Fifth World Congress on Mountain Medicine and High Altitude Physiology, Spain, 173–180.Google Scholar
  156. Missoum, G., Rousnet, E., and Richalet, J. P. (1992). Control of anxiety and acute mountain sickness in Himalayan mountaineers. Int. J. Sports Med. 13: S37–S39.Google Scholar
  157. Moller, K., Paulson, O. B., Hornbein, T. F., Colier, W. N., Paulson, A. S., Roach, R. C., et al. (2002). Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude J. Cereb. Blood Flow 22: 118–126.Google Scholar
  158. Montgomery, A. B., Mills, J., and Luce, J. M. (1989). Incidence of acute mountain sickness at intermediate altitude. J. Am. Med. Assoc. 261: 732–734.Google Scholar
  159. Moore, L. G. (2000). Comparative human ventilatory adaptation to high altitude. Respir. Physiol. 121: 257–276.Google Scholar
  160. Moore, L. G., Curran-Everett, L., Droma, T. S., Groves, B. M., McCullough, R. E., McCullough, R. G., et al. (1992). Are Tibetans better adapted? Int. J. Sports Med. 13(Suppl. 1): S86–88.Google Scholar
  161. Morganti, A., Giusani, M., Ghio, F., Pierini, A., Savoia, M. T., and Cogo, A. (1994). Endotelin releasing stimuli and calcium antagonists in normal and pathological conditions. J. Hypertens. 12: 27–31.Google Scholar
  162. Nelson, M. (1982). Psychological testing at high altitude. Aviat. Space Environ. Med. 53: 122–126.Google Scholar
  163. Nelson, T. O., Dunlowsky, J., White, D. M., Steinberg, J., Townes, B. D., and Anderson, D. (1990). Cognition and metacognition at extreme altitudes on Mount Everest. J. Exp. Psychol. Gen. 119: 367–374.Google Scholar
  164. Nicolas, M., Thullier, F., Bouquet, C., Gardatte, B., Gortan, C., Joulia, F., et al. (1999). An anxiety and personality study during a 31-day period of chronic hypoxia in a hypobaric chamber. J. Environ. Psychol. 19: 407–414.Google Scholar
  165. Nicolas, M., Thullier, F., Bouquet, C., Gardatte, B., Gortan, C., Joulia, F., et al. (2000). A study of mood changes and personality during a 31-day of chronic hypoxia in a hypobaric chamber (Everest-Comex, 1997). Psychol. Rep. 86: 119–126.Google Scholar
  166. Nicholson, A. N., and Wright, C. M. (1975). Effect of mild hypoxia on delayed differentiation in the monkey (Macaca mulatta). Exp. Neurol. 47: 535–543.Google Scholar
  167. Nöel-Jorand, M. C., Baggard, D., and Plaghki, L. (1996). Pain perception under chronic high-altitude hypoxia. Eur. J. Neurosci. 8: 2075–2079.Google Scholar
  168. Nöel-Jorand, M. C., and Burnet, H. (1996). The sensation of respiration in men experiencing high-altitude chronic hypoxia. Biol. Psychol. 43: 1–12.Google Scholar
  169. Nöel-Jorand, M. C., Joulia, F., and Braggard, D. (2001). Personality factors, stoicism and motivation in subjects under hypoxic stress in extreme environments. Aviat. Space Environ. Med. 72: 391–399.Google Scholar
  170. Oelz, O., Howald, H., Di Prampero, P. E., Hoppeler, M., Classen, H., Jenni, R., et al. (1986). Physiological profiles of world-class high altitude climbers. J. Appl. Physiol. 60: 1734–1742.Google Scholar
  171. Padawer, W. J., and Levine, F. N. (1992). Exercise-induce analgesia: Fact or artifact? Pain 48: 131–135.Google Scholar
  172. Peña-Casanova, J., Hernandez, M. T., and Jarne, A. (1997). Técnicas neuropsicológicas [Neuropsychological techniques]. In G. Buela-Casal, and Sierra, C. (eds.), Manual de Evaluación Psicológica: Fundamentos, Técnicas y Aplicaciones (pp. 421–454), Siglo XXI, Madrid, Spain.Google Scholar
  173. Peñaloza, D., and Echeverria, E. (1957). Electrocardiographic observations on ten subjects at se a level and during one year of residence at high altitudes. Am. Heart J. 54: 811–822.Google Scholar
  174. Petiet, C. A. (1988). Neurobehavioural and psychosocial functioning of women exposed to high altitude mountaineering. Percept. Mot. Skills67: 443–452.Google Scholar
