Advertisement

Impaired EAT-4 Vesicular Glutamate Transporter Leads to Defective Nocifensive Response of Caenorhabditis elegans to Noxious Heat

  • Sophie Leonelli
  • Bruno Nkambeu
  • Francis BeaudryEmail author
Original Paper

Abstract

In mammals, glutamate is an important excitatory neurotransmitter. Glutamate and glutamate receptors are found in areas specifically involved in pain sensation, transmission and transduction such as peripheral nervous system, spinal cord and brain. In C. elegans, several studies have suggested glutamate pathways are associated with withdrawal responses to mechanical stimuli and to chemical repellents. However, few evidences demonstrate that glutamate pathways are important to mediate nocifensive response to noxious heat. The thermal avoidance behavior of C. elegans was studied and results illustrated that mutants of glutamate receptors (glr-1, glr-2, nmr-1, nmr-2) behaviors was not affected. However, results revealed that all strains of eat-4 mutants, C. elegans vesicular glutamate transporters, displayed defective thermal avoidance behaviors. Due to the interplay between the glutamate and the FLP-18/FLP-21/NPR-1 pathways, we analyzed the effectors FLP-18 and FLP-21 at the protein level, we did not observe biologically significant differences compared to N2 (WT) strain (fold-change < 2) except for the IK602 strain. The data presented in this manuscript reveals that glutamate signaling pathways are essential to elicit a nocifensive response to noxious heat in C. elegans.

Keywords

Caenorhabditis elegans Glutamate Glutamate transporter Nociception Thermotaxis 

Notes

Acknowledgements

This project was funded by the National Sciences and Engineering Research Council of Canada (F. Beaudry discovery Grant No. RGPIN-2015-05071). Laboratory instruments were funded by the Canadian Foundation for Innovation (CFI) and the Fonds de Recherche du Québec (FRQ), Government of Quebec (F. Beaudry CFI John R. Evans Leaders Grant No. 36706). Sophie Leonelli received a NSERC Undergraduate Student Research Awards scholarship.

