Skip to main content

Advertisement

Log in

Therapeutic Potential of Curcumin in Reversing the Depression and Associated Pseudodementia via Modulating Stress Hormone, Hippocampal Neurotransmitters, and BDNF Levels in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Depressive state adversely affects the memory functions, especially in the geriatric population. The initial stage of memory deficits associated with depression is particularly called as pseudodementia. It is the starting point of memory disturbance before dementia. The purpose of this research was to study depression and its consequent pseudodementia. For this purpose 24 male albino Wistar rats were divided into four groups. Depression was induced by 14 days of chronic restraint stress (CRS) daily for 4 h. After developing a depression model, pattern separation test was conducted to monitor pseudodementia in rats. Morris water maze test (MWM) was also performed to observe spatial memory. It was observed that model animals displayed impaired pattern separation and spatial memory. Treatment was started after the development of pseudodementia in rats. Curcumin at a dose of 200 mg/kg was given to model rats for one week along with the stress procedure. Following the treatment with curcumin, rats were again subjected to the aforementioned behavioral tests before decapitation. Corticosterone levels, brain derived neurotrophic factor (BDNF) and neurochemical analysis were conducted. Model rats showed depressogenic behavior and impaired memory performance. In addition to this, high corticosterone levels and decreased hippocampal BDNF, 5-HT, dopamine (DA), and acetylcholine (ACh) levels were also observed in depressed animals. These behavioral biochemical and neurochemical changes were effectively restored following treatment with curcumin. Hence, it is suggested from this study that pseudodementia can be reversed unlike true dementia by controlling the factors such as depression which induce memory impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Afzal A, Ahmad S, Agha F, Batool Z, Tabassum S, Liaquat L et al (2018) Administration of 5-HT-1B agonist ameliorates pseudodementia induced by depression in rats. Pak J Pharm Sci 31:2179–2184

    CAS  PubMed  Google Scholar 

  2. Uchida S, Yamagata H, Seki T, Watanabe Y (2018) Epigenetic mechanisms of major depression: targeting neuronal plasticity. Psychiatry Clin Neurosci 72(4):212–227

    Article  PubMed  Google Scholar 

  3. Veenit V, Cordero MI, Tzanoulinou S, Sandi C (2013) Increased corticosterone in peripubertal rats leads to long-lasting alterations in social exploration and aggression. Front Behav Neurosci 7:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao Y, Ma R, Shen J, Su H, Xing D, Du L (2008) A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 581(1–2):113–120

    Article  CAS  PubMed  Google Scholar 

  5. Byers AL, Yaffe K (2011) Depression and risk of developing dementia. Nat Rev Neurol 7(6):323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brommelhoff JA, Gatz M, Johansson B, McArdle JJ, Fratiglioni L, Pedersen NL (2009) Depression as a risk factor or prodromal feature for dementia? Findings in a population-based sample of Swedish twins. Psychol Aging 24(2):373–384

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pozzoli S, De Carlo V, Madonna D (2019) Depression, dementia, and pseudodementia. In: Altamura AC, Brambilla P (eds) Clinical cases in psychiatry: integrating translational neuroscience approaches. Springer, Cham, pp 171–188

    Chapter  Google Scholar 

  8. Kang H, Zhao F, You L, Giorgetta CDV, Sarkhel S, Prakash R (2014) Pseudo-dementia: a neuropsychological review. Ann Indian Acad Neurol 17(2):147–154

    Article  PubMed  PubMed Central  Google Scholar 

  9. Morimoto SS, Kanellopoulos D, Manning KJ, Alexopoulos GS (2015) Diagnosis and treatment of depression and cognitive impairment in late life. Ann NY Acad Sci 1345(1):36–46

    Article  CAS  PubMed  Google Scholar 

  10. Kennedy J (2015) Depressive pseudodementia how “pseudo” is it really? Old Age Psychiatrist 62:30–37

    Google Scholar 

  11. Neu P, Gooren T, Niebuhr U, Schlattmann P (2019) Cognitive impairment in schizophrenia and depression: a comparison of stability and course. Appl Neuropsychol Adult 26(3):215–228

    Article  PubMed  Google Scholar 

  12. Belujon P, Grace AA (2017) Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 20(12):1036–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nautiyal KM, Hen R (2017) Serotonin receptors in depression: from A to B. F1000Res 6:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Liu Y, Zhao J, Guo W (2018) Emotional roles of mono-aminergic neurotransmitters in major depressive disorder and anxiety disorders. Front Psychol 9:2201

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kircanski K, Joormann J, Gotlib IH (2012) Cognitive aspects of depression. Wiley Interdiscip Rev Cogn Sci 3(3):301–313

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eisch AJ, Petrik D (2012) Depression and hippocampal neurogenesis: a road to remission? Science 338(6103):72–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kosteniuk JG, Morgan DG, O’Connell ME, Crossley M, Kirk A, Stewart NJ et al (2014) Prevalence and covariates of elevated depressive symptoms in rural memory clinic patients with mild cognitive impairment or dementia. Dement Geriatr Cogn Dis Extra 4(2):209–220

