Pedunculopontine Nucleus Deep Brain Stimulation Improves Gait Disorder in Parkinson’s Disease: A Systematic Review and Meta-analysis


Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) has been proposed as a treatment strategy for gait disorder in patients with Parkinson’s disease (PD). We thus performed a systematic review and meta-analysis of randomized and nonrandomized controlled trials to assess the effect of this treatment on gait disorder in patients with PD. We systematically searched PubMed, Cochrane, Web of Knowledge, Wan Fang and WIP for randomized and nonrandomized controlled trials (published before July 29, 2014; no language restrictions) comparing PPN–DBS with other treatments. We assessed pooled data using a random effects model and a fixed effects model. Of 130 identified studies, 14 were eligible and were included in our analysis (N = 82 participants). Compared to those presurgery, the Unified Parkinson Disease Rating Scale (UPDRS) 27–30 scores for patients were lowered by PPN–DBS [3.94 (95% confidence interval, CI = 1.23 to 6.65)]. The UPDRS 13 and 14 scores did not improve with levodopa treatment [0.43 (− 0.35 to 1.20); 0.35 (− 0.50 to 1.19)], whereas the UPDRS 27–30 scores could be improved by the therapy [1.42 (95% CI 0.34 to 2.51)]. The Gait and Falls Questionnaire and UPDRS 13 and 14 scores showed significant improvements after PPN–DBS under the medication-off (MED-OFF) status [15.44 (95% CI = 8.44 to 22.45); 1.57 (95% CI = 0.84 to 2.30); 1.34 (95% CI = 0.84 to 1.84)]. PPN–DBS is a potential therapeutic target that could improve gait and fall disorders in patients with PD. Our findings will help improve the clinical application of DBS in PD patients with gait disorder.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Nonnekes J, Ružicka E, Nieuwboer A, Hallett M, Fasano A, Bloem BR (2019) Compensation strategies for gait impairments in Parkinson disease: a review. JAMA Neurol 76(6):718–725.

  2. 2.

    Nonnekes J, Snijders AH, Nutt JG, Deuschl G, Giladi N, Bloem BR (2015) Freezing of gait: a practical approach to management. Lancet Neurol 14(7):768–778.

  3. 3.

    Gazewood JD, Richards DR, Clebak K (2013) Parkinson disease: an update. Am Fam Physician 87(4):267–273.

  4. 4.

    Ferraye MU, Debu B, Pollak P (2008) Deep brain stimulation effect on freezing of gait. Mov Disord Off J Mov Disord Soc 23(Suppl 2):S489–S494.

  5. 5.

    Remple MS, Bradenham CH, Kao CC, Charles PD, Neimat JS, Konrad PE (2011) Subthalamic nucleus neuronal firing rate increases with Parkinson’s disease progression. Mov Disord 26(9):1657–1662

  6. 6.

    Jahanshahi M, Obeso I, Baunez C, Alegre M, Krack P (2015) Parkinson’s disease, the subthalamic nucleus, inhibition, and impulsivity. Mov Disord Off J Mov Disord Soc 30(2):128–140.

  7. 7.

    Okun MS (2012) Deep-brain stimulation for Parkinson’s disease. N Engl J Med 367(16):1529–1538

  8. 8.

    Klein JC, Barbe MT, Seifried C, Baudrexel S, Runge M, Maarouf M, Gasser T, Hattingen E, Liebig T, Deichmann RJN (2012) The tremor network targeted by successful VIM deep brain stimulation in humans. Neurology 78(11):787–795

  9. 9.

    Limousin P, Foltynie T (2019) Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol 15(4):234–242.

  10. 10.

    Martijn B, Annelien D, Veerle VV, Yasin T, Ania W (2011) Impulse control and related disorders in Parkinson’s disease patients treated with bilateral subthalamic nucleus stimulation: a review. Park Relat Disord 17(6):413–417.

  11. 11.

    Ryczko D, Dubuc R (2013) The multifunctional mesencephalic locomotor region. Curr Pharm Des 19(24):4448–4470.