  175. Phillips, L. M., and Pace, N. (1966). Performance changes at moderated high altitude: short term memory measured by free recall. Psychol. Rep. 19: 655–665.Google Scholar
  176. Pichiule, P., Chavez, J. C., Boero, J., and Arregui, A. (1996). Chronic hypoxia induces modification on the N-methyl-D-aspartate receptor in rat brain. Neurosci. Lett. 218: 83–86.Google Scholar
  177. Pinel, J. P. (2001). Tratornos cerebrovasculares [Cerebrovascular disorders]. Biopsicología(pp. 160–162), Petrice Hall, Madrid, Spain.Google Scholar
  178. Plaghki, L., Delisde, D., and Godfraind, J. M. (1994). Heterotopic nociceptive conditioning stimuli and mental task modulate differently the perceptual and physiological correlates of short CO$_{2}$ laser stimuli. Pain 57: 181–185.Google Scholar
  179. Plutarch . (1912). Alexander and Caesar, Loeb classics, Heinemann, London.Google Scholar
  180. Prigatano, G. P., Parson, O., Wright, E., Levin, D. C., and Hawryluk, D. (1983). Neuropsychological test performance in mildly hipoxemic patients with chronic obstructive pulmonary disease. J. Consult. Clin. Psychol. 51: 108–116.Google Scholar
  181. Ravenhill, T. H. (1913). Some experiences of mountain sickness in the Andes. J. Trop. Med. Hyg. 16: 313–320.Google Scholar
  182. Reed, L. J., Marsden, P., Lasserson, D., Sheldon, N., Lewis, P., Stanhope, N., et al. (1999). FDG-PET analysis and findings in amnesia resulting from hypoxia. Memory 7: 599–612.Google Scholar
  183. Regard, M., Landis, T., Casey, J., Maggiorini, M., Bartsch, P., and Oelz, O. (1991). Cognitive changes at high altitude on healthy climbers developing acute mountain sickness. Aviat. Space Environ. Med. 62: 291–295.Google Scholar
  184. Regard, M., Oelz, O., Brugger, and Landis, T. (1989). Persistent cognitive impairment in climbers after repeated exposure to extreme altitude. Neurology 39: 210–213.Google Scholar
  185. Reite, M., Jackson, D., Cahoon, R. L., and Weil, J. W. (1975). Sleep physiology at high altitude. Electroencephalogr. Clin. Neurophysiol. 38: 463–471.Google Scholar
  186. Richalet, J. P., Duval-Arnould, G., Darnaud, B., Keromes, A., and Rutgers, V. (1988). Modification of color vision in the green-red axis in acute and chronic hypoxia explored with a portable analoscope. Aviat. Space Environ. Med. 59: 620–623.Google Scholar
  187. Richalet, J. P., Souberbielle, J. C., Antezana, A. M., Dechaux, M., Le Trong, J. L., Bienvenu, A., et al. (1994). Control of erythropoiesis in humans during prolonged exposure to the altitude of 6,542 m. Am. J. Physiol. 266: 756–764.Google Scholar
  188. Roach, R. C., and Hackett, P. H. (2001). Frontiers of hypoxia research: acute mountain sickness. J. Exp. Biol. 204: 3161–3170.Google Scholar
  189. Roach, R. C., Icenogle, M., Hinghofer-Szalkay, H., Maes, D., Sandoval, D., Robergs, R., et al. (2000). Exercise exacerbates acute mountain sickness at simulated high altitude. J. Appl. Physiol. 88: 581–585.Google Scholar
  190. Roach, R., Bärtsch, P., and Oelz, O. (1993). The Lake Louise acute mountain sickness scoring system. In: Sutton, J., Houston, G., and Coates, G. (eds.), Hypoxia and Molecular Biology (pp. 272–274), Queen City Printers, Burlington, VT.Google Scholar
  191. Rodas, G., Javierre, C., Garrido, E., Segura, R., and Ventura, J. L. (1998). Normoxic ventilatory response in lowlander and Sherpa elite climbers. Respir. Physiol. 113: 57–64.Google Scholar
  192. Ruttledge, H. (1934). Everest 1933: The Unfinished Adventure, (pp. 164–166), Hodder and Stoughton, London.Google Scholar
  193. Ryn, Z. (1971). Psycopathology in alpinism. Acta. Med. Pol. 12: 453–467.Google Scholar
  194. Ryn, Z. (1988). Psycopathology in mountaineering: Mental disturbance under high-altitude stress. Int. J. Sports Med. 9: 163–169.Google Scholar