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gandy K, Kim S, Sharp C, Dindo L, Maletic-Savatic M, Calarge C (2017) Pattern separation: a potential marker of impaired hippocampal adult neurogenesis in major depressive disorder. Front Neurosci 11:571

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yassa MA, Stark CE (2011) Pattern separation in the hippocampus. Trends Neurosci 34(10):515–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Phillips C (2017) Brain-derived neurotrophic factor, depression, and physical activity: making the neuroplastic connection. Neural Plast 2017:7260130

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jin Y, Sun LH, Yang W, Cui RJ, Xu SB (2019) The role of BDNF in the neuroimmune axis regulation of mood disorders. Front Neurol 10:515

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stiedl O, Pappa E, Konradsson-Geuken Å, Ögren SO (2015) The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front Pharmacol 6:162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kulkarni SK, Bhutani MK, Bishnoi M (2008) Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology 201(3):435–442

    Article  CAS  PubMed  Google Scholar 

  24. Choi GY, Kim HB, Hwang ES, Lee S, Kim MJ, Choi JY et al (2017) Curcumin alters neural plasticity and viability of intact hippocampal circuits and attenuates behavioral despair and COX-2 expression in chronically stressed rats. Mediators Inflamm 2017:6280925

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rajasekar N, Dwivedi S, Tota SK, Kamat PK, Hanif K, Nath C et al (2013) Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur J Pharmacol 715(1–3):381–394

    Article  CAS  PubMed  Google Scholar 

  26. Sarlak Z, Oryan S, Moghaddasi M (2015) Interaction between the antioxidant activity of curcumin and cholinergic system on memory retention in adult male Wistar rats. Iran J Basic Med Sci 18(4):398–403

    PubMed  PubMed Central  Google Scholar 

  27. Chimakurthy J, Murthy TE (2010) Effect of curcumin on quinpirole induced compulsive checking: An approach to determine the predictive and construct validity of the model. Am J Med Sci 2(2):81–86

    Google Scholar 

  28. Nawaz A, Batool Z, Ahmed S, Khaliq S, Sajid I, Anis L et al (2017) Attenuation of restraint stress-induced behavioral deficits by environmental enrichment in male rats. Pak Vet J 37:435–439

    CAS  Google Scholar 

  29. Haider S, Nawaz A, Batool Z, Tabassum S, Perveen T (2019) Alleviation of diazepam-induced conditioned place preference and its withdrawal-associated neurobehavioral deficits following pre-exposure to enriched environment in rats. Physiol Behav 208:112564

    Article  CAS  PubMed  Google Scholar 

  30. van Hagen BT, van Goethem NP, Lagatta DC, Prickaerts J (2015) The object pattern separation (OPS) task: a behavioral paradigm derived from the object recognition task. Behav Brain Res 285:44–52

    Article  PubMed  Google Scholar 

  31. Haider S, Tabassum S, Perveen T (2016) Scopolamine-induced greater alterations in neurochemical profile and increased oxidative stress demonstrated a better model of dementia: a comparative study. Brain Res Bull 127:234–247

    Article  CAS  PubMed  Google Scholar 

  32. Haider S, Saleem S, Tabassum S, Khaliq S, Shamim S, Batool Z et al (2013) Alteration in plasma corticosterone levels following long term oral administration of lead produces depression like symptoms in rats. Metab Brain Dis 28(1):85–92

    Article  CAS  PubMed  Google Scholar 

  33. De Benedetto GE, Fico D, Pennetta A, Malitesta C, Nicolardi G, Lofrumento DD et al (2014) A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. J Pharm Biomed Anal 98:266–270

    Article  PubMed  CAS  Google Scholar 

  34. Hestrin S (1949) The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J Biol Chem 180(1):249–261

    Article  CAS  PubMed  Google Scholar 

  35. Batool Z, Sadir S, Liaquat L, Tabassum S, Madiha S, Rafiq S et al (2016) Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia. Brain Res Bull 120:63–74

    Article  CAS  PubMed  Google Scholar 

  36. Lapmanee S, Charoenphandhu J, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N (2017) Agomelatine, venlafaxine, and running exercise effectively prevent anxiety- and depression-like behaviors and memory impairment in restraint stressed rats. PloS one 12(11):e0187671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kim MH, Leem YH (2014) Chronic exercise improves repeated restraint stress-induced anxiety and depression through 5HT1A receptor and cAMP signaling in hippocampus. J Exerc Nutrition Biochem 18(1):97–104

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fischer P, Bailer U, Hilger E, Leitner I (2002) Depressive pseudodemenzen (Depressive pseudodementia). Wien Med Wochenschr 152(3–4):62–65

    Article  CAS  PubMed  Google Scholar 

  39. Crowe SF, Hoogenraad K (2000) Differentiation of dementia of the Alzheimer’s type from depression with cognitive impairment on the basis of a cortical versus subcortical pattern of cognitive deficit. Arch Clin Neuropsychol 15(1):9–19