  12. 12.

    Josset N, Roussel M, Lemieux M, Lafrance-Zoubga D, Rastqar A, Bretzner F (2018) Distinct contributions of mesencephalic locomotor region nuclei to locomotor control in the freely behaving mouse. Curr Biol.

  13. 13.

    Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. NeuroReport 16(17):1883–1887.

  14. 14.

    The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations (2003). Mov Disord 18(7):738–750.

  15. 15.

    Higgins JPT, Savović J, Page MJ, Elbers RG, Sterne JAC (2019) Chapter 8: assessing risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) Cochrane Handbook for Systematic Reviews of Interventions version 6.0. Wiley, Chichester

  16. 16.

    Mestre TA, Sidiropoulos C, Hamani C, Poon YY, Lozano AM, Lang AE, Moro E (2016) Long-term double-blinded unilateral pedunculopontine area stimulation in Parkinson’s disease. Mov Disord 31(10):1570–1574.

  17. 17.

    Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas JF, Benabid AL, Chabardes S, Pollak P (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133(Pt 1):205–214.

  18. 18.

    Nosko D, Ferraye MU, Fraix V, Goetz L, Chabardes S, Pollak P, Debu B (2015) Low-frequency versus high-frequency stimulation of the pedunculopontine nucleus area in Parkinson’s disease: a randomised controlled trial. J Neurol Neurosurg Psychiatry 86(6):674–679.

  19. 19.

    Thevathasan W, Cole MH, Graepel CL, Hyam JA, Jenkinson N, Brittain JS, Coyne TJ, Silburn PA, Aziz TZ, Kerr G, Brown P (2012) A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain J Neurol 135(Pt 5):1446–1454.

  20. 20.

    Khan S, Gill SS, Mooney L, White P, Whone A, Brooks DJ, Pavese N (2012) Combined pedunculopontine-subthalamic stimulation in Parkinson disease. Neurology 78(14):1090–1095.

  21. 21.

    Khan S, Mooney L, Plaha P, Javed S, White P, Whone AL, Gill SS (2011) Outcomes from stimulation of the caudal zona incerta and pedunculopontine nucleus in patients with Parkinson’s disease. Br J Neurosurg 25(2):273–280.

  22. 22.

    Perera T, Tan JL, Cole MH, Yohanandan SAC, Silberstein P, Cook R, Peppard R, Aziz T, Coyne T, Brown P, Silburn PA, Thevathasan W (2018) Balance control systems in Parkinson’s disease and the impact of pedunculopontine area stimulation. Brain J Neurol 141(10):3009–3022.

  23. 23.

    Thevathasan W, Coyne TJ, Hyam JA, Kerr G, Jenkinson N, Aziz TZ, Silburn PA (2011) Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. Neurosurgery 69(6):1248–1253; discussion 1254.

  24. 24.

    Thevathasan W, Pogosyan A, Hyam JA, Jenkinson N, Bogdanovic M, Coyne TJ, Silburn PA, Aziz TZ, Brown P (2011) A block to pre-prepared movement in gait freezing, relieved by pedunculopontine nucleus stimulation. Brain 134(Pt 7):2085–2095.

  25. 25.

    Thevathasan W, Silburn PA, Brooker H, Coyne TJ, Khan S, Gill SS, Aziz TZ, Brown P (2010) The impact of low-frequency stimulation of the pedunculopontine nucleus region on reaction time in Parkinsonism. J Neurol Neurosurg Psychiatry 81(10):1099–1104.

  26. 26.

    Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130(Pt 6):1596–1607.

  27. 27.

    Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, Lozano AM (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain J Neurol 133(Pt 1):215–224.

  28. 28.

    Antonini A, Moro E, Godeiro C, Reichmann H (2018) Medical and surgical management of advanced Parkinson’s disease. Mov Disord Off J Mov Disord Soc 33(6):900–908.

  29. 29.