  195. Saito, S., Nishihara, F., Takazawa, T., Kanai, M., Aso, C., Shiga, T., et al. (1999). Exercise-induced cerebral deoxygenation among untrained trekkers at moderate altitudes. Arch. Environ. Health. 54: 271–276.Google Scholar
  196. Salorio, C. F., White, D. A., Piccirillo, J., Duntley, S. P., and Uhles, M. L. (2002). Learning, memory and executive control on individuals with obstructive sleep apnea syndrome. J. Clin. Exp. Neuropsychol. 24: 93–100.Google Scholar
  197. Samaja, M., Brenna, L., Allibardi, S., and Cerretelli, P. (1993). Human red blood cell aging at 5050 m altitude: a role during adaptation to hipoxia. J. Appl. Physiol. 75: 1696–1701.Google Scholar
  198. Santolaya, R. B., Lahiri, S., Alfaro, R. T. Y., Schoene, R. B. (1989). Respiratory adaptations in the highest inhabitants and highest Sherpa mountaineers. Respir. Physiol. 77: 253–262.Google Scholar
  199. Saul, G. D., Lukina, W. J., Brakebush, S. C., Wilmot, D. E., and Tammelin, B. R. (2002). Voluntary Hyperventilation into a Simple Mixing Chamber Relieves High Altitude Hypoxia. Aviat. Space. Environ. Med. 73: 404–407.Google Scholar
  200. Savourey, G., Moirant, C., Eterradossi, E. Y., and Bittel, J. (1995). Acute mountain sickness relates to sea-level partial pressure oxygen. Eur. J. Appl. Physiol. 70: 469–476.Google Scholar
  201. Schoene, R. B. (1982). Control of ventilation in climbers to extreme altitude. J. Appl. Physiol. 53: 886–890.Google Scholar
  202. Schoene, R. B. (1999). The brain at high altitude. Wilderness Environ. Med. 10: 93–96.Google Scholar
  203. Schoene, R. B. (2001). Limits of human lung function at high altitude. J. Exp. Biol. 204: 3121–3127.Google Scholar
  204. Schoene, R. B., Lahiri, S., Hackett, R. M., Petters J. R., Milledge, J. S., Pizzo, C. J., et al. (1984). Relationship of hypoxic ventilatory response to exercise performance in Mount Everest. J. Appl. Physiol. 56: 1478–1483.Google Scholar
  205. Schousboe, A., Belhage, B., and Frandsen, A. (1997). Role of Ca++ and second messengers in excitatory aminoacid receptors mediated neurodegeneration. Clin. Neurosci. 4: 191–198.Google Scholar
  206. Schulze, G., Coper, H., and Faehndrich, Ch. (1990). Adaptation capacity of biogenic amines turnover to hypoxia in different brain areas of old rats. Neurochem. Int. 17: 281–289.Google Scholar
  207. Selvamurthy, W., Raju, V. R., and Ranganathan, S. (1986). Sleep patterns at an altitude of 3500 meters. Int. J. Biometereology 30: 123–135.Google Scholar
  208. Sharma, V., Malhorta, M., and Baskaran, A. (1975). Variations in psychomotor efficiency during prolonged stay at high altitude. Ergonomics 18: 511–516.Google Scholar
  209. Shephard, R. J. (1956). Physiological changes and psychomotor performance during acute hypoxia. J. Appl. Physiol. 9: 343–351.Google Scholar
  210. Shipton, E. (1943). Upon that Mountain, Hodder and Stoughton, London, p. 129.Google Scholar
  211. Shlim, D. R., Hackett, P. H., Houston, C., Steele, P., Nelson, D., and Hultgren, H. N. (1995). Diplopia at high altitude. Wilderness Environ. Med. 6: 341.Google Scholar
  212. Shock, N. W. (1942). The effects on learning of repeated exposures to lowered oxygen tension of inspired air. J. Comp. Psychol. 34: 55–63.Google Scholar
  213. Shukitt, B., and Banderet, L. E. (1988). Mood states at 1600 and 4300 meters terrestrial altitude. Aviat, Space Environ. Med. 59: 530–532.Google Scholar
  214. Shukitt-Hale, B., Banderet, L. E., and Lieberman, H. R. (1991). Relationships between symptoms, moods, performance, and acute mountain sickness at 4,700 meters. Aviat, Space Environ. Med. 62: 865–869.Google Scholar
  215. Shukitt-Hale, B., Banderet, L. E., and Lieberman, H. R. (1998). Elevation-dependent symptom, mood, and performance changes produced by exposure to hypobaric hypoxia. Int. J. Aviat. Psychol. 8: 319–334.Google Scholar