    Article  CAS  PubMed  Google Scholar 

  40. Shelton DJ, Kirwan CB (2013) A possible negative influence of depression on the ability to overcome memory interference. Behav Brain Res 256:20–26

    Article  PubMed  Google Scholar 

  41. Stephens MA, Wand G (2012) Stress and the HPA axis: role of glucocorticoids in alcohol dependence. Alcohol Res 34(4):468–483

    PubMed  PubMed Central  Google Scholar 

  42. Vollmayr B, Faust H, Lewicka S, Henn FA (2001) Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness. Mol Psychiatry 6(4):471–474

    Article  CAS  PubMed  Google Scholar 

  43. Lee BH, Kim YK (2010) The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig 7(4):231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dillon DG, Pizzagalli DA (2018) Mechanisms of memory disruption in depression. Trends Neurosci 41(3):137–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miranda M, Morici JF, Zanoni MB, Bekinschtein P (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 13:363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mizoguchi Y, Yao H, Imamura Y, Hashimoto M, Monji A (2020) Lower brain-derived neurotrophic factor levels are associated with age-related memory impairment in community-dwelling older adults: the Sefuri study. Sci Rep 10(1):1–9

    Article  CAS  Google Scholar 

  47. Erickson KI, Miller DL, Roecklein KA (2012) The aging hippocampus: interactions between exercise, depression, and BDNF. Neuroscientist 18(1):82–97

    Article  CAS  PubMed  Google Scholar 

  48. Hei M, Chen P, Wang S, Li X, Xu M, Zhu X et al (2019) Effects of chronic mild stress induced depression on synaptic plasticity in mouse hippocampus. Behav Brain Res 365:26–35

    Article  CAS  PubMed  Google Scholar 

  49. Ruiz N, Del Ángel DS, Olguín HJ, Silva ML (2018) Neuroprogression: the hidden mechanism of depression. Neuropsychiatr Dis Treat 14:2837–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scholl JL, Renner KJ, Forster GL, Tejani-Butt S (2010) Central monoamine levels differ between rat strains used in studies of depressive behavior. Brain Res 1355:41–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fink KB, Göthert M (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59(4):360–417

    Article  CAS  PubMed  Google Scholar 

  52. Fernandes SS, Koth AP, Parfitt GM, Cordeiro MF, Peixoto CS, Soubhia A et al (2018) Enhanced cholinergic-tone during the stress induce a depressive-like state in mice. Behav Brain Res 347:17–25

    Article  CAS  PubMed  Google Scholar 

  53. Barry C, Heys JG, Hasselmo ME (2012) Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells. Front Neural Circuits 6:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu D, Wang Z, Gao Z, Xie K, Zhang Q, Jiang H et al (2014) Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress. Behav Brain Res 271:116–121

    Article  CAS  PubMed  Google Scholar 

  55. Hurley LL, Akinfiresoye L, Nwulia E, Kamiya A, Kulkarni AA, Tizabi Y (2013) Antidepressant-like effects of curcumin in WKY rat model of depression is associated with an increase in hippocampal BDNF. Behav Brain Res 239:27–30

    Article  CAS  PubMed  Google Scholar 

  56. Xu Y, Ku B, Tie L, Yao H, Jiang W, Ma X et al (2006) Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res 1122(1):56–64

    Article  CAS  PubMed  Google Scholar 

  57. Lian L, Xu Y, Zhang J, Yu Y, Zhu N, Guan X et al (2018) Antidepressant-like effects of a novel curcumin derivative J147: involvement of 5-HT1A receptor. Neuropharmacology 135:506–513

    Article  CAS  PubMed  Google Scholar 

  58. El Nebrisi EG, Bagdas D, Toma W, Al Samri H, Brodzik A, Alkhlaif Y et al (2018) Curcumin acts as a positive allosteric modulator of α7-nicotinic acetylcholine receptors and reverses nociception in mouse models of inflammatory pain. J Pharmacol Exp Ther 365(1):190–200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Desai A (2016) Dietary polyphenols as potential remedy for dementia. Adv Neurobiol 12:41–56

    Article  PubMed  Google Scholar 

  60. Akinyemi AJ, Oboh G, Fadaka AO, Olatunji BP, Akomolafe S (2017) Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats. Neurotoxicol 62:75–79

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors kindly acknowledge the Higher Education Commission (HEC), Pakistan, for Funding the project NRPU-3766.

Funding

This study was funded by Higher Education Commission (HEC), Pakistan (project NRPU-3766) received by S. Haider. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehra Batool.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, A., Batool, Z., Sadir, S. et al. Therapeutic Potential of Curcumin in Reversing the Depression and Associated Pseudodementia via Modulating Stress Hormone, Hippocampal Neurotransmitters, and BDNF Levels in Rats. Neurochem Res 46, 3273–3285 (2021). https://doi.org/10.1007/s11064-021-03430-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03430-x

Keywords

Navigation