References

  1. 1.
    Pereira V, Goudet C (2019) Emerging trends in pain modulation by metabotropic glutamate receptors. Front Mol Neurosci 11:464CrossRefGoogle Scholar
  2. 2.
    Reiner A, Levitz J (2018) Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron 98(6):1080–1098CrossRefGoogle Scholar
  3. 3.
    Osikowicz M, Mika J, Przewlocka B (2013) The glutamatergic system as a target for neuropathic pain relief. Exp Physiol 98(2):372–384CrossRefGoogle Scholar
  4. 4.
    Petralia RS, Rubio ME, Wenthold RJ (1998) Selectivity in the distribution of glutamate receptors in neurons. Cell Biol Int 22(9–10):603–608CrossRefGoogle Scholar
  5. 5.
    Wittenburg N, Baumeister R (1999) Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception. Proc Natl Acad Sci USA 96(18):10477–10482CrossRefGoogle Scholar
  6. 6.
    Carr FB, Zachariou V (2014) Nociception and pain: lessons from optogenetics. Front Behav Neurosci 8(69):1–6Google Scholar
  7. 7.
    Nkambeu B, Salem JB, Leonelli S, Marashi FA, Beaudry F (2019) EGL-3 and EGL-21 are required to trigger nocifensive response of Caenorhabditis elegans to noxious heat. Neuropeptides 73:41–48CrossRefGoogle Scholar
  8. 8.
    Kotera I, Tran NA, Fu D, Kim JH, Byrne Rodgers J, Ryu WS (2016) Pan-neuronal screening in Caenorhabditis elegans reveals asymmetric dynamics of AWC neurons is critical for thermal avoidance behavior. Elife 16:5Google Scholar
  9. 9.
    Thies J, Neutzler V, O'Leary F, Liu H (2016) Differential effects of TRPA and TRPV channels on behaviors of Caenorhabditis elegans. J Exp Neurosci 10:71–75CrossRefGoogle Scholar
  10. 10.
    Glauser DA, Chen WC, Agin R, Macinnis BL, Hellman AB, Garrity PA, Tan M-W, Goodman MB (2011) Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans. Genetics 188:91–103CrossRefGoogle Scholar
  11. 11.
    Venkatachalam K, Luo J, Montell C (2014) Evolutionarily conserved, multitasking TRP channels: lessons from worms and flies. Handb Exp Pharmacol 223:937–962CrossRefGoogle Scholar
  12. 12.
    Chatzigeorgiou M, Yoo S, Watson JD, Lee W-H, Spencer WC, Kindt KS, Hwang SW, Miller DM, Treinin M, Driscoll M, Schafer WR (2010) Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nat Neurosci 13:861–868CrossRefGoogle Scholar
  13. 13.
    Liu S, Schulze E, Baumeister R (2012) Temperature- and touch-sensitive neurons couple CNG and TRPV channel activities to control heat avoidance in Caenorhabditis elegans. PLoS ONE 7:e32360CrossRefGoogle Scholar
  14. 14.
    Kahn-Kirby AH, Bargmann CI (2006) TRP channels in C. elegans. Annu Rev Physiol 68:719–736CrossRefGoogle Scholar
  15. 15.
    Zou W, Fu J, Zhang H, Du K, Huang W, Yu J, Li S, Fan Y, Baylis HA, Gao S, Xiao R, Ji W, Kang L, Xu T (2018) Decoding the intensity of sensory input by two glutamate receptors in one C. elegans interneuron. Nat Commun 9(1):4311CrossRefGoogle Scholar
  16. 16.
    Vangindertael J, Beets I, Rocha S, Dedecker P, Schoofs L, Vanhoorelbeke K, Hofkens J, Mizuno H (2015) Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM. Sci Rep 5:13532CrossRefGoogle Scholar
  17. 17.
    Brockie PJ, Maricq AV (2006) WormBook. pp 1–16Google Scholar
  18. 18.
    Mellem JE, Brockie PJ, Zheng Y, Madsen DM, Maricq AV (2002) Decoding of polymodal sensory stimuli by postsynaptic glutamate receptors in C. elegans. Neuron 36(5):933–944CrossRefGoogle Scholar
  19. 19.
    Hart AC, Sims S, Kaplan JM (1995) Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378(6552):82–85CrossRefGoogle Scholar
  20. 20.
    Lee D, Jung S, Ryu J, Ahnn J, Ha I (2008) Human vesicular glutamate transporters functionally complement EAT-4 in C. elegans. Mol Cells 25(1):50–54PubMedGoogle Scholar
  21. 21.
    Brenner S (1977) The genetics of Caenorhabditis elegans. Genetics 77:71–94Google Scholar
  22. 22.
    Margie O, Palmer C, Chin-Sang I (2013) C. elegans chemotaxis assay. J Vis Exp 74:1–6Google Scholar
  23. 23.
    Porta-De-La-Riva M, Fontrodona L, Villanueva A, Cerón J (2012) Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp 64:1–9Google Scholar
  24. 24.
    Thermo Scientific. Instruction: Coomassie Plus (Bradford) Assay. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0011203_CoomassiePlus_Bradford_Asy_UG.pdf. Accessed 10 Dec 2019
  25. 25.
    D'Mello R, Dickenson AH (2008) Spinal cord mechanisms of pain. Br J Anaesth 101(1):8–16CrossRefGoogle Scholar
  26. 26.
    Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413(6852):203–210CrossRefGoogle Scholar
  27. 27.
    Choi S, Chatzigeorgiou M, Taylor KP, Schafer WR, Kaplan JM (2013) Analysis of NPR-1 reveals a circuit mechanism for behavioral quiescence in C. elegans. Neuron 78(5):869–880CrossRefGoogle Scholar
  28. 28.
    Ghosh R, Mohammadi A, Kruglyak L, Ryu WS (2012) Multiparameter behavioral profiling reveals distinct thermal response regimes in Caenorhabditis elegans. BMC Biol 10:85CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Sophie Leonelli
    • 1
  • Bruno Nkambeu
    • 1
  • Francis Beaudry
    • 1
    Email author
  1. 1.Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine VétérinaireUniversité de MontréalSaint-HyacintheCanada

Personalised recommendations