  216. Shukitt-Hale, B., Kadar, T., Marlowe, B. E., Stillman, M. J., Galli, R. L., Levy, A., et al. (1996). Morphological alterations in the hippocampus following hypobaric hypoxia. Hum. Exp. Toxicol. 15: 312–319.Google Scholar
  217. Shukitt-Hale, B., Rauch, T. M., and Foutch, R. (1990). Altitude symptomatology and mood states during a climb to 3600 meters. Aviat, Space Environ. Med. 61: 225–228.Google Scholar
  218. Shukitt-Hale, B., Stillmann, M. J., Levy, A., Devine, J. A., and Lieberman, H. R. (1993). Nimodipine prevents the in vivo decrease in hippocampal extracellular acetylcholine produced by hypobaric hypoxia. Brain Res. 621: 291–295.Google Scholar
  219. Shukitt-Hale, B., Stillmann, M. J., Welch, D. I., Levy, A., Devine, J. A., and Lieberman, H. R. (1994). Hypobaric hypoxia impairs spatial memory in an elevation-dependent fashion. Behav. Neural. Biol. 62: 244–253.Google Scholar
  220. Simon, R. P. (1995). CNS response to hypoxia. In: Sutton, J. R., Houston, C. S., and Coates, G. (eds.), Hypoxia and the Brain Proceedings of the Ninth International Hypoxia Symposium, Queen City Printers, Burlington, VT.Google Scholar
  221. Smith, V. C., Ernest, J. T., and Pokorny, J. (1976). Effect of hypoxia on FM-100-hue test performance. Modif. Probl. Ophthalmol. 17: 246–256.Google Scholar
  222. Song, S. Y., Asaji, T., Tanizaki, Y., Fujimaki, T., Matsutani, M., and Okeda, R. (1986). Cerebral thrombosis at altitude: Its pathogenesis and the problems of prevention an treatment. Aviat, Space Environ. Med. 57: 71–76.Google Scholar
  223. Steingart, A., Hachinski, V. C., Lau, C., Fox, A. J., Diaz, F., Cape, R., et al. (1987). Cognitive and neurological findings in subjects with diffuse white matter lucencies on computed tomographic scan (leuko-araiosis). Arch. Neurol. 44: 32–35.Google Scholar
  224. Stivalet, P., Leifflen, D., Poquin, D., Savourey, G., Launay, J., Barraud, P. A., et al. (2000). Positive expiratory pressure as a method for preventing the impairment of attentional processes by hypoxia. Ergonomics 43: 474–485.Google Scholar
  225. Stuss, D. T., Peterkin, D. A., Guzman, D. A., Guzman, C., and Troyer, A. K. (1997). Chronic obstructive pulmonary disease: effects of hypoxia on neurological and neuropsychological measures. J. Clin. Exp. Neurpshychology 19: 515–524.Google Scholar
  226. Sutton, J. R., Houston, C. S., Mansell, A. L., McFadden, M. D., Hackett, P. H., Rigg, J. R. A., et al. (1987). Effect of acetazolamide in hypoxemia during sleep at high altitude. N. Engl. J. Med. 301: 1329–1331.Google Scholar
  227. Sutton, J. R., Reeves, J. T., Wagner, P. D., Groves, B. M., Cymerman, A., Malconian, M. K., et al. (1988). Operation Everest II: Oxygen transport during exercise at extreme simulated altitude. J. Appl. Physiol. 64: 1309–1321.Google Scholar
  228. Takagi, M., and Watanabe, S. (1999). Two different components of contingent negative variation (CNV) and their relation to changes in reaction time under hypobaric hypoxic conditions. Aviat. Space Environ. Med. 70: 30–34.Google Scholar
  229. Telakivi, T., Kajaste, S., Partinen, M., Brander, P., and Nyholm, A. (1993). Cognitive function in obstructive sleep apnea. Sleep16: S74–S75.Google Scholar
  230. Timiras, P. S., Krum, A. A., and Pace, N. (1957). Body and organ weights of rats during acclimatization to an altitude of 12470 feet. Am. J. Physiol. 191: 598–604.Google Scholar
  231. Tissandier, G. (1875). Le Voyage Grande Hauteur du Ballon Le Zenith [A flight in Le Zenith baloon]. La Nat. 3: 334–337.Google Scholar
  232. Townes, B., Hornbein, T., Schoene, R., Sarnquist, F., and Grant, I. (1984). Human cerebral function at extreme altitude. In: West, J. B., and Lahiri, S. (eds.), High Altitude and Man(pp. 31–36), American Physiological Society, Bethesda.Google Scholar