    Caliandro P, Insola A, Scarnati E, Padua L, Russo G, Granieri E, Mazzone P (2011) Effects of unilateral pedunculopontine stimulation on electromyographic activation patterns during gait in individual patients with Parkinson’s disease. J Neural Transm (Vienna, Austria: 1996) 118(10):1477–1486.

  30. 30.

    Welter ML, Demain A, Ewenczyk C, Czernecki V, Lau B, El Helou A, Belaid H, Yelnik J, François C, Bardinet E, Karachi C, Grabli D (2015) PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J Neurol 262(6):1515–1525.

  31. 31.

    Li J, Ren Z (2017) Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. J Clin Neurosurg (in China) 14(5):382–384.

  32. 32.

    Peppe A, Pierantozzi M, Chiavalon C, Marchetti F, Caltagirone C, Musicco M, Stanzione P, Stefani A (2010) Deep brain stimulation of the pedunculopontine tegmentum and subthalamic nucleus: effects on gait in Parkinson's disease. Gait Posture 32(4):512–518

  33. 33.

    Mestre TA, Sidiropoulos C, Hamani C, Poon YY, Lozano AM, Lang AE, Moro E (2016) Long-term double-blinded unilateral pedunculopontine area stimulation in Parkinson’s disease. Mov Disord Off J Mov Disord Soc 31(10):1570–1574.

  34. 34.

    Grabli D, Karachi C, Folgoas E, Monfort M, Tande D, Clark S, Civelli O, Hirsch EC, François C (2013) Gait disorders in Parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci 33(29):11986.

  35. 35.

    Fasano A, Aquino CC, Krauss JK, Honey CR, Bloem BR (2015) Axial disability and deep brain stimulation in patients with Parkinson disease. Nat Rev Neurol 11:98.

  36. 36.

    Ginis P, Nackaerts E, Nieuwboer A, Heremans E (2018) Cueing for people with Parkinson’s disease with freezing of gait: a narrative review of the state-of-the-art and novel perspectives. Ann Phys Rehabil Med 61(6):407–413.

  37. 37.

    Bloem BR, Hausdorff JM, Visser JE, Giladi N (2004) Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord 19(8):871–884.

  38. 38.

    Jenkinson N, Nandi D, Muthusamy K, Ray NJ, Gregory R, Stein JF, Aziz TZ (2009) Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus. Mov Disord 24(3):319–328.

  39. 39.

    Garcia-Rill E, Tackett AJ, Byrum SD, Lan RS, Mackintosh SG, Hyde JR, Bisagno V, Urbano FJ (2019) Local and relayed effects of deep brain stimulation of the pedunculopontine nucleus. Brain Sci 9(3):64.

  40. 40.

    Karachi C, Grabli D, Bernard FA, Tandé D, Wattiez N, Belaid H, Bardinet E, Prigent A, Nothacker H-P, Hunot S, Hartmann A, Lehéricy S, Hirsch EC, François C (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Investig 120(8):2745–2754.

  41. 41.

    French IT, Muthusamy KA (2018) A review of the pedunculopontine nucleus in Parkinson’s disease. Front Aging Neurosci 10:99.

Download references


We thank all the researchers who participated in this study.


This work is supported by grants from the Fujian Provincial Science and Technology Guiding Project (Nos. 2017Y0041, 2018Y0033), Joint Funds for the Innovation of Science and Technology, Fujian Province (No. 2017Y9010) and the National Key Research and Development Program of China (No. 2017YFC1310200).

Author information

LF, WD and LC searched the scientific literature, collect the data and drafted the manuscript. CH, CL, YQ, CG3 and CG1 helped to collect the data and performed statistical analyses. CG1 contributed to conception, design, data interpretation, manuscript revision. All authors read and approved the manuscript.

Correspondence to Guoen Cai.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Wu, D., Lin, C. et al. Pedunculopontine Nucleus Deep Brain Stimulation Improves Gait Disorder in Parkinson’s Disease: A Systematic Review and Meta-analysis. Neurochem Res (2020).

Download citation


  • Pedunculopontine nucleus
  • Deep brain stimulation
  • Parkinson’s disease
  • Systematic review
  • Meta-analysis