  233. Van Diest, I., Stegen, K., Woestijne, K. P., Schippers, N., and Bergh, O. (2000). Hyperventilation and attention: effects of hypocapnia on performance in a Stoop task. Biol. Psychol. 53: 233–252.Google Scholar
  234. Viapiano, M. S., Mitridate de Novara, A. M., Fiszer de Plazas, S., and Bozzini, C. E. (2001). Prolonged exposure to hypobaric hypoxia transiently reduces GABA (A) receptor number in mice cerebral cortex. Brain Res. 894: 31–36.Google Scholar
  235. Vingrys, A. J., and Garner, L. F. (1987). The effect of moderate level of hypoxia on human color vision. Documents of Ophthalmol. 66: 171–185.Google Scholar
  236. Virués, J., Segui, D., and Buela-Casal, G. (2002). Possible dissociation between attention and memory impairments related to moderate high altitude. High Alt. Med. Biol. 3: S35.Google Scholar
  237. Waldfogel, S., Finesinger, J. E., and Verzeano, M. (1950). The effect of low oxygen on psychological performance tests in psychoneurotic patients and normal controls. Psychosom. Med. 12: 244–249.Google Scholar
  238. Watson, D. B., Martin, R. L., McAnally, K. I., Smith, S. E., and Emonson, D. L. (2000). Effect of normobaric hypoxia on auditory sensitivity. Aviat. Space Environ. Med. 71: 791–797.Google Scholar
  239. Wesensten, N. J., Crowley, J. B., and Thomas, K. G. (1993). Effects of simulated high altitude exposure on long latency event-related brain potentials and performance. Aviat. Space Environ. Med. 64: 30–36.Google Scholar
  240. West, J. B. (1984). Human physiology at extreme high altitudes on Mount Everest. Science323: 784–788.Google Scholar
  241. West, J. B. (1986). Do climbs to extreme altitude cause brain damage. Lancet 16: 387–388.Google Scholar
  242. West, J. B., Boyer, S. J., and Graber, D. J. (1983a). Maximal exercise at extreme altitude on Mount Everest. J. Appl. Physiol. 55: 688–698.Google Scholar
  243. West, J. B., Hackett, P. H., Maret, K. H., Milledge, J. S., Peters, R. M., Pizzo, C. J., et al. (1983b). Pulmonary gas exchange on the summit of mount Everest. J. Appl. Physiol. 55: 678–687.Google Scholar
  244. West, J. B., and Mathieu-Costello, O. (1992). High altitude pulmonary edema is caused by stress failure of pulmonary capillaries. Int. J. Sports Med. 13: 54–58.Google Scholar
  245. Wickramasinghe, H., and Anholm, J. D. (1999). Sleep and breathing at high altitude. Sleep Breath 3: 89–102.Google Scholar
  246. Wilmer, W. H., and Berens, C. (1918). Medical studies in aviation: V. The effect of altitude on ocular functions. J. Am. Med. Assoc. 71: 1394–1398.Google Scholar
  247. Zarewski, P., Marusic, I., Zolotic, S., Bunjevac, T., and Vukosav, Z. (1998). Contribution of Arnett’s inventory of sensation seeking ant Zuckerman’s Sensation Seeking Scale to the differentiation of athletes engaged in high and low risk sports. Pers. Individual Differences25: 763–768.Google Scholar
  248. Zola-Morgan, S., Squire, L. R., and Amaral, D. G. (1986). Human amnesia and the medial temporal region: enduring impairment following a bilateral lesion limited to field CA1 on the hippocampus. J Neurosci. 6:2950–2967.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • Javier Virués-Ortega
    • 1
    • 2
  • Gualberto Buela-Casal
    • 1
  • Eduardo Garrido
    • 3
    • 4
  • Bernardino Alcázar
    • 5
  1. 1.Departamento de Personalidad, Evaluación y Tratamiento PsicológicosUniversidad de GranadaGranadaSpain
  2. 2.Servicio de Salud MentalComplejo Hospitalario de JaénJaénSpain
  3. 3.Unitat de Medicina de l’Esport i Fisiologia de l’Exercici, Servei de Medicina PreventivaHospital General de CatalunyaBarcelonaSpain
  4. 4.Departament de Ciències Fisiològiques i de la NutricióUniversitat de BarcelonaBarcelonaSpain
  5. 5.Servicio de NeumologíaComplejo Hospitalario de JaénJaénSpain

Personalised recommendations